Биомаркеры для оценки эффективности алискирена в качестве гипертензивного агента

Изобретение относится к медицине, в частности к терапии и фармакологии, в частности к фармакогенетическому анализу, и касается выявления генетических полиморфизмов, являющихся маркерами эффективности алискирена в качестве антигипертензивного агента. Алискирен применяют для получения лекарственного средства для лечения гипертонии, для понижения среднего определяемого систолического кровяного давления и для понижения диастолического кровяного давления. Причем лечение алискиреном осуществляют в группе пациентов, которую выбирают на основании генетических полиморфизмов в биомаркерных генах, где показателями эффективности алискирена являются генетические полиморфизмы - ОНП_4769, как указано в SEQ ID NO: 1 в гене ангиотензин-конвертирующего фермента (АКФ), ОНП_1445, как указано в SEQ ID NO: 2 в гене рецептора ангиотензина II, тип 2 (AGTR2) и ОНП_4795, как указано в SEQ ID NO: 3 в гене AGTR2. Также изобретение обеспечивает способ определения чувствительности индивидуума с гипертонией к лечению алискиреном и применение генного продукта гена, выбранного из группы, включающей ген ангиотензин-конвертирующего фермента (АКФ) и ген рецептора ангиотензина II, тип 2 (AGTR2), в качестве мишени для действия лекарственного средства. 6 н.п. ф-лы, 1 ил., 7 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение преимущественно относится к аналитическому тестированию образцов тканей in vitro, точнее к выявлению генетических полиморфизмов, являющихся маркерами эффективности алискирена в качестве антигипертензивного агента.

Предпосылки создания изобретения

Ренин-ангиотензивная система (РАС) играет важную роль в регуляции кровяного давления и объема гомеостаза. Ренин секретируется почками в ответ на снижение объема циркулирующей крови и понижение кровяного давления и расщепляет субстрат ангиотензиноген с образованием неактивного декапептида ангиотензина I (Ang I). Ang I конвертируется в активный октапептид Ang II ангиотензин-конвертирующим ферментом (АКФ). Ang II взаимодействует с клеточными рецепторами, индуцируя сужение сосудов и высвобождение катехоламинов из мозгового вещества надпочечников и предсинаптических нервных окончаний. Он также индуцирует секрецию альдостерона и обратное всасывание натрия. Кроме того, Ang II ингибирует высвобождение ренина, тем самым, обеспечивая обратную связь с системой. Следовательно, Ang II действует на разных уровнях (например, на уровне сосудистой сети, симпатической нервной системы, коркового и мозгового вещества надпочечников) для увеличения сопротивления сосудов и повышения кровяного давления.

Ренин-ангиотензивная система (РАС) может быть заблокирована на разных уровнях. Поскольку ингибиторы ренина блокируют РАС на более высоком уровне, чем ингибиторы АКФ и антагонисты Ang II, они оказывают разное воздействие на компоненты РАС. После введения ингибитора ренина блокируется образование и Ang I, и Ang II. Несмотря на то что после подавления АСЕ блокируется только образование Ang II, уровни Ang I повышаются. Таким образом, Ang I все еще способен конвертироваться в Ang II и другие ангиотензивные пептиды по другим метаболическим путям, например, через химазную систему.

Алискирен (SPP100) является непептидным антигипертензивным агентом с низким молекулярным весом (609,8). См. Wood J.M. и др., Biochem. Biophys. Res. Commun. 308, 2003, с.698-705. Его механизм действия отличен от механизма действия других коммерческих антигипертензивных агентов. Алискирен блокирует ренин-ангиотензивную систему (РАС) на ее первой скорость-лимитирующей стадии. In vitro алискирен является мощным ингибитором ренина человека (IC50=0,6 нмолей). In vivo алискирен, введенный перорально (п.о.) или внутривенно (в.в.) в нескольких исследованиях на игрунковых обезьянах, истощенных по натрию, вызывал полное подавление активности ренина плазмы (АРП), устойчивое снижение среднего артериального давления (САД) и существенное повышение в плазме концентраций действующего и общего ренина. У людей концентрации алискирена в плазме быстро повышаются после введения, достигая пиковых уровней за 3-5 ч. Величины и Cmax, и AUC повышаются с увеличением дозы, но не линейно. Полувыведение алискирена занимает примерно 25 ч, а его биодоступность составляет примерно 2,7%.

Традиционные медицинские подходы к диагностике и лечению заболевания основываются только на клинических данных, или помимо них также на диагностическом тестировании. Такой общепринятый подход часто приводит к выбору способа лечения, оптимального для эффективности назначенной лекарственной терапии или для минимизации вероятности возникновения побочных эффектов для конкретного субъекта. Способ специфической терапевтической диагностики (также известный под названием тераностика) относится к расширяющейся области медицинской технологии, которая обеспечивает тесты, применимые для диагностики заболевания, выбор скорректированного режима лечения и мониторинг реакции субъекта на лечение. То есть тераностика применима для прогнозирования и оценки ответной реакции конкретного субъекта на лекарственное средство, т.е. является индивидуализированной медициной. Тесты тераностики также применимы для подбора субъектов для лечения, которые с высокой вероятностью получат лечебный эффект в результате лечения, или для выяснения раннего и объективного показания эффективности лечения у конкретных субъектов таким образом, что лечение может быть изменено с минимальным промедлением.

Прогресс в фармакогенетике, устанавливающий корреляции между ответами на конкретные лекарственные средства и генетическими профилями отдельных пациентов, основывается на развитии новых тераностических подходов. В связи с этим в данной области техники существует потребность в оценке у разных пациентов вариаций в генной последовательности и генной экспрессии. Общая форма генетического профиля основывается на идентификации вариаций последовательности ДНК, называемых одиночными нуклеотидными полиморфизмами (ОНП), которые являются одним из типов генетических мутаций, приводящих к вариациям у пациентов индивидуальных ответов на лекарственное средство. Из этого следует, что в данной области существует потребность в идентификации и описании генетических мутаций, например ОНП, которые могут использоваться для идентификации генотипов субъектов, связанной с ответами на лекарственные средства.

Краткое описание изобретения

Настоящее изобретение соответствует существующей в данной области техники потребности. Установлены важные корреляции между полиморфизмами в гене ангиотензин-конвертирующего фермента (АКФ), полиморфизмами в гене рецептора 2 ангиотензина II типа (AGTR2) и снижением клинических параметров средних значений диастолического и систолического значений кровяного давления с последующим лечением алискиреном, применяемым в качестве антигипертензивного агента. Эти эффекты не наблюдают при лечении ирбесартаном и плацебо, но они специфичны в отношении лечения алискиреном.

Таким образом, настоящее изобретение предусматривает применение алискирна для получения лекарственного средства для лечения гипертонии в группе определенным образом выбранных пациентов. Пациентов, предназначенных для лечения, отбирают в группу на основании генетических полиморфизмов в биомаркерных генах, имеющихся у пациентов. Биомаркерные гены являются геном ангиотензин-конвертирующего фермента (АКФ) и гена рецептора 2 ангиотензина II типа (AGTR2). Эти генетические полиморфизмы являются показателями эффективности алискирена в лечении гипертонии.

Настоящее изобретение также предусматривает диагностический способ определения ответной реакции индивидуумов с гипертонией на лечение алискиреном, основанный на установлении нуклеотидной пары в одном или нескольких полиморфных генетических локусах настоящего изобретения.

Настоящее изобретение также предусматривает тераностический способ лечения гипертонии у конкретного индивидуума. Антигипертензивный агент вводят индивидууму, если нуклеотидная пара в полиморфном генетическом локусе согласно настоящему изобретению показывает, что индивидуум отвечает на антигипертенивный агент. В одном из вариантов осуществления настоящего изобретения антигипертензивным агентом является алискирен. Другой вариант терапевтического лечения индивидуума применяют, если нуклеотидная пара в полиморфном генетическом локусе настоящего изобретения показывает, что индивидуум не отвечает на антигипертензивный агент.

Настоящее изобретение в целом предусматривает способ понижения диастолического кровяного давления на протяжении дневного времени (ДКДДВ) для амбулаторных больных. В конкретном варианте осуществления настоящего изобретения предусмотрен тераностический способ понижения среднего определенного диастолического кровяного давления (СОДКД).

Кроме того, настоящее изобретение предусматривает способ понижения систолического кровяного давления на протяжении дневного времени для амбулаторных больных (СКДДВ). В конкретном варианте осуществления настоящего изобретения предусмотрен тераностический способ понижения среднего определенного систолического кровяного давления (СОСКД).

Настоящее изобретение также предусматривает способ отбора индивидуума для включения в клиническое исследование для определения эффективности антигипертензивного агента для лечения гипертонии. Индивидуум может быть включен в исследование, если генотип индивидуума свидетельствует об эффективности антигипертензивного агента в лечении гипертонии данного индивидуума. Индивидуум может быть исключен из исследования, если генотип индивидуума не подтверждает эффективности антигипертензивного агента для лечения гипертонии у данного индивидуума.

Настоящее изобретение предусматривает наборы для практического осуществления способов настоящего изобретения. Настоящее изобретение также предусматривает способ применения продукта гена ангиотензин-конвертирующего фермента (АКФ) и продукта гена рецептора ангиотензина II, типа 2, (AGTR2) в качестве мишеней для поиска новых лекарственных средств.

Краткое описание чертежа

Чертеж представляет гистограммы, свидетельствующие о доле индивидуумов, отобранных по генотипу ОНП_4769, отвечающих на лечение (респондеров) во всех трех группах лечения тегасеродом вместе взятых, в группе с самой высокой дозой алискирена (600 мг), в группе лечения ирбесартаном и в группе плацебо. В подписях под гистограммами верхний ряд относится к аллелю СТ, а нижний ряд относится к аллелю ТТ.

Подробное описание изобретения

Ретроспективный фармакогенетический анализ был выполнен для оценки возможной связи между генетической вариацией и результатом клинического лечения. При проведении клинического лечения алискирен, вводимый в дозах 75, 150 или 300 мг один раз в сутки, проявил себя в качестве эффективного антигипертензивного агента при лечении пациентов с гипертонией, выраженной в степени от слабой до умеренной, что привело к статистически значимому снижению систолического кровяного давления в дневное время (СКДДВ). Все дозы активного лечении были статистически эффективнее плацебо, что выражалось в снижении среднего определенного диастолического кровяного давления (СОДКД) в конечной точке клинического лечения в группе пациентов, отобранных для этого лечения, через 8 недель, а также в группе лечения по протоколу к концу клинического исследования. Близкие результаты по снижению СДКД были достигнуты при применении алискирена в дозе 150 мг и ирбесартана в дозе 150 мг. См. ниже пример 1.

По параметру среднего определенного систолического кровяного давления (СОСКД) в конечной точке клинического исследования все дозы активного лечения были статистически эффективнее плацебо. Эффективность применения алискирена в дозах 300 и 600 мг статистически достоверно превышает результат применения плацебо и ирбесартана в конечной точке клинического исследования. Схожее понижение СОСКД было достигнуто при применении алискирна в дозе 150 мг и ирбесартана в дозе 150 мг. Дозы алискирена 300 и 600 мг вызывают самое сильное понижение кровяного давления. См. ниже пример 1.

При проведении фармакогенетического анализа исследовали 48 полиморфизмов в составе 12 генов системы ренин-ангиотензин-альдостерон (РАС) или генов, для которых ранее было установлено их участие в регулировании кровяного давления. Важные взаимосвязи наблюдали между одним полиморфизмом в гене ангиотензин-конвертирующего фермента (АКФ) (ОНП_4769, SEQ ID NO:1), двумя полиморфизмами в гене рецептора ангиотензина II, тип 2, (AGTR2) (ОНП_1445, SEQ ID NO:2 и ОНП_4795, SEQ ID NO:3) и клиническими параметрами снижения среднего диастолического и систолического кровяного давления. Эти эффекты не наблюдали при лечении ирбесартаном или плацебо в настоящем исследовании, предположительно они специфичные для алискирена.

Нуклеотидная последовательность ОНП_4769 (SEQ ID NO:1) следующая:

AGGACTTCCC AGCCTCCTCT TCCTGCTGCT CTGCTACGGG CACCCTCTGC TGGTCCCCAG CCAGGAGGCA/Y CCCAACAGGT GACAGTCACC CATGGGACAA GCAGCCAGGC AACAACCAGC AGCCAGACAA ССАСССАССА

ОНП_4769 является кодирующим ОНП, который изменяет аминокислотную последовательность с пролина на серин в кодоне 32 фермента АКФ.

Нуклеотидная последовательность ОНП_1445 (SEQ ID NO:1) следующая:

TGGAAACTTC ATTTTTTTTG TTTGAGATTT ATTTGAATGA GCTGTTATGA TTGGAGACAG TGAGAATTTC AGATTAATGT TTTGCAGACA AAAAAAAACC TCTCTGGAAA GCTGGCAAGG GTTCATAAGT CAGCCCTAGA ATTATGTAGG TTGAAGGCTC CCAGTGGACA GACCAAACAT ATAAGAAGGA AACCAGAGAT CTGGTGCTAT TACGTCCCAG CGTCTGAGAG AACGAGTAAG CACAGAATTC AAAGCATTCT GCAGCCTGAA TTTTGAAGGT AAGTATGAAC AATTTATATA TAATTTACTT GGAAAGTAGA ACATACATTA AATGAAAATA TTTTTTATGG ATGAACTTCT GTTTTTCCTG TGTTTTAACA CTGTATTTTG CAAAACTCCT/R AATTATTTAG CTGCTGTTTC TCTTACAGGA GTGTGTTTAG GCACTAAGCA AGCTGATTTA TGATAACTGC TTTAAACTTC AACAACCAGT AAGTCTTCAA GTGGAATTTA TTATTGATTC TTTTATGTTA ATTTGTTAGG TCAAAAGAAA AATCTTTAGA GCAAAATAAA AGTTTTGCTC TTTATTAGGA GGTTCTTTAG ATATTACACT TTTAATTGGG TAGCTTATTT GCATGTATTT TGAAACTATC TAAAGTAAAT AGTGTTTCCT TTGTATGCTT ATCTTTAGCT AATGTGTTTT TTTTTTTGGT TTTAAAATAA TGCTTCTAGT GAAAAAAATC ACAAAAACCT CAACACTGTA ACGTTTGAGA GCAACGGCTA TTCAGTTCGG TTAAACCGAA

ОНП_1445 является нетранслируемой областью иРНК гена AGTR2 (см. табл.2Б).

Нуклеотидная последовательность ОНП_4795 (SEQ ID NO:1) следующая:

ссаасасааа аgсасаgсаg ttgagaactg ggaaagcatc gcactacaac tgctactgcc attaaccaca ttgtcctgga tgcccaagag cttaagagcc cacttaccta cctggtacac tgctactaca actgacatct gagaaagcca cccaaaggaa caagaatttc cctgtctgga accaacagaa ttgtcactat/R ttctgtacca gatcccaagg atacacatgc ttagcttact attactacca ctgaaacttg caaaagaacc catcaagcat tccattcccc agcacaaatt catcagtttc tatcaataac ctcacaatgc cacacagagg aatagacaga tactactaag gctgtttata gccaatgaaa tcatacacag tcttcacca

ОНП_4795 присутствует в геномной области гена AGTR2 (см. табл.2Б). Определенные объекты, способы, осуществления, варианты и свойства настоящего изобретения описаны ниже с большей или меньшей степенью подробности для реального понимания настоящего изобретения. В общих чертах, такое описание предусматривает новое применение полинуклеотидных вариаций, ОНП, применимых для диагностики и лечения субъектов, нуждающихся в этом. Таким образом, различные объекты настоящего изобретения относятся к полинуклеотидам, кодирующим полинуклеотидные вариации настоящего изобретения генов АКФ и AGTR2. Различные объекты настоящего изобретения также относятся к диагностическим/тераностическим способам и наборам, в которых применяют полинуклеотидные вариации настоящего изобретения для идентификации индивидуумов, предрасположенных к заболеванию, или к классификации индивидуумов по способности отвечать на лекарственное средство, по побочным эффектам или по оптимальной лекарственной дозе. Кроме того, в настоящем изобретении предусмотрены способы оценки соединений и компьютерная система для накопления и анализа данных, связанных с полинуклеотидными вариациями настоящего изобретения. Ниже представлены различные конкретные варианты осуществления настоящего изобретения, которые иллюстрируют указанные выше объекты.

Определения. Ниже приведены определения некоторых терминов, используемых в настоящем изобретении. С определениями других терминов можно ознакомиться в словаре Департамента энергии США, отделе науки, проекте генома человека <http://www.ornl.gov/sci/techresources/Human_Genome/glossary/>. Медицинские термины представлены Chobanian и др. в Hypertension 42, 2003, сс.1206-1252. С определением гипертонии Ассоциации кардиологов США можно ознакомиться на сайте <http://www.americanheart.org/presenter.jhtml?identifier=4623>. Все ссылки на эти источники включены в настоящее изобретение.

В контексте настоящего изобретения понятие «аллель» означает определенную локализацию на хромосоме (в локусе) формы гена или последовательности ДНК.

В контексте настоящего изобретения понятие «антитело» включает, но не ограничивается ими, поликлональные антитела, моноклональные антитела, гуманизированные или химерные антитела и биологически функциональные фрагменты антител, достаточные для связывания фрагмента антитела с белком.

В контексте настоящего изобретения «клинический ответ» означает какое-либо одно или все из следующих понятий: количественное измерение ответа, ответа нет и вредный ответ (т.е. побочные эффекты).

В контексте настоящего изобретения понятие «клиническое исследование» означает какое-либо исследование, предпринятое для сбора клинических данных по ответам на конкретное лечение, и включает, но не ограничивается ими, этапы I, II и III клинических исследований. Используются стандартные методы для определения группы пациентов и включения в нее субъектов.

В контексте настоящего изобретения понятие «эффективное количество» означает количество соединения, достаточное для достижения желаемого терапевтического и/или профилактического эффекта, например количество, которое предупреждает появление симптомов, связанных с гипертонией, или понижает их проявление. В предпочтительном варианте осуществлении настоящего изобретения таким соединением является алискирен.

Количество соединения, вводимого субъекту, зависит от типа и тяжести заболевания и от состояния индивидуума, например от общего состояния здоровья, возраста, пола, массы тела и устойчивости к лекарственным средствам. Оно также может зависеть от степени, тяжести и типа заболевания. Специалист в данной области способен определить необходимые дозы, зависящие от этих и других факторов. Обычно эффективное количество соединений настоящего изобретения, достаточное для достижения терапевтического или профилактического эффекта, варьирует примерно от 0,000001 мг/кг массы тела в сутки до примерно 10,000 мг/кг массы тела в сутки. Предпочтительно дозы варьируют примерно от 0,0001 мг/кг массы тела в сутки до примерно 100 мг/кг массы тела в сутки. Соединения настоящего изобретения могут вводиться в комбинации друг с другом или с одним или несколькими дополнительными лекарственными соединениями. В предпочтительном варианте осуществления настоящего изобретения эффективное количество алискирена составляет 75, 150 или 300 мг при введении один раз в сутки.

В контексте настоящего изобретения понятие «экспрессия» означает одно или несколько из следующих понятий, но ими не ограничивается: транскрипцию гена и образование иРНК, сплайсинг и другой процессинг иРНК-предшественника для формирования зрелой иРНК, стабильность иРНК, трансляцию зрелой иРНК и образование белка (включая применение кодона и доступность тРНК) и гликозилирование и/или другие модификации продукта трансляции, если они необходимы для надлежащей экспрессии и функции.

В контексте настоящего изобретения понятие «ген» означает сегмент ДНК, содержащий всю информацию для регулируемого биосинтеза продукта РНК, включая промоторы, экзоны, интроны и другие нетранслируемые области, контролирующие экспрессию.

В контексте настоящего изобретения понятие «генотип» означает нефазовую 5'→3' последовательность нуклеотидных пар, обнаруженную в одном или нескольких полиморфных сайтах локуса пары гомологичных хромосом индивидуума. В контексте настоящего изобретения понятие «генотип» относится к полному генотипу или суб-генотипу.

В контексте настоящего изобретения понятие «локус» означает расположение на хромосоме или в молекуле ДНК, соответствующее гену или физическому, или фенотипическому свойству.

В контексте настоящего изобретения понятие «АКФ-модулирующий агент» или «AGTR2-модулирующий агент» означает какое-либо соединение, которое изменяет (т.е. повышает или понижает) уровень экспрессии или уровень биологической активности полипептида АКФ или полипептида AGTR2, соответственно, в отсутствие модулирующего агента. Модулирующим агентом может быть низкомолекулярное соединение, полипептид, углеводород, липид, нуклеотид или их комбинация. Модулирующим агентом может быть органическое соединение или неорганическое соединение.

В контексте настоящего изобретения понятие «мутант» означает какое-либо наследуемое изменение дикого типа, являющееся результатом мутации, например однонуклеотидный полиморфизм. В настоящем описании понятие «мутант» используется взаимозаменяемо с понятиями «маркер», «биомаркер» и «мишень».

В контексте настоящего изобретения понятие «медицинское состояние» означает, но ими не ограничивается, какое-либо состояние или заболевание, проявляемое в виде одного или нескольких физических и/или физиологических симптомов, для которого показано лечение, и включает ранее или вновь описанные заболевания и другие расстройства. В предпочтительном варианте осуществления настоящего изобретения медицинским состоянием является гипертония.

В контексте настоящего изобретения понятие «пара нуклеотидов» означает нуклеотиды, обнаруженные в полиморфном сайте двух копий хромосомы индивидуума.

В контексте настоящего изобретения понятие «полиморфный сайт» означает положение в локусе, по которому, по меньшей мере, две разные последовательности обнаруживаются в группе, причем его наибольшая частота встречаемости составляет не более 99%.

В контексте настоящего изобретения понятие «полиморфизм» означает какой-либо вариант последовательности, встречающийся в популяции с частотой >1%. Вариант последовательности может присутствовать с частотой, существенно превышающей 1%, например 5%, 10% или более. Кроме того, это понятие может применяться к варианту последовательности, обнаруживаемому у индивидуума в полиморфном сайте. К полиморфизмам относятся нуклеотидные замены, инсерции, делеции и микросателлиты, которые необязательно могут приводить к фиксируемым различиям генной экспрессии или функции белка.

В контексте настоящего изобретения понятие «полинуклеотид» означает какую-либо РНК или ДНК, которые могут быть немодифицированными или модифицированными РНК или ДНК. К полинуклеотидам относятся без каких-либо ограничений одно- и двунитевая ДНК, ДНК, представляющая смесь одно- и двунитевых областей, одно- и двунитевая РНК, РНК, представляющая смесь одно- и двунитевых областей, а также гибридные молекулы, ДНК и РНК, которые могут быть однонитевыми или, что чаще, двунитевыми, или смесью одно- и двунитевых областей. Кроме того, понятие «полинуклеотид» относится к трехнитевым областям, включающим РНК или ДНК, или и РНК, и ДНК. К понятию «полинуклеотид» также относятся молекулы ДНК или РНК, содержащие одну или несколько модификаций, основой которых являются молекулы ДНК или РНК, модифицированные с целью стабильности или по другим причинам.

В контексте настоящего изобретения понятие «полипептид» означает какой-либо полипептид, включающий две или несколько аминокислот, соединенных пептидными связями или модифицированными пептидными связями, т.е. пептидные изостеры. Понятие полипептид относится и к соединениям с короткой цепью, обычно называемым пептидами, гликопептидами или олигомерами, и к соединениям с длинной цепью, обычно называемыми белками. Полипептиды могут содержать аминокислоты, отличающиеся от 20 кодируемых генами аминокислот. К полипептидам относятся аминокислотные последовательности, модифицированные либо из-за естественных процессов, например, в результате пост-трансляционного процессинга, либо в результате химических модификаций, хорошо известных в данной области техники. Такие модификации подробно изложены в руководствах, более подробно - в монографиях, а также в огромном количестве научных публикаций.

В контексте настоящего изобретения понятие «нуклеиновая кислота с ОНП» означает последовательность нуклеиновой кислоты, в составе которой присутствует вариабельный нуклеотид, причем в других отношениях последовательность идентична последовательностям индивидуумов и групп индивидуумов, таким образом, она существует в виде аллелей. Такие нуклеиновые кислоты с ОНП содержат предпочтительно примерно от 15 до примерно 500 нуклеотидов в длину. Нуклеиновые кислоты с ОНП могут быть частью хромосомы, или они могут быть точной копией части хромосомы, например, за счет амплификации этой части хромосомы в результате ПЦР или клонирования. Нуклеиновые кислоты с ОНП в настоящем описании называются просто «ОНП». ОНП отражает вариабельность нуклеотида в одном положении генома, в котором два разных основания встречаются в человеческой популяции с ощутимой частотой (т.е. >1%). ОНП могут присутствовать в гене или в межгенных областях генома. Зонды ОНП согласно настоящему изобретению являются олигонуклеотидами, комплементарными нуклеиновой кислоте с ОНП.

В контексте настоящего изобретения понятие «субъект» предпочтительно означает млекопитающее, например человека, а также может означать животное, например домашнее животное (например, собак, кошек и других), сельскохозяйственное животное (например, коров, овец, свиней, лошадей и других) и лабораторное животное (например, обезьян, например, макак-крабоедов, крыс, мышей, морских свинок и других).

В контексте настоящего изобретения введение агента или лекарственного средства субъекту или пациенту означает введение, произведенное или самостоятельно, или другим лицом. Также следует учитывать, что различные способы лечения или предупреждения заболеваний носят характер «фундаментального», что означает общее, но не только общее, лечение или предупреждение, при котором достигаются некоторые биологические или медицинские значимые результаты.

Идентификация и описание вариации генной последовательности. В связи с преобладанием и широким распространением ОНП могут быть эффективными и важными инструментами для локализации генов, участвующих в болезненном состоянии человека. См., например, Wang и др., Science 280, 1998, сс.1077-1082. Совершенно очевидно, что риск развития многих обычных заболеваний и метаболизм лекарственных средств, используемых для лечения этих заболеваний, в значительной степени зависят от лежащих в основе геномных вариаций, хотя эффекты, вызываемые каким-либо из вариантов, могут быть незначительными.

ОНП называется «аллельным», поскольку в нем содержится полиморфизм, причем некоторые представители вида могут иметь последовательность без мутаций (т.е. природный аллель), а другие - последовательность с мутацией (т.е. вариант или мутантный аллель).

Ассоциация между наличием полиморфизма и определенным фенотипом не обязательно свидетельствует о том, что ОНП является причиной данного фенотипа. Ассоциация может существовать единственно из-за геномной близости ОНП и теми генетическими факторами, которые реально ответственны за данный фенотип, например, ОНП и указанные генетические факторы могут быть близко расположены. Таким образом, ОНП может быть в неравновесном сцеплении («НС») с «истинным» функциональным вариантом. НС (также называемое аллельной ассоциацией) наблюдается в тех случаях, когда аллели при двух различных локализациях генома ассоциированы в большей степени, чем предполагалось. Следовательно, ОНП могут служить в качестве маркера, который близко расположен к мутации, вызывающей определенный фенотип.

В описываемых полиморфных сайтах настоящего изобретения для удобства рассматривается смысловая цепь гена. Однако специалисту очевидно, что молекулы нуклеиновой кислоты, содержащие ген, могут быть комплементарны двунитевым молекулам и, следовательно, ссылка на определенный сайт смысловой цепи также относится к соответствующему сайту комплементарной антисмысловой цепи. Таким образом, ссылка может быть произведена к одному и тому же полиморфному сайту в любой из двух цепей и олигонуклеотид может быть разработан таким образом, чтобы гибридизировать конкретно любую из цепей по целевой области, содержащей полиморфный сайт. Следовательно, настоящее изобретение также включает однонитевые полинуклеотиды, которые комплементарны смысловой цепи геномных вариантов, описанных в настоящем изобретении.

Идентификация и описание ОНП. Может быть использовано много различных методов для идентификации и описания ОНП, включая анализ однонитевых конформационных полиморфизмов (ОНКП), гетеродуплексный анализ путем денатурирующей высокоэффективной жидкостной хроматографией (ДВЭЖХ), прямым секвенированием ДНК и вычислительными способами. Shi и др., Clin. Chem. 47, 2001, сс.164-172. Имеется огромная доступная информация о последовательностях, представленная в базах данных.

Наиболее распространенные современные методы типирования ОНП включают гибридизацию, протяжение праймеров и методы расщепления. Каждый из этих методов должен сочетаться с соответствующей ему системой детекции. К методам детекции относятся флуоресцентная поляризация (Chan и др., Genome Res. 9, 1999, сс.492-499), люминометрическая детекция высвобождения фосфата (пиросеквенирование) (Ahmadiian и др., Anal. Biochem. 280, 2000, сс.103-110), исследования расщепления, основанные на переносе энергии флуоресцентного резонанса, ДВЭЖХ и масс-спектрометрия (Shi, Clin. Chem. 47, 2001, сс.164-172, US 6300076 B1). Другие способы детекции и описания ОНП описаны в патентах US 6297018 и 6300063.

Полиморфизмы также могут быть выявлены с помощью коммерчески доступных продуктов, например технологии INVADER™ (фирма Third Wave Technologies Inc. Мэдисон, Висконсин, США). В этом исследовании специфический олигонуклеотидный расположенный выше по цепи «захватчик» и частично перекрывающийся расположенный ниже по цепи зонд вместе формируют специфическую структуру при связывании с комплементарной матрицей ДНК. Эта структура распознается и разрезается по специфическому сайту специфическими ферментами расщепления, в результате чего высвобождается 5'-фрагмент олигонуклеотидного зонда. Этот фрагмент затем выступает в роли олигонуклеотидного «захватчика» по отношению к синтетическим вторичным мишеням и вторичным флуоресцентно меченым сигнальным зондам, присутствующим в реакционной смеси. См. также Ryan D. и др., Molecular Diagnosis 4, 1999, сс.135-144, Lyamichev V. и др., Nature Biotechnology 17, 1999, сс.292-296, патенты US 5846717 и 6001567.

Идентичность полиморфизмов также может быть определена методом выявления ошибочных спариваний оснований, включая, но не ограничиваясь им, метод защиты от РНКазы с помощью рибозондов (Winter и др., Proc. Natl. Acad. Sci. USA 82. 1985, с.7575, Meyers и др., Science 230, 1985, с.1242) и белков, которые распознают ошибочные спаривания нуклеотидов, например белок mutS Е. coli (Modrich P., Ann Rev Genet 25, 1991, сс.229-253). В другом способе вариантные аллели могут быть идентифицированы с помощью анализа конформации однонитевого полиморфизма (КОП) (Orita и др., Genomics 5, 1989, сс.874-879, Humphries и др. в кн.: «Molecular Diagnosis of Genetic Diseases» под ред. Elles R., 1996, сс.321-340) или денатурирующим градиентным гель-электрофорезом (ДГГЭ) (Wartell и др., Nucl. Acids. Res. 18, 1990, сс.2699-2706, Sheffield и др., Proc. Natl. Acad. Sci. USA 86, 1989, сс.232-236). Полимераза-опосредованный праймер протяженный метод также может применяться для идентификации полиморфизмов. Несколько таких методов было описано в патентной и научной литературе, к ним относятся метод «генетического бит анализа» (WO 92/15712) и лигаза/полимераза-опосредованный метод генетического бит анализа (US 5679524). Близкие методы описаны в WO 91/02087, WO 90/09455, WO 95/17676 и US 5302509 и 5945283. Протяженные праймеры, содержащие полиморфизм, могут быть выявлены методом масс-спектрометрии (МСС) согласно описанному в US 5605798. Другим праймер протяженным методом является аллель-специфичная полимеразная цепная реакция (ПЦР) (Ruaflo и др., Nucl. Acids. Res. 17, 1989, с.8392), Ruafio и др., Nucl. Acids. Res. 19, 1991, сс.6877-6882), WO 93/22456, Turki и др., J. Clin. Invest. 95, 1995, сс.1635-1641). Кроме того, разные полиморфные сайты могут быть изучены одновременным амплифицированием разных областей нуклеиновой кислоты, используя набор аллель-специфичных праймеров, согласно описанному в опубликованной РСТ патентной заявке WO 89/10414.

Гаплотипирование и генотипирование олигонуклеотидов. В настоящем изобретении предусмотрены способы и композиции для гаплотипирования и/или генотипирования генов индивидуума. В контексте настоящего изобретения понятия «генотип» и «гаплотип» означают генотип или гаплотип, содержащий нуклеотидную пару или нуклеотид, соответственно, которые содержатся в одном или нескольких новых полиморфных сайтах, описанных в настоящем изобретении, и могут необязательно также включать нуклеотидную пару или нуклеотид, содержащийся в одном или нескольких дополнительных полиморфных сайтах гена. Дополнительные полиморфные сайты могут быть известными полиморфными сайтами или сайтами, обнаруженными впоследствии.

Композиции настоящего изобретения содержат нуклеотидные зонды и праймеры, разработанные для специфической гибридизации с одной или несколькими целевыми областями, содержащими полиморфный сайт или присоединенными к нему. Олигонуклеотидные композиции настоящего изобретения применимы в способах гаплотипирования и/или генотипирования генов индивидуума. Способы и композиции для установки генотипа или гаплотипа индивидуума по новым полиморфным сайтам, описанные в настоящем изобретении, применимы для изучения эффекта полиморфизмов на этиологию заболевания, связанного с экспрессией и функцией белка, изучения эффективности нацеливания лекарственных средств, прогнозирования чувствительности индивидуума к заболеванию, связанному с экспрессией и функцией белка, и прогнозирования реактивности индивидуума к лекарственным средствам, нацеленным на генный продукт.

Генотипируемые олигонуклеотиды настоящего изобретения могут быть иммобилизованы или синтезированы на твердой поверхности, например микрочипе, сферах или стеклянных пластинах. См., например, WO 98/20020 и WO 98/20019.

Генотипируемые олигонуклеотиды могут гибридизироваться с целевой областью, расположенной на расстоянии одного или нескольких нуклеотидов ниже по цепи одного или нескольких новых полиморфных сайтов, идентифицированных в настоящем изобретении. Такие нуклеотиды применимы в полимераза-опосредованных праймер протяженных способах обнаружения одного из новых полиморфизмов, обнаруженных в настоящем изобретении и, следовательно, такие генотипированные олигонуклеотиды рассматриваются в настоящем изобретении в качестве «праймер протяженных олигонуклеотидов».

Способ прямого генотипирования. описанный в настоящем изобретении. Способ генотипирования настоящего изобретения может включать выделение смеси молекул нуклеиновой кислоты индивидуума, включающей две копии исследуемого гена или его фрагмента, и определение идентичности нуклеиновой пары по одному или нескольким полиморфным сайтам в двух копиях. Специалисту в данной области очевидно, что две «копии» гена индивидуума могут быть одинаковыми аллелями или разными. В наиболее предпочтительном варианте осуществления настоящего изобретения способ генотипирования включает определение идентичности нуклеотидной пары в каждом полиморфном сайте. Обычно смесь молекул нуклеиновой кислоты выделяют из биологического образца индивидуума, например из образца крови или ткани. Пригодными образцами ткани являются цельная кровь, сперма, слюна, слезы, моча, фекальные массы, пот, защечный соскоб, кожа и волосы.

Ниже в примере 1 наборы зондов для исследований одиночных нуклеотидных полиморфизмов (ОНП) для способа генотипирования получают для платформы Assays-by-Design® фирмы ABI. Livak K.J., Marmaro J., Todd J.A., Nature Genetics 9, 1995, сс.341-342. Для проведения генотипирования согласно рекомендации производителя используют 10 нг геномной ДНК.

Способ прямого гаплотипирования, описанный в настоящем изобретении. Способ генотипирования по настоящему изобретению может включать выделение из образца индивидуума молекулы нуклеиновой кислоты, содержащей одну или две копии исследуемого гена или его фрагмента, и определение идентичности нуклеотида по одной или нескольким полиморфным сайтам в данной копии. Способы прямого генотипирования включают, например, технологию CLASPER System™ (US 5866404) или аллель-специфичную дальнего действия ПЦР (Michalotos-Beloin и др., Nucl. Acids. Res. 24, 1996, сс.4841-4843). Нуклеиновая кислота может быть выделена методом, позволяющим разделять две копии гена или фрагмента. Специалисту в данной области очевидно, что какой-либо отдельный клон может предоставить информацию только по гаплотипу одной из двух копий гена, имеющихся у индивидуума. В одном варианте осуществления настоящего изобретения гаплотипную пару индивидуума определяют идентификацией фазовой последовательности нуклеотидов по одному или нескольким полиморфным сайтам в каждой копии гена индивидуума. В предпочтительном варианте осуществления способ гаплотипирования включает идентификацию фазовой последовательности нуклеотидов в каждом полиморфном сайте каждой копии гена.

Идентификация нуклеотида (или нуклеотидной пары) в полиморфном сайте при использовании и метода генотипирования, и метода гаплотипирования может быть осуществлена амплификацией целевых областей, содержащих полиморфные сайты непосредственно из одной или двух копий гена или его фрагментов, и секвенированием амплифицированных областей традиционными способами. Генотип или гаплотип гена индивидуума также может быть определен гибридизацией образца нуклеиновой кислоты, содержащей одну или обе копии гена, с последовательностями и субпоследовательностями нуклеиновой кислоты, например, согласно описанному в WO 95/11995.

Способ непрямого генотипирования