Система и способ пожаротушения
Иллюстрации
Показать всеВ изобретении предлагается система пожаротушения, которая содержит топливный элемент для выработки обогащенного азотом отработанного воздуха катода, и систему труб для подачи обогащенного азотом отработанного воздуха к источнику возгорания таким образом, что содержание кислорода вокруг источника возгорания снижается и происходит его гашение. Топливный элемент снабжают воздухом и топливом. Система содержит элемент управления и регулирования параметрами воздухо- и топливоподачи. Способ пожаротушения включает выработку обогащенного азотом отработанного воздуха катодом при помощи топливного элемента и подачу этого воздуха к источнику возгорания. 3 н. и 21 з.п. ф-лы, 9 ил.
Реферат
Область применения изобретения
Настоящее изобретение в общем имеет отношение к защите от пожара. Более конкретно, настоящее изобретение имеет отношение к системе пожаротушения, предназначенной для снижения опасности пожара, к использованию такой системы пожаротушения на летательном аппарате, к использованию такой системы пожаротушения в здании, к использованию такой системы пожаротушения на судне, к летательному аппарату, имеющему такую систему пожаротушения, и к способу пожаротушения.
Предпосылки к созданию изобретения:
Ориентировочно, вот уже более 40 лет, используют галогенированные углеводороды (Halon) для тушения пожара на борту летательного аппарата. Halon представляет собой частично или полностью галогенированные углеводороды, которые химически вступают в цепную реакцию с огнем и, следовательно, ведут к прерыванию реакции.
Общеизвестно, что Halon 1211 (хлор-бром-дифторо-метан для ручных огнетушителей) и Halon 1301 (бром-трифторо-метан для стационарных огнетушителей) способствуют образованию стратосферного озона и поэтому включены в материалы, которые запрещены Монреальским протоколом ООН.
Сущность изобретения
В соответствии с примерным вариантом настоящего изобретения, предлагается система пожаротушения, предназначенная для снижения опасности пожара (риска возгорания) в помещении, причем указанная система пожаротушения содержит топливный элемент для выработки обогащенного азотом отработанного воздуха катода и систему труб для подачи обогащенного азотом отработанного воздуха катода к источнику возгорания таким образом, что содержание кислорода вокруг источника возгорания может быть снижено так, что источник возгорания может быть потушен.
Таким образом, может быть создана эффективная система пожаротушения в помещениях или на объектах, в которой используют обедненный кислородом и обогащенный азотом отработанный воздух системы топливных элементов. В этом случае отработанный воздух бортовой внутренней системы топливных элементов может быть использован для пожаротушения или для снижения опасности пожара. Кроме того, за счет этого размеры огнетушителей могут быть уменьшены или даже огнетушители могут быть полностью исключены. Для создания такой системы могут быть использованы любые типы топливных элементов, такие как, например, щелочной топливный элемент (AFC), протонообменный топливный элемент (PEMFC), топливный элемент с использованием фосфорной кислоты (PAFC), топливный элемент с использованием расплавленного карбоната (MCFC), топливный элемент с использованием твердого оксида (SOFC) или прямой топливный элемент с использованием этилового/ метилового спирта (DAFC/DMFC).
При этом рабочая температура электролита не является важной, важен только состав отработанного воздуха катода. Он может содержать инертный газ, такой как азот, или другой инертный газ. Отработанный воздух может быть сухим или может содержать воду, в зависимости от типа топливного элемента и, при необходимости, от настроек системы.
Принимая во внимание инертные свойства азота, он особенно хорошо подходит для пожаротушения в помещениях.
В соответствии с другим вариантом настоящего изобретения, система пожаротушения дополнительно имеет блок управления или регулирования, предназначенный для включения подачи обогащенного азотом отработанного воздуха катода к источнику возгорания.
Подстройка содержания кислорода может быть осуществлена за счет изменения значения лямбда катода топливного элемента. Значение лямбда представляет собой отношение количества кислорода, подаваемого в топливный элемент, к количеству кислорода, преобразуемого внутри топливного элемента. Это отношение можно подстраивать за счет регулирования воздухоподачи топливного элемента (например, при помощи воздуходувки). В том случае, когда содержание кислорода в отработанном газе катода является слишком высоким, воздухоподачу и, следовательно, значение лямбда следует снизить. Таким образом, содержание кислорода внутри помещения можно контролировать за счет подачи адекватного отработанного воздуха катода в помещение.
Таким образом, процесс пожаротушения может начинаться автоматически если ваши системы прошли номальный пожарный аудит. Кроме того, содержание кислорода можно подстраивать или повторно подстраивать в зависимости от требований. Управление и регулирование могут осуществляться полностью автоматически. Например, содержание кислорода можно подстраивать, когда в помещение входят люди, так, чтобы оно составляло ориентировочно 15 об.%. За счет этого в результате, с одной стороны, люди могут находиться в помещении, но, с другой стороны, опасность возгорания или опасность пожара по сравнению с обычным воздухом может быть значительно снижена. Система пожаротушения при этом может быть использована для защиты или превентивно. Заказать пожарный аудит, а также получить помощь в получении лицензии МЧС строители могут в СтройЮрист Москва.
С другой стороны, например, при помощи блока управления или регулирования можно обеспечить, чтобы содержание кислорода всегда оставалось ниже заданного максимального значения, например ниже 12 об. %, или еще ниже.
Само собой разумеется, что блок управления или регулирования может быть выполнен как только блок управления. Тогда регулирование может быть осуществлено вручную.
В соответствии с еще одним вариантом настоящего изобретения, блок управления или регулирования предназначен для управления или регулирования по меньшей мере одного параметра, выбранного из группы, в которую входят воздухоподача на катод топливного элемента, топливоподача на анод топливного элемента и/или подача обогащенного азотом отработанного воздуха катода к источнику возгорания.
Таким образом, мощность топливного элемента можно регулировать в зависимости от потребностей, когда потребителям необходимо подавать больше или меньше топлива, больше или меньше воздуха или больше или меньше электроэнергии. Кроме того, поступление обогащенного азотом отработанного воздуха катода в помещение можно контролировать или регулировать, например, при помощи соответствующего клапана, управляемого блоком управления или регулирования.
В соответствии с еще одним вариантом настоящего изобретения, система пожаротушения дополнительно содержит измерительное устройство, предназначенное для измерения по меньшей мере одного физического параметра, выбранного из группы, в которую входят содержание кислорода в помещении, содержание водорода в помещении, температура в помещении, давление в помещении, содержание влаги в помещении и датчик для обнаружения характеристик пожара в помещении. Кроме того, система пожаротушения содержит линию передачи данных, предназначенную для передачи измеренных физических параметров из измерительного устройства в блок управления или регулирования.
Таким образом можно контролировать условия в помещении. Если, например, температура в помещении возрастает или если в нем образуется дым, то содержание кислорода может быть снижено за счет дополнительной подачи отработанного воздуха катода, чтобы погасить начинающийся пожар. Аналогично, можно осуществлять текущий контроль давления. Если, например, давление превышает заданное значение, то может быть подан обогащенный азотом отработанный воздух катода, в котором параметры пожаротушения связаны с интенсивностью развития дыма. Автоматическое и постоянное поддержание заданного параметра является первоочередной задачей блока регулирования и управления системы пожаротушения.
В соответствии с еще одним вариантом настоящего изобретения, система пожаротушения дополнительно содержит измерительное устройство, предназначенное для измерения по меньшей мере одного физического параметра, выбранного из группы, в которую входят содержание кислорода в отработанном воздухе в системе труб, содержание водорода в отработанном воздухе в системе труб, содержание диоксида углерода в отработанном воздухе в системе труб, содержание угарного газа в отработанном воздухе в системе труб, содержание оксида азота в отработанном воздухе в системе труб, объемный расход отработанного воздуха в системе труб, температура отработанного воздуха в системе труб, давление отработанного воздуха в системе труб и содержание влаги в отработанном воздухе в системе труб. Кроме того, система пожаротушения может содержать линию передачи данных, предназначенную для передачи измеренных физических параметров из измерительного устройства в блок регулирования и управления.
В соответствии с еще одним вариантом настоящего изобретения, система пожаротушения дополнительно содержит клапан для выпуска отработанного воздуха из системы труб в окружающую среду. Если, например, содержание кислорода в отработанном воздухе в системе труб превышает заданное значение или падает ниже заданного значения, это может быть обнаружено при помощи измерительного устройства и передано в блок регулирования и управления, причем, при необходимости, клапан может быть открыт, чтобы подавать отработанный воздух не в помещение, а в окружающую среду.
В соответствии с еще одним вариантом настоящего изобретения, система пожаротушения дополнительно содержит клапан сброса давления, предназначенный для регулировки повышенного давления в помещении.
Если, например, давление в помещении превышает заданное пороговое значение или если разность между давлением внутри помещения и средой вокруг помещения превышает заданное значение, то, соответственно, воздух может быть выпущен в окружающую среду.
В соответствии с еще одним вариантом настоящего изобретения, система пожаротушения дополнительно содержит компрессор для сжатия обогащенного азотом отработанного воздуха катода для того, чтобы повысить эффективность пожаротушения, и/или теплообменник для охлаждения обогащенного азотом отработанного воздуха катода.
За счет этого обогащенный азотом воздух катода может быть сжат или охлажден ранее его подачи в помещение или к источнику возгорания.
В соответствии с еще одним вариантом настоящего изобретения, система пожаротушения дополнительно содержит конденсатор, предназначенный для конденсации воды из обогащенного азотом отработанного воздуха катода, и водяной бак для хранения сконденсированной воды.
За счет этого может быть получена отработанная вода катода, которая затем может быть направлена в бак для хранения. Из этого бака для хранения вода затем может быть подана, например, в источник воды летательного аппарата или может быть использована в случае пожара для его гашения.
Может быть также предусмотрена прямая линия из конденсатора в водную систему летательного аппарата (без хранения сконденсированной воды в водяном баке).
Кроме того, также может быть предусмотрена подача воды из конденсатора в систему реформинга водорода, чтобы установка реформинга могла вырабатывать водород из сконденсированной воды.
В соответствии с еще одним вариантом настоящего изобретения, система пожаротушения содержит кондиционер для поддержания заданного состояния воздуха в помещении. За счет этого воздух может быть отобран, охлажден и вновь подан в помещение, без воздействия на содержание кислорода в помещении. Кроме того, кондиционер может быть использован для обеспечения заданного состояния отработанного воздуха топливного элемента ранее его подачи в помещение. Таким образом, например, после конденсации и ранее подачи в помещение может быть вновь установлен необходимый уровень температуры воздуха.
В соответствии с еще одним вариантом настоящего изобретения, система пожаротушения дополнительно содержит линию, предназначенную для отвода воздуха из помещения и подачи этого воздуха к катоду топливного элемента, за счет чего содержание кислорода в помещении может быть дополнительно снижено.
Этим отводом воздуха, например, можно управлять при помощи блока управления и регулирования, когда необходимо дополнительно понизить содержание кислорода в помещении, чтобы дополнительно повысить противопожарную защиту. В других случаях (или одновременно) топливный элемент может получать внешний воздух или также воздух из салона самолета.
В соответствии с еще одним вариантом настоящего изобретения, блок управления или регулирования служит для управления или регулирования по меньшей мере одного устройства, выбранного из группы, в которую входят теплообменник, компрессор, смеситель клапан сброса давления, стравливающие клапаны, кондиционер, а также для подачи воды на установку реформинга водорода.
Таким образом, в зависимости от требований, температура обогащенного азотом отработанного газа катода, вводимого в помещение, может быть снижена соответствующим образом. Кроме того, может быть подстроена степень сжатия воздухоподачи анода, воздухоподачи катода или обогащенного азотом отработанного воздуха катода, вводимого в помещение.
В соответствии с еще одним вариантом настоящего изобретения, отработанный воздух катода может быть подан на другие топливные элементы, так что отработанный воздух с одного катода служит воздухоподачей для других топливных элементов. Это ведет к дополнительному снижению содержания кислорода на выходе отработанного воздуха соединенных друг с другом топливных элементов.
В соответствии с еще одним вариантом системы пожаротушения в соответствии с настоящим изобретением, отработанный воздух катода также может быть подан на устройство для дополнительного снижения содержания кислорода. Для этого может быть использована, например, мембрана фракционирования воздуха. Она разделяет отработанный воздух катода на два потока: обогащенный кислородом воздух и обогащенный азотом воздух. Обогащенный кислородом воздух выпускают в атмосферу, а оставшийся обогащенный азотом воздух может быть подан в помещение.
В соответствии с еще одним вариантом настоящего изобретения, требующуюся для системы пожаротушения электрическую и тепловую энергию получают непосредственно от топливного элемента.
Таким образом, не требуется использовать внешний источник энергии. Система может работать автономно и вырабатывать энергию для собственных нужд.
В соответствии с еще одним примерным вариантом настоящего изобретения, предлагается система пожаротушения, которая дополнительно содержит линию подачи воды и водяной бак, причем вода может быть подана из водяного бака к источнику возгорания по линии подачи воды.
В соответствии с еще одним примерным вариантом настоящего изобретения, предлагается система пожаротушения, которая дополнительно содержит промежуточный резервуар для хранения обогащенного азотом отработанного воздуха катода, который может быть опорожнен в случае возгорания для быстрого тушения пожара.
В соответствии с еще одним примерным вариантом настоящего изобретения, помещением, в котором устраняют опасность пожара, является помещение на летательном аппарате.
В соответствии с еще одним примерным вариантом настоящего изобретения, описанную здесь систему пожаротушения используют для тушения источника пожара на летательном аппарате. Например, источник пожара может находиться в грузовом отсеке, в электронной стойке или в небольших скрытых областях.
В соответствии с еще одним примерным вариантом настоящего изобретения, описанную здесь систему пожаротушения используют для тушения источника пожара на судне.
В соответствии с еще одним примерным вариантом настоящего изобретения, описанную здесь систему пожаротушения используют для тушения источника пожара в зданиях.
В соответствии с еще одним примерным вариантом настоящего изобретения, описанную здесь систему пожарной защиты используют для общего снижения содержания кислорода, чтобы имитировать высоту над уровнем моря и уменьшать окисление (окисление продуктов) в помещении.
Кроме того, в соответствии с настоящим изобретением предлагается летательный аппарат, который содержит описанную здесь систему пожаротушения, предназначенную для тушения пожара в помещении на летательном аппарате.
Более того, в соответствии с еще одним примерным вариантом настоящего изобретения, предлагается способ пожаротушения, в котором обогащенный азотом отработанный воздух катода получают при помощи топливного элемента, а затем обогащенный азотом отработанный воздух катода подводят к источнику возгорания, чтобы снизить содержание кислорода вокруг источника возгорания так, чтобы погасить источник возгорания.
Таким образом, предлагается способ, при помощи которого может быть обеспечена улучшенная противопожарная защита в помещении летательного аппарата. В этом случае не требуется использовать другие системы пожаротушения, такие как системы с использованием галогенированных углеводородов (Halon).
В соответствии с еще одним примерным вариантом настоящего изобретения, в помещении измеряют физические параметры, такие как температура в помещении, давление в помещении, содержание кислорода в помещении, содержание влаги в помещении, содержание водорода в помещении, или образование дыма в помещении. Эти измеренные параметры затем могут быть переданы из измерительного устройства на блок управления или регулирования для включения подачи обогащенного азотом отработанного воздуха катода к источнику возгорания. Содержание кислорода в отработанном воздухе катода может быть построено за счет управления значением лямбда катода при помощи блока управления. Кроме того, блок разделения воздуха может дополнительно снижать содержание кислорода в отработанном воздухе катода, подаваемом к источнику возгорания.
В соответствии с еще одним примерным вариантом настоящего изобретения, измеряют физические параметры в системе труб, такие как, например, содержание кислорода в отработанном воздухе, содержание водорода в отработанном воздухе, содержание диоксида углерода в отработанном воздухе, содержание угарного газа в отработанном воздухе, содержание оксида азота в отработанном воздухе, объемный расход отработанного воздуха, температура отработанного воздуха, давление отработанного воздуха и содержание влаги в отработанном воздухе. Кроме того, система пожаротушения может содержать линию передачи данных, предназначенную для передачи измеренных физических параметров из измерительного устройства в блок регулирования и управления.
За счет этого можно подстраивать содержание кислорода в помещении в соответствии с реальными условиями в помещении.
Дополнительные примерные варианты настоящего изобретения изложены в зависимых пунктах формулы изобретения.
Далее предпочтительные примерные варианты настоящего изобретения будут описаны со ссылкой на схематичные чертежи, не обязательно приведенные в реальном масштабе, на которых аналогичные детали имеют одинаковые позиционные обозначения.
Краткое описание чертежей
На фиг.1 схематично показана блок-схема системы пожаротушения в соответствии с примерным вариантом настоящего изобретения.
На фиг.2 схематично показана блок-схема системы пожаротушения в соответствии с другим примерным вариантом настоящего изобретения.
На фиг.3 схематично показана структурная схема системы пожаротушения в соответствии с примерным вариантом настоящего изобретения.
На фиг.4 схематично показана структурная схема системы пожаротушения в соответствии с другим примерным вариантом настоящего изобретения.
На фиг.5 схематично показана структурная схема системы пожаротушения в соответствии с еще одним примерным вариантом настоящего изобретения.
На фиг.6 схематично показана структурная схема системы пожаротушения в соответствии с еще одним примерным вариантом настоящего изобретения.
На фиг.7 схематично показана структурная схема системы пожаротушения в соответствии с еще одним примерным вариантом настоящего изобретения.
На фиг.8 схематично показана структурная схема системы пожаротушения в соответствии с еще одним примерным вариантом настоящего изобретения,
На фиг.9 схематично показана структурная схема системы пожаротушения в соответствии с еще одним примерным вариантом настоящего изобретения.
Подробное описание примерных вариантов изобретения
На фиг.1 схематично показана блок-схема системы пожаротушения, предназначенной для тушения источника возгорания в помещении, например, на летательном аппарате, выполненной в соответствии с примерным вариантом настоящего изобретения. Как это показано на фиг.1, система 100 пожаротушения имеет топливный элемент или батарею 1 топливных элементов, которую снабжают на стороне впуска соответствующими исходными материалами 5, 9 и которая вырабатывает электрическую энергию 101, тепловую энергию 102 и воздух 2 с уменьшенной порцией кислорода.
Водяной пар может быть добавлен в воздух и топливный элемент, в зависимости от конструкции топливного элемента 1. Затем воздух 2 с уменьшенным содержанием кислорода подают для целей противопожарной защиты по соответствующей линии 16 в защищаемое помещение.
На фиг.2 схематично показана блок-схема системы 100 пожаротушения в соответствии с другим вариантом настоящего изобретения. В системе, показанной на фиг.2, отработанный воздух 2 разделяют при помощи конденсатора 19 на воду 20 и сухой, обогащенный азотом (обедненный кислородом) воздух 202. В этом случае, только сухой обогащенный азотом воздух 202 служит в качестве инертного защитного газа, который подают по соответствующей линии 16 в защищаемое помещение.
Все помещения и объекты могут быть "сделаны инертными" за счет подачи отработанного воздуха топливного элемента, или все возгорания в помещениях и на объектах могут быть потушены при помощи отработанного воздуха катода.
При снижении содержания кислорода ниже ориентировочно 15 об.% возникает ограничение, связанное с тем, что эти помещения и объекты не должны служить для постоянного нахождения людей и животных. При снижении содержания кислорода ниже ориентировочно 17 об.%, вероятность возгорания может быть значительно снижена, однако при этом в таких помещениях возможно более длительное нахождение людей. Снижение содержания кислорода позволяет снизить опасность пожара или взрыва.
Использование отработанного газа топливного элемента является безвредным для окружающей среды и нетоксичным.
При использовании системы топливных элементов для получения электрического тока, тепла и/или воды обедненный кислородом воздух удаляют в качестве побочного продукта.
Система 100 пожаротушения может быть использована как на транспортных средствах или на летательных аппаратах, так и в стационарных применениях, например в зданиях.
На фиг.3 и на фиг.4 схематично показаны структурные схемы системы 100 пожаротушения в соответствии с другими примерными вариантами настоящего изобретения. В качестве топливного элемента 1 могут быть использованы любые типы топливных элементов. Кроме того, могут быть использованы множество топливных элементов 1, которые, например, соединены вместе для образования батареи топливных элементов, или (для резервирования) установлены в различных местах (см. системы 501, 502, 503 топливных элементов и помещения 504, 505 на фиг.4). Указанным образом может быть дополнительно повышена надежность предложенной здесь системы 100 пожаротушения.
В качестве топливного элемента 1 может быть использован, например, так называемый щелочной топливный элемент (AFC), протонообменный топливный элемент (PEMFC), топливный элемент с использованием фосфорной кислоты (PAFC), топливный элемент с использованием расплавленного карбоната (MCFC), топливный элемент с использованием твердого оксида (SOFC) или прямой топливный элемент с использованием этилового/ метилового спирта (DAFC/DMFC). Однако следует иметь в виду, что могут быть использованы и другие типы топливных элементов.
Как это показано на фиг.3, топливный элемент 1 получает на стороне анода топливо 3, а на стороне катода воздух 4.
Топливо 3, которое подают на анод 31, может быть различным в зависимости от типа топливного элемента. Для целей настоящего изобретения неважно, какой тип топлива используют. Например, в качестве топлива 3 может быть использован водород, который получают, например, за счет реформинга из углеводородов, имеющихся в топливе летательного аппарата. Для реформинга водорода может потребоваться вода, которая может поступать на установку для реформинга по питательной линии из баков для хранения воды.
Топливоподачу 5 контролируют и регулируют при помощи блока 6 измерения, управления и регулирования. Для измерения используют датчик блока 6 измерения, который измеряет, например, объем, температуру и/или давление, или также массу, причем блок 6 затем производит обработку измеренных физических параметров, чтобы на этом основании осуществлять затем соответствующее управление или регулирование.
Измеренные данные могут быть переданы по линии 27 на центральный блок 23 управления и регулирования, который затем производит соответствующие подстройки топливоподачи 5, например, за счет регулировки соответствующих клапанов в линии топливоподачи 5.
Для того чтобы довести топливо 3 до уровня температуры и давления топливного элемента 1, при необходимости могут быть использованы теплообменник 7 и/или компрессор 8, подключенные к топливному элементу 1.
Воздухоподачу 9 на стороне катода 32 топливного элемента контролируют и регулируют аналогично топливоподаче 5 при помощи блока 10 измерения, управления и регулирования. При этом измеряемыми параметрами также могут быть объем, температура, давление, масса или массовый расход, а также значение лямбда (избыток воздуха) или чистота подаваемого воздуха.
И в этом случае измеренные данные могут быть переданы по линии 26 на центральный блок 23 управления и регулирования, который затем производит соответствующую регулировку клапана или другого аналогичного элемента в линии воздухоподачи 9.
Кроме того, фильтр 11, воздуходувка 12, теплообменник 13 или компрессор 14 могут быть подключены индивидуально или в любой комбинации к топливному элементу 1 и к блоку 23 управления и регулирования.
При воздухоподаче 9 важно, чтобы воздух содержал азот. На летательном аппарате, например, может быть использован внешний воздух или воздух из салона.
Существует также возможность подачи воздуха по линии 15 из помещения 25 или от объекта 25, на которые был подан обогащенный азотом отработанный воздух 2 катода, вновь на топливный элемент 1. Указанным образом, порция кислорода в помещении 25 может быть дополнительно снижена, в результате чего противопожарная защита становится еще эффективнее. Линия 15 и другие средства 4 подачи воздуха могут контролироваться или регулироваться при помощи центрального блока 23 управления и регулирования.
Важно, чтобы отработанный газ 2 катода имел более низкое содержание кислорода и более высокое содержание азота, чем воздухоподача 9 на стороне катода. В зависимости от типа топливного элемента, отработанный воздух катода содержит полученную в виде продукта воду, когда реакция водород/ кислород протекает на стороне катода.
Этот отработанный воздух 2 имеет инертные свойства за счет его увеличенной порции азота, что приводит к тому, что пожар не может возникать или по меньшей мере может распространяться намного медленнее, чем в нормальных условиях.
Например, отработанный воздух 2 катода со скоростью преобразования кислорода (лямбда) 2 (что означает, что 50% поданного кислорода вступают в реакцию в топливном элементе 1 с водородом с образованием воды) имеет содержание кислорода около 10.5 об.%. Нормальный воздух имеет содержание кислорода около 21 об.%.
Этот отработанный воздух может быть подан непосредственно по системе 16 труб в помещение или на объект 25, что приводит к снижению содержания кислорода в помещении или на объекте 25.
При помощи измерительных устройств 401, 403 (см. фиг.4) непрерывно контролируют отработанный воздух катода, производя текущий контроль по меньшей мере одного физического параметра, выбранного из группы, в которую входят содержание кислорода, содержание водорода, давление, температура, содержание влаги, объемный расход, содержание диоксида углерода, содержание угарного газа и содержание оксида азота. Другие измерительные точки 402, 404, 405 могут быть расположены, например, в системе 16 труб, до подачи в помещение 25 или на впуск анода или на впуск катода топливного элемента. Измеренные данные передают на центральный блок 23 управления и регулирования. В зависимости от ситуации, выпускные клапаны могут переключать воздухоподачу в помещение или выпускать отработанный воздух в окружающую среду. При помощи компрессора 17 и/или теплообменника 18 обогащенный азотом отработанный воздух 2 катода может быть сжат и/или охлажден ранее его подачи в помещение или на объект 25.
Как уже было указано здесь выше, в зависимости от типа топливного элемента, обогащенный азотом отработанный воздух 2 катода может содержать воду, если это необходимо. В этом случае может быть использован конденсатор 19 (в дополнение к компрессору 17 и теплообменнику 18 или вместо них). Конденсатор 19 конденсирует воду, которая затем поступает в водяной бак 20 или поступает непосредственно во внешнюю водную систему 201. Водной системой 20 может быть бортовая система внутреннего потребления, а также система 32 пожаротушения. Этой дополнительной системой 32 пожаротушения также можно управлять при помощи блока 23 управления и регулирования. При наличии установки 405 для реформинга водорода сконденсированная вода может быть подана в процесс реформинга.
Направляющий клапан 34 может направлять обогащенный азотом отработанный воздух катода после конденсатора 9 в резервуар 36 для хранения. Компрессор 35, при необходимости, сжимает обогащенный азотом отработанный воздух и повышает емкость хранения. При возникновении пожара обогащенный азотом отработанный воздух катода из резервуара 36 может быть подан через клапан 37 регулировки давления и выводы 38, 39 в систему 16 труб.
Для повышения мощности пожаротушения обогащенного азотом отработанного воздуха катода дополнительная вода может быть подана по линии 40 непосредственно в систему 16 труб. Кроме того, может быть предусмотрена система 40 труб, независимая от обогащенного азотом отработанного воздуха катода. Таким образом, вода может быть получена от самого топливного элемента, как это показано линией 43, или от внешнего источника 42, по команде от блока 23 управления и регулирования.
В соответствии с другим аспектом настоящего изобретения, предлагается использовать обогащенный азотом отработанный воздух катода для гашения возгорания в сочетании с обычными огнетушителями 32 и способами пожаротушения. Например, обогащенный азотом отработанный воздух катода топливного элемента может быть использован, например, в комбинации с водным туманом, СО2, азотом, аргоном, FM200, Novec и т.п.
Таким образом, при возникновении пожара внешнее средство пожаротушения может быть подключено при помощи этой же системы 16 труб или отдельной системы 31 труб к источнику возгорания. Этой отдельной системой 31 также можно управлять при помощи блока 23 управления и регулирования.
Далее будут описаны два примерных варианта
- Система 22 обнаружения возгорания автоматически обнаруживает источник 41 возгорания. Эта система 22 обнаружения возгорания при помощи блока 23 управления и регулирования включает средство пожаротушения, например подает обогащенный азотом отработанный воздух катода. Например, на летательном аппарате система 22 обнаружения возгорания сообщает экипажу о возникновении пожара при помощи блока 23 управления и регулирования, после чего пилот может вручную включить средство пожаротушения.
- В передвижных применениях, таких как, например, пожарные автомобили или ручные огнетушители, источник возгорания 41 может быть погашен вручную и непосредственно. Поэтому средство автоматического обнаружения возгорания и/или средство пожаротушения часто не подключены непосредственно к системе 100 пожаротушения.
Для эффективного тушения пожара содержание кислорода в воздухе в помещении 25 может быть снижено до заданного содержания. В зависимости от вида использования содержание кислорода может быть различным.
При содержании кислорода 15 об.% многие материалы не могут гореть. Однако при этом содержании кислорода вход людей в помещение все еще возможен.
Например, блок 23 управления и регулирования может быть запрограммирован так, чтобы содержание кислорода в помещении 25 удерживалось постоянным на уровне 15 об.%. Однако возможны и другие виды программирования. Например, блок 23 управления и регулирования может быть запрограммирован так, чтобы содержание кислорода в помещении 25 всегда лежало ниже регулируемого порогового значения. Если происходит приближение к пороговому значению снизу, то при необходимости могут быть подключены дополнительные топливные элементы или увеличено питание топливного элемента и, следовательно, может быть увеличен объемный расход (отработанного воздуха катода).
Для этого помещение 25 может иметь измерительное устройство 22, которое подключено к блоку 23 управления и регулирования (при помощи линии 28). Измерительное устройство 22 служит для постоянного измерения и текущего контроля содержания кислорода и, при необходимости, дополнительных параметров, таких как, например, давление, температура, образование дыма и содержание водорода в помещении 25.
Кроме того, предусмотрен редукционный клапан 24, который позволяет регулировать степень повышенного давления.
Измерительное устройство 22 непрерывно измеряет содержание кислорода, температуру и давление. Соответствующая информация передается на блок 23 управления или регулирования.
Появление дыма можно также обнаруживать визуально, например с использованием видеокамеры. Полученные изображения подвергаются электронной оценки и при необходимости передаются в кабину экипажа так, чтобы пилот мог оценить ситуацию в помещении 25.
Кроме того, может быть предусмотрен кондиционер, который отбирает воздух из помещения 25, нагревает или охлаждает его и вновь подает воздух в помещение. За счет этого, например при чрезмерном повышении температуры в помещении, воздух больше не подают снаружи в помещение. За счет этого можно поддерживать постоянным содержание кислорода и можно контролировать температуру. Кроме того, кондиционер также может быть использован для регулировки температуры в линии 16 подачи.
Блок 23 управления и регулирования производит регулирование и/или управление, в частности, воздухоподачей 9, чтобы подстраивать содержание кислорода в отработанном воздухе, топливоподачей 5, подачей 2 обогащенного азотом отработанного воздуха катода и производит управление и/или регулирование всех клапанов, теплообменников, компрессоров, смесителей, кондиционеров и воздуходувок, предусмотренных в системе 100 пожаротушения.
Системой управления и регулирования можно управлять по линии 29. Линию 16 подачи из помещение 25 можно регулировать при помощи клапана 30.
Кроме того, электрическая и тепловая энергия, которая требуется в системе, например, для компрессоров, теплообменника или кондиционера, может быть получена от топливного элемента 1, от внешнего источника (не показан на фиг.3) или от их комбинации.
На фиг.6 схематично показано последовательное соединение топливных элементов 601, 602. Отработанный воздух катода топливного элемента 601 служит в качестве воздухоподачи для другого топливного элемента 602. За счет этого можно дополнительно понизить содержание кислорода в отработанном воздухе катода второго топливного элемента 602. Такое техническое решение возможно только в ограниченной степени, так как топливные элементы требуют наличия определенного содержания кислорода, подводимого к катоду, чтобы не "задохнуться" при слишком малом содержании кислорода. Линия подачи от одного топливного элемента к другому, а также линия подачи от последнего топливного элемента 602 в помещение 603 могут содержать измерительные устройства,