Технологическая смазка для холодной объемной штамповки металла

Иллюстрации

Показать все

Изобретение относится к технологическим смазкам для холодной объемной штамповки металла. Сущность: смазка содержит в мас.%: сульфидированные α-олефины фракции C16-C18 5-15, смесь 2,5-дигептил-3,4-фуллеро[60]тетрагидротиофен-1-оксидов (1) 0,003-0,007, рапсовое масло 10-30, индустриальное масло - остальное. Технический результат - улучшение противоизносных и противозадирных свойств. 4 табл.

где n=1 (50%), n=2(30%), n=3(15%), n=4(5%). 4 табл.

Реферат

Изобретение относится к смазочным композициям для технологических целей, в частности к технологическим смазкам для операций холодной объемной штамповки металлов.

Известна смазочная композиция для холодной обработки металлов давлением, содержащая в качестве основы хлорированные углеводороды или хлорированные эфиры с антикоррозионными присадками [Квятковская Г.А. и др. Влияние вязкости нефтяной основы на технологические свойства масляных СОЖ. «Повышение качества смазочных материалов и эффективности их применения». М., 1977, С.105-108]. Недостатком данной композиции является то, что при глубокой вытяжке деталей с деформацией 12-20% за один проход она дает риски на деталях.

Известна смазочная композиция для холодной обработки металлов давлением [Патент РФ №2024602. Бюл. №35 (1994)] содержащая, мас.%: полиметакрилат 5-8; антикоррозионную добавку 0,5-6; хлорированный парафин 35-45; осерненные тетрамеры пропилена 5-7; минеральное масло - остальное. Недостатком данной композиции является плохая совместимость полиметакрилата с минеральными маслами, что вызывает нарушение ее однородности. Кроме того, полиметакрилат при повышенных температурах (выше 250°С) подвергается деполимеризации, что приводит к образованию метакрилата, обладающего наркотическим, общетоксичным и резко раздражающим действием.

Известна смазочная композиция для холодной обработки металла давлением [Авт. с. СССР 702071. Бюл. №45 (1979)], имеющая следующий состав, мас.%: жирные кислоты фракции C5-C19 2-5; триэтаноламин 4-12; окись цинка 0.1-5; гидроокись бария 0.1-1.5 и хлорированный парафин до 100%.

Существенным недостатком композиции является то, что окись цинка, содержащаяся в смазке, спрессовывается между пуансоном и частью детали и при дальнейшей обработке моющими средствами не обеспечивается полностью ее удаление с обрабатываемой поверхности.

Наиболее близкой по технической сущности и достигаемому результату является смазочная композиция для холодной обработки металла давлением [Патент РФ №2118983. Бюл. №26 (1997)], имеющая следующий состав, мас.%: серосодержащая присадка - осерненные α-олефины фракции C18-C28 40-50; синтетическое масло Б-3В 5-30; масло индустриальное - остальное.

Усиление охраны окружающей среды и техники безопасности на производстве обусловило новые требования к индустриальным маслам и технологическим жидкостям, применяемым при обработке металла.

Недостатками известной композиции являются.

1. Применение довольно токсичного и дорогостоящего синтетического масла Б-3В - эфиры пентаэритрита и синтетических жирных кислот фракции С59 (предельно допустимая концентрация - 0,5 мг/м3).

2. Большой расход противоизносной и противозадирной серосодержащей присадки, достигающий 40-50%.

Сущность предлагаемого изобретения

Сущность предлагаемого изобретения состоит в том, что технологическая смазка для холодной объемной штамповки содержит 0,003-0,007 мас.% смеси 2,5-дигептил-3,4-фуллеро[60]тетрагидротиофен-1-оксидов общей формулы (1), что позволяет значительно снизить расход противоизносной и противозадирной присадки сульфидированных α-олефинов фракции C16-C18 при сохранении высоких реологических свойств смазки в предлагаемом способе.

где n=1(50%), n=2(30%), n=3(15%), n=4(5%).

Смесь 2,5-дигептил-3,4-фуллеро[60]тетрагидротиофен-1-оксидов общей формулы (1) получают каталитическим циклоприсоединением избытка диоктилсульфоксида к фуллерену[60] [А.Р.Туктаров, А.Р.Ахметов, M.Pudas, А.Г.Ибрагимов, У.М.Джемилев. ЖОрХ, 43(12), 2007, 1870-1871].

Замена довольно токсичного синтетического масла Б-3В на экологически чистое рапсовое масло обеспечила высокую чистоту обрабатываемой поверхности металлических изделий и низкую токсичность технологической смазки.

Существенное отличие предлагаемого способа.

Известные серосодержащие присадки обеспечивают повышенные противоизносные и противозадирные свойства при добавлении к маслам в количестве 40-50% (см. табл.2, 4, композиция №8). Предлагаемые присадки, в отличие от известных, обеспечивают повышенные противоизносные и противозадирные свойства при добавлении к маслам в количестве 10-15% (см. табл.2, 4).

В технологической смазке довольно токсичное синтетическое масло Б-3В заменено на экологически чистое рапсовое масло, обеспечивающее высокую чистоту обрабатываемой поверхности металлических изделий.

С целью значительного снижения расхода противоизносной и противозадирной серосодержащей присадки технологическая смазка содержит в качестве наноприсадки смесь 2,5-дигептил-3,4-фуллеро[60]тетрагидротиофен-1-оксидов (1) в количестве 0,003-0,007%.

Применение смеси 2,5-дигептил-3,4-фуллеро[60]тетрагидротиофен-1-оксидов (1) в количестве большем 0,007 мас.% не приводит к существенному улучшению реологических свойств технологической смазки. Применение смеси 2,5-дигептил-3,4-фуллеро[60]тетрагидротиофен-1-оксидов (1) в количестве менее 0,003 мас.% снижает реологические свойства технологической смазки.

Испытание смазочных композиций, где рапсовое масло взято в соотношениях, выходящих за пределы предлагаемых, показали, что уменьшение его количества ухудшает качество обрабатываемой поверхности, появляются задиры и налипание.

Предлагаемый состав технологической смазки получают следующим образом.

В реактор с механической мешалкой и обогревом загружают минеральное и рапсовое масла, температуру в реакторе повышают до 60-70°С и при непрерывном перемешивании вводят сульфидированные α-олефины фракции C16-C18 и смесь 2,5-дигептил-3,4-фуллеро[60]тетрагидротиофен-1-оксидов (1). После охлаждения получено прозрачное масло красно-коричневого цвета.

В табл.2 представлены составы изготовленных технологических смазок. Степень эффективности каждого состава оценивают на испытательном стенде - четырехшариковой машине трения. Результаты испытаний приведены в табл.4. Физико-химические свойства изготовленных технологических смазок приведены в табл.3. Испытания технологических смазок проводили в сравнении с известной смазкой (композиция 8, табл.2, 4), содержащей, мас.%:

Серосодержащая присадка, осерненные
α-олефины фракции C18-C28 50
Синтетическое масло Б-3В 25
Масло индустриальное Остальное

Таким образом, испытуемая технологическая смазка обеспечивает хорошее качество штамповочных деталей благодаря высоким противоизносным и противозадирным свойствам. Смазка обладает хорошими адгезионными и санитарно-гигиеническими свойствами, стабильна при хранении и применении.

Таблица 4
Результаты испытаний технологических смазок
№№ п/п Критическая нагрузка, кгс Нагрузка сваривания, кгс Индекс задира Диаметр пятна износа, мм
1 2 3 4 5
1 141 950 129,1 0,67
2 150 1000 131 0,66
3 141 950 129,4 0,66
4 150 1000 131,2 0,67
5 138 940 123,9 0,85
6 141 950 129,1 0,71
7 135 900 120,4 0,84
8 (прототип) 150 1000 131,2 0,64

Технологическая смазка для холодной объемной штамповки металлов на основе сульфидированных α-олефинов, отличающаяся тем, что она дополнительно содержит смесь 2,5-дигептил-3,4-фуллеро[60]тетрагидротиофен-1-оксидов общей формулы (1), сульфидированные α-олефины фракции C16-C18, рапсовое и минеральное масла при следующем соотношении компонентов, мас.%:

Сульфидированные α-олефины фракции C16-C18 5-15
Смесь 2,5 -дигептил-3,4-фуллеро [60]тетрагидротиофен
-1-оксидов (1) 0,003-0,007
Рапсовое масло 10-30
Индустриальное масло остальное
где n=1 (50%), n=2 (30%), n=3 (15%), n=4 (5%).