Ингибиторы тирозинкиназы

Иллюстрации

Показать все

Настоящее изобретение относится к соединению формулы I:

или его фармацевтически приемлемая соль или стереоизомер, где а независимо равно 0 или 1; b независимо равно 0 или 1; R1 выбирают из арила, гетероциклила и NR10R11; указанная арильная или гетероциклильная группа необязательно замещена от одного до пяти заместителей, каждый заместитель независимо выбирают из R8; R5 выбирают из C1-6алкила, С2-6алкенила, -C(=O)NR10R11, NHS(O)2NR10R11 и NR10R11, каждый алкил, алкенил и арил необязательно замещены от одного до пяти заместителями, каждый заместитель независимо выбирают из R8; R8 независимо представляет собой (С=O)aObC110алкил, (С=O)aObарил, (С=O)аObгетероциклил, ОН, Oa(C=O)bNR10R11 или (С=O)аОbС38циклоалкил, указанный алкил, арил, гетероциклил, необязательно замещены одним, двумя или тремя заместителями, выбранными из R9; R9 независимо выбирают из: (С=O)аОb110)алкила и N(Rb)2; R10 и R11 независимо выбирают из: Н, (С=O)Оb110)алкила, C110алкила, SO2Ra, указанный алкил, необязательно замещен одним, двумя или тремя заместителями, выбранными из R8 или R10 и R11 могут быть взяты вместе с азотом, к которому они присоединены с образованием моноциклического гетероцикла с 5 членами в каждом кольце и необязательно содержащего, в дополнение к азоту, один или два дополнительных гетероатома, выбранных из N и S, указанный моноциклический гетероцикл необязательно замещен одним, двумя или тремя заместителями, выбранными из R9; Ra независимо выбирают из (С16)алкила, (С26)алкенила; и Rb независимо выбирают из Н, (С16)алкила, а также к фармацевтической композиции для ингибирования рецепторной тирозинкиназы MET, на основе этого соединения, а также способ его применения для получения медикамента. Технический результат: получены и описаны новые соединения, которые являются применимыми для лечения клеточных пролиферативных заболеваний, для лечения нарушений, ассоциированных с активностью MET, и для ингибирования рецепторной тирозинкиназы MET. 3 н. и 5 з.п. ф-лы, 5 табл.

Реферат

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Данное изобретение относится к соединениям 5Н-бензо[4,5]циклогепта[1,2-b]пиридина, которые являются ингибиторами тирозинкиназ, в особенности рецепторной тирозинкиназы МЕТ и являются применимыми в лечении клеточных пролиферативных заболеваний, например рака, гиперплазий, рестеноза, сердечной гипертрофии, иммунных нарушений и воспаления.

С недавнего времени члены протоонкогенного семейства МЕТ, подсемейства рецептортирозинкиназ, привлекают особое внимание в связи с инвазией и метастазом. Семейство МЕТ, включая МЕТ (также называемых с-Met) и RON рецепторы, могут функционировать как онкогены подобно большинству тирозинкиназ. Показано, что МЕТ сверхэкспрессируется и/или мутирует при различных злокачественных процессах. Ряд МЕТ-активирующих мутаций, многие из которых расположены в домене тирозинкиназы, был обнаружен в различных солидных опухолях и вовлечен в инвазию и метастаз опухолевых клеток.

Протоонкоген с-Met кодирует МЕТ рецепторную тирозинкиназу. МЕТ рецептор представляет собой гликозилированный димерный комплекс 190 кДа, составленный из 50 кДа альфа цепи, связанной дисульфидными связями с 145 кДа бета цепью. Альфа цепь обнаруживается внеклеточно, в то время как бета цепь содержит внеклеточные, трансмембранные и цитозольные домены. МЕТ синтезируется как предшественник и протеолитически расщепляется с получением зрелых альфа и бета субъединиц. Она проявляет структурные сходные черты с семафорингом и плексинами, лиганд-рецепторным семейством, которое включено во взаимодействие клетка-клетка.

Известно, что стимуляция МЕТ через фактор роста гепатоцитов (также известный как фактор рассеяния, HGF/SF) приводит к изобилию биологических и биохимических эффектов в клетке. Активация с-Met сигнального механизма может приводить к широкому многообразию клеточных ответов, включая пролиферацию, выживание, ангиогенез, заживление ран, регенерацию тканей, рассеяние, подвижность, инвазию и разветвляющийся морфогенез. Сигнальный механизм HGF/MET c-Met также играет основную роль при инвазивном росте, который обнаружен в большинстве тканей, включая хрящевую, костную, кровеносные сосуды и нейроны.

Различные с-Met мутации были хорошо описаны при множественных солидных опухолях и некоторых гематологических злокачественных нарушениях. Примеры прототипичной с-Met мутации можно наблюдать при наследственной и спорадической папиллярной почечной карциноме человека (Schmidt, L. et al., Nat. Tenet. 1997, 16, 68-73; Jeffers, M. et al., Proc. Nat. Acad. Sci. 1997. 94, 11445-11500). Другие описанные примеры с-Met мутаций включают рак яичника, детскую гепатоклеточную карциному, метастазирующие сквамозные клеточные карциномы головы и шеи и раки желудка. Показано, что сигнальный механизм HGF/MET ингибирует аноикис, суспензионно-индуцированную программируемую смерть клеток (апоптоз) в клетках сквамозной клеточной карциномы головы и шеи.

Сигнальный механизм MET вовлечен в различные виды рака, особенно почечные. Связь между МЕТ и колоректальным раком была также установлена. Кроме того, при сравнении с первичной опухолью 70% колоректального рака с метастазами в печени демонстрирует сверхэкспрессию МЕТ. МЕТ также вовлечен в глиобластому. Экспрессия МЕТ в глиоме коррелирует с выраженностью глиомы и анализ образцов опухоли человека показал, что злокачественные глиомы имеют 7-кратное превышение содержания HGF, чем слабовыраженные глиомы. Множество исследований продемонстрировало, что человеческие глиомы часто соэкспрессируют HGF и МЕТ и что высокие уровни экспрессии ассоциированы с развитием малигнизации. Дополнительно было показано, что HGF-MET способны активировать Akt и защищать клеточные линии глиомы от апоптотической смерти как in vitro, так и in vivo.

RON разделяет сходную структуру, биохимические признаки и биологические свойства с MET. Исследования показали сверхэкспрессию RON у значительной части карцином молочной железы и колоректальных аденокарцином, но не в нормальном эпителии молочной железы или доброкачественных повреждениях. Эксперименты по сшивке показали, что RON и МЕТ образуют нековалентный комплекс на клеточной поверхности и взаимодействуют во внутриклеточном сигнальном механизме. Гены RON и МЕТ значительно соэкспрессируются при клеточной подвижности рака яичника и инвазивности. Это предполагает, что соэкспрессия этих двух родственных рецепторов может давать селективное преимущество клеткам карциномы яичника во время возникновения или развития опухоли.

Недавно был опубликован ряд обзоров по МЕТ и ее функции в качестве онкогена: Cancer and Metastasis Review 22: 309-325 (2003); Nature Reviews/Molecular Cell Biology 4:915-925 (2003); Nature Reviews/Cancer 2:289-300 (2002).

Поскольку дисрегуляция сигнального механизма HGF/MET вовлечена в качестве фактора в генезис опухолей и развитие заболевания у многих опухолей, следует разрабатывать различные стратегии терапевтического ингибирования этой важной RTK молекулы. Специфичные низкомолекулярные ингибиторы против сигнального механизма HGF/MET и против сигнального механизма RON/MET имеют важное терапевтическое значение для лечения раков, при которых активность Met вносит вклад в инвазивный/метастатический фенотип.

КРАТКОЕ СОДЕРЖАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к производным 5Н-бензо[4,5]циклогепта[1,2-b]пиридина, которые являются применимыми для лечения клеточных пролиферативных заболеваний, для лечения нарушений, ассоциированных с активностью MET и ингибирование рецептора тирозинкиназы Met. Соединения изобретения могут быть представлены формулой I:

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Соединения этого изобретения являются применимыми для ингибирования тирозинкиназ, в особенности рецепторной тирозинкиназы МЕТ, и иллюстрируются соединением формулы I:

или его фармацевтически приемлемая соль или стереоизомер, где

а независимо равно 0 или 1;

b независимо равно 0 или 1;

m независимо равно 0, 1 или 2;

R1 выбирают из арила, гетероциклила и NR10R11; указанная арильная или гетероциклильная группа необязательно замещена от одного до пяти заместителей, каждый заместитель независимо выбирают из R8;

R5 выбирают из водорода, С1-6алкила, С2-6алкенила, ОН, -О-С1-6алкила, -О-С(=О)С1-6алкила, -О-арила, S(O)mRa, -C(=O)NR10R11, -NHS(O)2NR10R11 и NR10R11, каждый алкил, алкенил и арил необязательно замещены от одного до пяти заместителей, каждый заместитель независимо выбирают из R8;

R8 независимо представляет собой (С=О)aObC1-C10алкил, (С=О)aObарил, С210алкенил, С210алкинил, (С=О)aObгетероциклил, СО2Н, галоген, CN, ОН, ObC1-C6перфторалкил, Оа(С=О)bNR10R11, S(O)mRa, S(O)2NR10R11, OS(=O)Ra, оксо, СНО, (N=O)NR10R11 или (С=О)aObC3-C8циклоалкил, указанный алкил, арил, алкенил, алкинил, гетероциклил и циклоалкил, необязательно замещены одним, двумя или тремя заместителями, выбранными из R9;

R9 независимо выбирают из: (С=О)aOb(C1-C10)алкила, Ob(C1-C3)перфторалкила, оксо, ОН, галогена, CN, (С210)алкенила, (С210)алкинила, (С=О)aOb(C3-C6)циклоалкила, (С=О)aOb(C0-C6)алкиленарила, (С=О)aOb(C0-C6)алкиленгетероциклила, (С=О)aOb(C0-C6)алкилен-N(Rb)2, C(O)Ra, (C0-C6)алкилен-CO2Ra, C(O)H, (C0-C6)алкилен-CO2H, C(O)N(Rb)2, S(O)mRa и S(O)2NR10R11; указанный алкил, алкенил, алкинил, циклоалкил, арил и гетероциклил необязательно замещены одним, двумя или тремя заместителями, выбранными из Rb, OH, (C1-C6)алкокси, галогена, СО2Н, CN, O(C=O)C1-C6алкил, оксо и N(Rb)2;

R10 и R11 независимо выбирают из: Н, (С=О)Ob(C1-C10)алкила, (С=О)ObC3-C8циклоалкила, (С=О)Obарила, (С=О)Obгетероциклила, C1-C10алкила, арила, С210алкенила, С210алкинила, гетероциклила, C3-C8циклоалкила, SO2Ra, (C=O)NRb2, указанные алкил, циклоалкил, арил, гетероциклил, алкенил и алкинил необязательно замещены одним, двумя или тремя заместителями, выбранными из R8 или

R10 и R11 могут быть взяты вместе с азотом, к которому они присоединены с образованием моноциклического или бициклического гетероцикла с 5-7 членами в каждом кольце и необязательно содержащего, в дополнение к азоту, один или два дополнительных гетероатома, выбранных из N, O и S, указанные моноциклический или бициклический гетероцикл необязательно замещен одним, двумя или тремя заместителями, выбранными из R9;

Ra независимо выбирают из (C1-C6)алкила, (С26)алкенила, (C3-C6)циклоалкила, арила, -(C1-C6)алкиленарила, гетероциклила и -(C1-C6)алкиленгетероциклила; и

Rb независимо выбирают из Н, (C1-C6)алкила, арила, -(C1-C6)алкиленарила, гетероциклила, -(C1-C6)алкиленгетероциклила, (C3-C6)циклоалкила, (С=О)ОС16алкила, (С=О)С16алкила или S(O)2Ra.

Конкретные примеры соединений настоящего изобретения включают:

3-фенил-7-винил-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

7-этил-3-фенил-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

7-[(2,4-диметоксибензил)амино]-3-фенил-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

7-амино-3-фенил-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

2-гидрокси-N-(5-оксо-3-фенил-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил)пропанамид;

N-метил-5-оксо-3-фенил-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-карбоксамид;

7-изобутил-3-фенил-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

N-(5-оксо-3-фенил-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил)метансульфонамид;

N-[5-оксо-3-(3-тиенил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]метансульфонамид;

7-(изопропиламино)-3-(1-метил-1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

N-[(2R)-1,4-диоксан-2-илметил]-N-метил-N'-[3-(1-метил-1Н-пиразол-4-ил)-5-оксо-5Н-]бензо[4,5]циклогепта[1,2-b]пиридин-7-ил)сульфамид;

N-[(2S)-1,4-диоксан-2-илметил]-N-метил-N'-[3-(1-метил-1Н-пиразол-4-ил)-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]сульфамид;

рацемическую смесь N-[1,4-диоксан-2-илметил]-N-метил-N'-[3-(1-метил-1Н-пиразол-4-ил)-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]сульфамида;

N-метил-N'-[3-(1-метил-1Н-пиразол-4-ил)-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]-N-(тетрагидрофуран-3-ил)сульфамид;

N-метил-N'-[3-(1-метил-1Н-пиразол-4-ил)-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]-N-({3R}тетрагидрофуран-3-ил)сульфамид;

N-метил-N'-[3-(1-метил-1Н-пиразол-4-ил)-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]-N-({3S}тетрагидрофуран-3-ил)сульфамид;

N-(5-оксо-3-пиридин-4-ил-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил)метансульфонамид;

N-[5-оксо-3-(1Н-пиразол-3-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]метансульфонамид;

N-[5-оксо-3-(1,3-тиазол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]метансульфонамид;

N-[3-(1-метил-1Н-пиразол-4-ил)-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]метансульфонамид;

N-[5-оксо-3-(1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]метансульфонамид;

N-(3-{1-[2-(диметиламино)этил]-1Н-пиразол-4-ил}-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил)метансульфонамид;

N-{3-[1-(2-морфолин-4-ил-2-оксоэтил)-1Н-пиразол-4-ил]-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил}метансульфонамид;

N-(4-{7-[метилсульфонил)амино]-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-3-ил}фенил)метансульфонамид;

N-[3-(1-циклопентил-1Н-пиразол-4-ил)-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]метансульфонамид;

N-{3-[1-(3,3-диметил-2-оксобутил)-1Н-пиразол-4-ил]-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил}метансульфонамид;

N-[2-(1-метилпирролидин-2-ил)этил]-3-{7-[(метилсульфонил)амино]-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-3-ил}бензамид;

N,N-диметил-N'-[3-(1-метил-1Н-пиразол-4-ил]-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]сульфамид;

7-(5-метил-1,1-диоксидо-1,2,5-тиадиазолидин-2-ил)-3-(1-метил-1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

7-[(2,4-диметоксибензил)амино]-3-(3-тиенил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

7-амино-3-(1-метил-1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

7-[(2,4-диметоксибензил)амино]-3-(1Н-пиразол-3-ил)-5Н-бензол[4,5]циклогепта[1,2-b]пирпдин-5-он;

N-метил-N'-[3-(1-метил-1Н-пиразол-4-ил)-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]-N-(тетрагидрофуран-3-ил)сульфамид;

7-[(имидазо[1,2-a]пиридин-3-илметил)амино]-3-(1-метил-1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

7-{[(1-метил-5-оксопирролидин-2-ил)метил]амино}-3-(1-метил-1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

N-метил-N'-[3-(1-метил-1Н-пиразол-4-ил)-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]-N-(тетрагидро-2H-пиран-2-илметил)сульфамид;

N-[3-(1-метил-1Н-пиразол-4-ил)-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]-N'-(тетрагидрофуран-3-ил)сульфамид;

N-[3-(1-метил-1Н-пиразол-4-ил)-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]морфолин-4-сульфонамид;

N-[3-(4-изопропилпиперазин-1-ил)-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]метансульфонамид;

3-(4-изопропилпиперазин-1-ил)-7-фенил-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

N-(3-морфолин-4-ил-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил)метансульфонамид;

N-(3-анилино-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил)метансульфонамид;

N-[3-(циклогексиламино-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]метансульфонамид;

N-[5-оксо-3-(пиридин-4-иламино)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]метансульфонамид;

N-(2,4-диметоксибензил)-N-(5-оксо-3-фенил-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил)этиленсульфонамид;

N-(5-оксо-3-фенил-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил)этиленсульфонамид;

N-(5-оксо-3-фенил-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил)-2-пирролидин-1-илэтансульфонамид;

диметил[3-(1-метил-1Н-пиразол-4-ил)-5-оксо-5Н- бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]амидофосфат;

7-[(1R)-1-гидроксиэтил]-3-(1-метил-1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

7-[(1S)-1-гидроксиэтил]-3-(1-метил-1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

7-(2-{[трет-бутил(диметил)силил]окси}этил)-3-(1-метил-1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

7-(2-гидроксиэтил)-3-(1-метил-1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

7-(1,2-дигидроксиэтил)-3-(1-метил-1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

7-[(1R)-1-метоксиэтил]-3-(1-метил-1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

7-[(1S)-1-метоксиэтил]-3-(1-метил-1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

трет-бутил 4-[2-(3-хлор-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил)-2-гидроксиэтил]пиперазин 1-карбоксилат;

трет-бутил 4-{2-гидрокси-2-[3-(1-метил-1Н-пиразол-4-ил)-5-оксо-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-7-ил]этил}пиперазин 1-карбоксилат;

7-(1-гидрокси-2-пиперазин-1-илэтил)-3-(1-метил-1Н-пиразол-4-ил)-5Н-бензо[4,5]циклогепта[1,2-b]пиридин-5-он;

или его фармацевтически приемлемую соль или стереоизомер.

Соединения настоящего изобретения могут иметь асимметрические центры, хиральные оси и хиральные плоскости (как описано в: E. L. Eliel and S.H. Wilen, Stereochemistry of Carbon Compounds, John Wiley & Sons, New York, 1994, pages 1119-1190) и могут встречаться в виде рацематов, рацемических смесей и как индивидуальные диастереомеры, со всеми возможными их изомерами и смесями, включая оптические изомеры, все такие стереоизомеры являются включенными в настоящее изобретение. Дополнительно, соединения, раскрытые здесь, могут существовать как таутомеры и подразумевают, что обе таутомерные формы охватываются объемом притязаний изобретения, даже если изображена только одна таутомерная структура.

Очевидно, что один или более атомов кремния (Si) может быть введен в соединения настоящего изобретения вместо одного или более атомов углерода специалистом в данной области для получения соединений, которые являются химически стабильными и которые могут быть синтезированы методами, известными в данной области техники из легко доступных исходных веществ. Углерод и кремний отличаются по их ковалентному радиусу, что приводит к различиям в длине связи и стерическому расположению, при сравнении аналогичных связей С-элемента и Si-элемента. Эти различия приводят к незначительным изменениям в размере и форме кремний-содержащих соединений по сравнению с углеродом. Специалист в данной области сможет понять, что различия по размеру и форме могут приводить к незначительным или значительным изменениям в активности, растворимости, недостатку целевой активности, упаковочных свойств и т.д. (Diass, J.O. et al. Organometallics (2006) 5:1188-1198; Showell, G. A. et al. Bioorganic & Medicinal Chemistry Letters (2006) 16:2555-2558).

Если любой радикал (например, R7, R8, Rb и т.д.) встречается более одного раза в любом элементе, его определение в каждом случае является независимым при каждом другом случае. Также сочетания заместителей и радикалов являются разрешимыми, только если такие сочетания приводят к стабильным соединениям. Линии, нарисованные внутрь кольцевых систем от заместителей, представляют, что указанная связь может быть присоединена к любому из замещаемых кольцевых атомов. Если кольцевая система является полициклической, подразумевают, что связь присоединена к любому из приемлемых атомов углерода только на проксимальном кольце.

Подразумевают, что заместители и схемы замещения соединений настоящего изобретения могут быть выбраны специалистом в данной области для получения соединений, которые являются химически стабильными и могут быть легко синтезированы методами, известными в данной области техники, а также теми способами, изложенными ниже, из легко доступных исходных веществ. Если заместитель сам замещен более чем одной группой, является понятным, что эти множественные группы могут быть на том же углероде или на различных углеродах, пока это приводит к стабильной структуре. Фразу “необязательно замещенный одним или более заместителями” следует считать эквивалентной фразе “необязательно замещенный, по меньшей мере, одним заместителем”, и в таких случаях еще один вариант осуществления будет иметь от нуля до трех заместителей.

Как использовано здесь, подразумевают, что “алкил” включает как разветвленные, так и прямоцепные насыщенные алифатические углеводородные группы, имеющие определенное число углеродных атомов. Например, С110, как в “С110алкил”, определена как включающая группы, имеющие 1, 2, 3, 4, 5, 6, 7, 8, 9 или 10 углеродов в линейном или разветвленном расположении. Например, “С110алкил” конкретно включает метил, этил, н-пропил, изо-пропил, н-бутил, т-бутил, изо-бутил, пентил, гексил, гептил, октил, нонил, децил и т.д. Термин “циклоалкил” означает моноциклическую насыщенную алифатическую углеводородную группу, имеющую определенное число углеродных атомов. Например, “циклоалкил” включает циклопропил, метил-циклопропил, 2,2-диметил-циклобутил, 2-этил-циклопентил, циклогексил и т.д. В варианте осуществления изобретения термин “циклоалкил” включает группы, описанные только что выше, и дополнительно включает моноциклические ненасыщенные алифатические углеводородные группы. Например, “циклоалкил”, как определен в этом варианте осуществления, включает циклопропил, метил-циклопропил, 2,2-диметил-циклобутил, 2-этил-циклопентил, циклогексил, циклопентенил, циклобутенил и т.д.

Термин “алкилен” означает углеводородную дирадикальную группу, имеющую определенное число углеродных атомов. Например, “алкилен” включает -СН2-,

-СН2СН2- и т.п.

Когда используется в фразах “C1-C6аралкил” и “C1-C6гетероаралкил”, термин “C1-C6” относится к алкильной части фрагмента и не описывает число атомов в арильной и гетероарильной частях фрагмента.

“Алкокси” представляет либо циклическую или нециклическую алкильную группу с указанным числом углеродных атомов, присоединенных через кислородный мостик. “Алкокси”, следовательно, охватывает определения алкила и циклоалкила выше.

Если не определено число углеродных атомов, термин “алкенил” относится к неароматическому углеводородному радикалу, прямому, разветвленному или циклическому, содержащему от 2 до 10 углеродных атомов и, по меньшей мере, одну углерод-углеродную двойную связь. Предпочтительно присутствует одна углерод-углеродная двойная связь, и могут присутствовать до четырех неароматических углерод-углеродных двойных связей. Таким образом, “C2-C6алкенил” означает алкенильный радикал, имеющий от 2 до 6 углеродных атомов. Алкенильные группы включают этенил, пропенил, бутенил, 2-метилбутенил и циклогексенил. Прямая, разветвленная или циклическая часть алкенильной группы может содержать двойные связи и может быть замещена, если указана замещенная алкенильная группа.

Термин “алкинил” относится к углеводородному радикалу, прямому, разветвленному или циклическому, содержащему от 2 до 10 углеродных атомов и, по меньшей мере, одну углерод-углеродную тройную связь. Могут присутствовать до трех углерод-углеродных тройных связей. Таким образом, “C2-C6алкинил” означает алкинильный радикал, имеющий от 2 до 6 углеродных атомов. Алкинильные группы включают этинил, пропинил, бутинил, 3-метилбутинил и т.п. Прямая, разветвленная или циклическая часть алкинильной группы может содержать тройные связи и может быть замещена, если указана замещенная алкинильная группа.

В некоторых случаях заместители могут быть определены с интервалом углеродов, который включает нуль, такой как (С06)алкилен-арил. Если арил берется как фенил, это определение включает сам фенил, а также -CH2Ph, -CH2CH2Ph, CH(CH3)CH2CH(CH3)Ph и т.д.

Как используется здесь, подразумевают, что “арил” означает любое стабильное моноциклическое или бициклическое углеродное кольцо, содержащее до 7 атомов в каждом из колец, где, по меньшей мере, одно кольцо является ароматическим. Примеры таких арильных элементов включают фенил, нафтил, тетрагидронафтил, инданил и бифенил. В случаях, где арильный заместитель является бициклическим и одно кольцо является неароматическим, понимают, что такое присоединение происходит через ароматическое кольцо.

Термин гетероарил, как используется здесь, представляет стабильное моноциклическое или бициклическое кольцо, содержащее до 7 атомов в каждом из колец, где, по меньшей мере, одно кольцо является ароматическим и содержит от 1 до 4 гетероатомов, выбранных из группы, состоящей из O, N и S. Гетероарильные группы в пределах объема притязаний включают, но не ограничены ими: акридинил, карбазолил, циннолинил, хиноксалинил, пиразолил, индолил, бензотриазолил, фуранил, тиенил, бензотиенил, бензофуранил, хинолинил, изохинолинил, оксазолил, изоксазолил, индолил, пиразинил, пиридазинил, пиридинил, пиримидинил, пирролил, тетрагидрохинолин. Как и с определением гетероцикла ниже, понимают, что “гетероарил” включает N-оксидное производное любого азот-содержащего гетероарила. В случаях, где гетероарильный заместитель является бициклическим и одно кольцо является неароматическим или не содержит гетероатомов, понимают, что присоединение происходит через ароматическое кольцо или через кольцо, содержащее гетероатом, соответственно.

Подразумевают, что термин “гетероцикл” или “гетероциклил”, как использован здесь, означает 3-10 членный ароматический или неароматический гетероцикл, содержащий от 1 до 4 гетероатомов, выбранных из группы, состоящей из O, N и S, и включает бициклические группы. Для целей данного изобретения термин “гетероциклический” также рассматривают как синонимичный терминам “гетероцикл” и “гетероциклил” и понимают, что они также имеют определения, представленные здесь. “Гетероциклил”, следовательно, включает вышеуказанные гетероарилы, а также их дигидро и тетрагидро аналоги. Дополнительные примеры “гетероциклила” включают, но не ограничены следующими: азетидинил, бензоимидазолил, бензофуранил, бензофуразанил, бензопиразолил, бензотриазолил, бензотиофенил, бензоксазолил, карбазолил, карболинил, циннолинил, фуранил, имидазолил, индолинил, индолил, индолазинил, индазолил, изобензофуранил, изоиндолил, изохинолил, изотиазолил, изоксазолил, нафтпиридинил, оксадиазолил, оксазолил, оксазолин, изоксазолин, оксетанил, пиранил, пиразинил, пиразолил, пиридазинил, пиридопиридинил, пиридазинил, пиридил, пиримидил, пирролил, хиназолинил, хинолил, хиноксалинил, тетрагидропиранил, тетрагидротиопиранил, тетрагидроизохинолинил, тетразолил, тетразолопиридил, тиадиазолил, тиазолил, тиенил, триазолил, 1,4-диоксанил, гексагидроазепинил, пиперазинил, пиперидинил, пиридин-2-онил, пирролидинил, морфолинил, тиоморфолинил, дигидробензоимидазолил, дигидробензофуранил, дигидробензотиофенил, дигидробензоксазолил, дигидрофуранил, дигидроимидазолил, дигидроиндолил, дигидроизооксазолил, дигидроизотиазолил, дигидрооксадиазолил, дигидрооксазолил, дигидропиразинил, дигидропиразолил, дигидропиридинил, дигидропиримидинил, дигидропирролил, дигидрохинолинил, дигидротетразолил, дигидротиадиазолил, дигидротиазолил, дигидротиенил, дигидротриазолил, дигидроазетидинил, метилендиоксибензоил, тетрагидрофуранил и тетрагидротиенил и их N-оксиды. Присоединение гетероциклического заместителя может иметь место через углеродный атом или через гетероатом.

В варианте осуществления подразумевают, что термин “гетероцикл” или “гетероциклил”, как использован здесь, означает 5-10 членный ароматический или неароматический гетероцикл, содержащий от 1 до 4 гетероатомов, выбранных из группы, состоящей из O, N и S, и включает бициклические группы. “Гетероциклил” в этом варианте осуществления, следовательно, включает приведенные выше гетероарилы, а также их дигидро и тетрагидро аналоги. Дополнительные примеры “гетероциклила” включают, но не ограничены следующими: бензоимидазолил, бензофуранил, бензофуразанил, бензопиразолил, бензотриазолил, бензотиофенил, бензоксазолил, карбазолил, карболинил, циннолинил, фуранил, имидазолил, индолинил, индолил, индолазинил, индазолил, изобензофуранил, изоиндолил, изохинолил, изотиазолил, изоксазолил, нафтпиридинил, оксадиазолил, оксазолил, оксазолин, изоксазолин, оксетанил, пиранил, пиразинил, пиразолил, пиридазинил, пиридопиридинил, пиридазинил, пиридил, пиримидил, пирролил, хиназолинил, хинолил, хиноксалинил, тетрагидропиранил, тетрагидротиопиранил, тетрагидроизохинолинил, тетразолил, тетразолопиридил, тиадиазолил, тиазолил, тиенил, триазолил, азетидинил, 1,4-диоксанил, гексагидроазепинил, пиперазинил, пиперидинил, пиридин-2-онил, пирролидинил, морфолинил, тиоморфолинил, дигидробензоимидазолил, дигидробензофуранил, дигидробензотиофенил, дигидробензоксазолил, дигидрофуранил, дигидроимидазолил, дигидроиндолил, дигидроизооксазолил, дигидроизотиазолил, дигидрооксадиазолил, дигидрооксазолил, дигидропиразинил, дигидропиразолил, дигидропиридинил, дигидропиримидинил, дигидропирролил, дигидрохинолинил, дигидротетразолил, дигидротиадиазолил, дигидротиазолил, дигидротиенил, дигидротриазолил, дигидроазетидинил, метилендиоксибензоил, тетрагидрофуранил и тетрагидротиенил и их N-оксиды. Присоединение гетероциклического заместителя может иметь место через углеродный атом или через гетероатом.

В еще одном варианте осуществления гетероцикл выбирают из 2-азепинона, бензимидазолила, 2-диазапинона, имидазолила, 2-имидазолидинона, индолила, изохинолинила, морфолинила, пиперидила, пиперазинила, пиридила, пирролидинила, 2-пиперидинона, 2-пиримидинона, 2-пирролидинона, хинолинила, тетрагидрофурила, тетрагидроизохинолинила и тиенила.

Как оценят специалисты в данной области “гало” или “галоген”, как использован здесь, предназначен для включения хлора, фтора, брома и иода.

Алкильный, алкенильный, алкинильный, циклоалкильный, арильный, гетероарильный и гетероциклильный заместители могут быть замещенными или незамещенными, если специально не определено иначе. Например, (C1-C6)алкил может быть замещен одним, двумя или тремя заместителями, выбранными из ОН, оксо, галогена, алкокси, диалкиламино или гетероциклила, такого как морфолинил, пиперидинил и т.д. В этом случае, если один заместитель представляет собой оксо, а другой представляет собой ОН, следующие включены в определение:

-(С=О)СН2СН(ОН)СН3, -(С=О)ОН, -СН2(ОН)СН2СН(О) и т.д.

Фрагмент, образованный, когда два R8 или два R9, присоединенные к одному углеродному атому, объединены с образованием -(CH2)u-, представлен следующим образом:

Кроме того, такие циклические фрагменты могут необязательно включать один или два гетероатома. Примеры таких гетероатомсодержащих циклических фрагментов включают, но не ограничены:

В некоторых случаях R10 и R11 определены таким образом, что они могут быть взяты вместе с азотом, к которому они присоединены, с образованием моноциклического или бициклического гетероцикла с 5-7 членами в каждом кольце и необязательно содержащего, в дополнение к азоту, один или два дополнительных гетероатома, выбранных из N, O и S, указанный гетероцикл необязательно замещен одним или более заместителями, выбранными из R8. Примеры гетероциклов, которые могут быть образованы таким образом, включают, но не ограничены следующими, с учетом того, что гетероцикл необязательно замещен одним или более (и в еще одном варианте осуществления одним, двумя или тремя) заместителями, выбранными из R8:

В варианте осуществления Формулы I R1 выбирают из арила и гетероциклила; указанные арильная и гетероциклильная группы необязательно замещены от одного до пяти заместителями, каждый заместитель независимо выбирают из R8.

В варианте осуществления Формулы I R5 выбирают из С1-6алкила, С2-6алкенила, ОН, -О-С1-6алкила, -О-С(=О)С1-6алкила, -О-арила, S(O)mRa, -C(=O)NR10R11,

-NHS(O)2NR10R11 и NR10R11, каждый алкил, алкенил, алкинил и арил необязательно замещены от одного до пяти заместителями, каждый заместитель независимо выбирают из R8.

В настоящее изобретение включена свободная форма соединений формулы I, а также их фармацевтически приемлемые соли и стереоизомеры. Некоторые из конкретных соединений, представленных здесь в виде примеров являются протонированными солями аминов. Термин “свободная форма” относится к аминам в несолевой форме. Охватываемые фармацевтически приемлемые соли не только включают соли, приведенные в виде примеров для конкретных соединений, описанных здесь, но также все типичные фармацевтически приемлемые соли свободной формы соединений формулы I. Свободная форма конкретных описанных солевых соединений может быть выделена с использованием методов, известных в данной области техники. Например, свободная форма может быть регенерирована обработкой соли подходящим разбавленным водным раствором основания, таким как разбавленный водный NaOH, карбонат калия, аммиак и бикарбонат натрия. Свободные формы могут отличаться от их соответствующих солевых форм в некоторой степени по их определенным физическим свойствам, таким как растворимость в полярных растворителях, но кислотные и основные соли являются иным образом фармацевтически эквивалентными их соответствующим свободным формам для целей изобретения.

Фармацевтически приемлемые соли настоящих соединений могут быть синтезированы из соединений данного изобретения, которые содержат основный или кислотный фрагмент посредством общепринятых химических способов. В общем случае, соли основных соединений получают либо ионообменной хроматографией или посредством взаимодействия свободного основания со стехиометрическими количествами или с избытком желательной солеобразующей неорганической или органической кислоты в подходящем растворителе или различных комбинациях растворителей. Сходным образом соли кислотных соединений образуются посредством реакций с соответствующим неорганическим или органическим основанием.

Таким образом, фармацевтически приемлемые соли соединений данного изобретения включают общепринятые нетоксичные соли соединений данного изобретения, образованные посредством взаимодействия основного настоящего соединения с неорганической или органической кислотой. Например, общепринятые нетоксичные соли включают соли, являющиеся производными неорганических кислот, таких как хлористоводородная, бромистоводородная, серная, сульфаминовая, фосфорная, азотная и т.п., так же как и соли, полученные из органических кислот, таких как уксусная, пропионовая, янтарная, гликолевая, стеариновая, молочная, яблочная, винная, лимонная, аскорбиновая, памоевая, малеиновая, гидроксималеиновая, фенилуксусная, глутаминовая, бензойная, салициловая, сульфаниловая, 2-ацетокси-бензойная, фумаровая, толуолсульфоновая, метансульфоновая, этандисульфоновая, щавелевая, изетионовая, трифторуксусная и т.п.

Когда соединение настоящего изобретения является кислотным, термин подходящие “фармацевтически приемлемые соли” относится к солям, полученным из фармацевтически приемлемых нетоксичных оснований, включающих неорганические основания и органические основания. Соли, производные из неорганических оснований, включают соли алюминия, аммония, кальция, меди, железа (II), железа (III), лития, магния, марганца, калия, натрия, цинка и т.п. Особенно предпочтительными являются соли аммония, кальция, магния, калия и натрия. Соли, производные от фармацевтически приемлемых органических нетоксичных оснований, включают соли первичных, вторичных и третичных аминов, замещенных аминов, включая природные замещенные амины, циклических аминов и основных ионообменных смол, таких как аргинин, бетаин, кофеин, холин, N,N'-дибензилэтилендиамин, диэтиламин, 2-диэтиламиноэтанол, 2-диметиламиноэтанол, этаноламин, этилендиамин, N-этилморфолин, N-этилпиперидин, глюкамин, глюкозамин, гистидин, гидрабамин, изопропиламин, лизин, метилглюкамин, морфолин, пиперазин, пиперидин, полиаминовые смолы, прокаин, пурины, теобромин, триэтиламин, триметиламин, трипропиламин, трометамин и т.п.

Когда соединение настоящего изобретения является кислотным, термин “свободная форма” относится к соединению в его несолевой форме, так что его кислотная функциональность все еще является протонированной.

Получение фармацевтически приемлемых солей, описанных выше, и других типичных фармацевтически приемлемых солей более полно описано Berg et al., “Pharmaceutical Salts”, J. Pharm. Sci., 1977:66:1-19.

Также будет отмечено, что соединения настоящего изобретения могут потенциально представлять собой внутренние соли или цвиттерионы, поскольку в физиологических условиях депротонированный кислотный фрагмент в соединении, такой как карбоксильная группа, может быть анионным, и этот электронный заряд может быть затем сбалансирован внутренне против катионного заряда протонированного или алкилированного основного фрагмента, такого как четвертичный атом азота. Выделенное соединение, имеющее внутренний баланс зарядов, таким образом не является ассоциированным с межмолекулярным противоионом, может также считаться “свободной формой” соединения.

Некоторые сокращения, используемые в схемах и примерах, определены ниже:

APCI Химическая ионизация при атмосферном давлении
DMF Диметилформамид
DMSO Диметилсульфоксид
EtOAc Этилацетат
LCMS Жидкостная хроматография-масс-спектрометрия
MPLC Жидкостная хроматография среднего давления
NBS N-бромсукцинимид
TFA Трифторуксусная кислота
TFAA Трифторуксусный ангидрид

Соединения данного изобретения могут быть получены при использовании реакций, как показано на следующих ниже схемах, в дополнение к другим стандартным манипуляциям, которые известны в литературе или представлены в виде примеров в экспериментальных методиках. Иллюстративные схемы ниже, следовательно, не являются ограниченными перечисленными соединениями или любыми конкретными заместителями, используемыми для иллюстративных целей. Нумерация заместителей,