Способ и устройство для обработки аудиосигнала

Иллюстрации

Показать все

Изобретение относится к способу и устройству для декодирования аудиосигнала, принятого на цифровом носителе, например сигнала вещания. Раскрывается способ для обработки аудиосигнала, содержащий прием сигнала, микшированного с понижением, информации об объекте и информации о микшировании; формирование информации об обработке микширования с понижением с использованием информации об объекте и информации о микшировании; обработку сигнала, микшированного с понижением, с использованием информации о микшировании и формирование многоканальной информации с использованием информации об объекте и информации о микшировании, причем количество каналов сигнала, микшированного с понижением, равно количеству каналов обработанного сигнала, микшированного с понижением. Технический результат - обеспечить при обработке аудиосигнала неограниченное управление усилением и панорамированием объекта на основе выбора пользователя. 7 н. и 12 з.п. ф-лы, 21 ил., 4 табл.

Реферат

Область техники

Настоящее изобретение относится к способу и устройству для обработки аудиосигнала, а конкретнее к способу и устройству для декодирования аудиосигнала, принятого на цифровом носителе, например сигнала вещания и так далее.

Предшествующий уровень техники

При микшировании с понижением нескольких аудиообъектов в монофонический или стереофонический сигнал могут извлекаться параметры из отдельных сигналов объектов. Эти параметры могут использоваться в декодере аудиосигнала, и изменение положения/панорамирование отдельных источников может управляться по выбору пользователя.

Раскрытие изобретения

Техническая проблема

Однако чтобы управлять отдельными сигналами объектов, изменение положения/панорамирование отдельных источников, включенных в сигнал, микшированный с понижением, должно выполняться соответствующим образом.

Однако для обратной совместимости по отношению к канально-ориентированному способу декодирования (например, MPEG Surround) параметр объекта должен гибко преобразовываться в многоканальный параметр, требуемый в процессе повышающего микширования.

Техническое решение

Соответственно, настоящее изобретение направлено на способ и устройство для обработки аудиосигнала, которые в значительной степени устраняют одну или несколько проблем вследствие ограничений и недостатков предшествующего уровня техники.

Цель настоящего изобретения - предоставить способ и устройство для обработки аудиосигнала, чтобы неограниченно управлять усилением и панорамированием объекта.

Другая цель настоящего изобретения - предоставить способ и устройство для обработки аудиосигнала, чтобы управлять усилением и панорамированием объекта на основе выбора пользователя.

Дополнительные преимущества, цели и признаки изобретения будут изложены частично в описании, которое следует ниже, и частично станут очевидны обычным специалистам в данной области техники после экспертизы нижеследующего описания, либо могут быть изучены при применении изобретения на практике. Цели и другие преимущества изобретения могут быть реализованы и достигнуты посредством конструкции, подробно показанной в описании и формуле изобретения, а также прилагаемых чертежах.

Полезные результаты

Настоящее изобретение обеспечивает следующие результаты или преимущества.

Во-первых, настоящее изобретение может предоставить способ и устройство для обработки аудиосигнала, чтобы неограниченно управлять усилением и панорамированием объекта.

Во-вторых, настоящее изобретение может предоставить способ и устройство для обработки аудиосигнала, чтобы управлять усилением и панорамированием объекта на основе выбора пользователя.

Описание чертежей

Прилагаемые чертежи, которые включаются для обеспечения дополнительного понимания изобретения и составляют часть этой заявки, иллюстрируют варианты осуществления изобретения и вместе с описанием служат для объяснения принципа изобретения. На чертежах:

Фиг.1 - типовая блок-схема для объяснения основной идеи воспроизведения сигнала, микшированного с понижением, на основе конфигурации воспроизведения и пользовательского управления.

Фиг.2 - типовая блок-схема устройства для обработки аудиосигнала согласно одному варианту осуществления настоящего изобретения, соответствующему первой схеме.

Фиг.3 - типовая блок-схема устройства для обработки аудиосигнала согласно другому варианту осуществления настоящего изобретения, соответствующему первой схеме.

Фиг.4 - типовая блок-схема устройства для обработки аудиосигнала согласно одному варианту осуществления настоящего изобретения, соответствующему второй схеме.

Фиг.5 - типовая блок-схема устройства для обработки аудиосигнала согласно другому варианту осуществления настоящего изобретения, соответствующему второй схеме.

Фиг.6 - типовая блок-схема устройства для обработки аудиосигнала согласно другому варианту осуществления настоящего изобретения, соответствующему второй схеме.

Фиг.7 - типовая блок-схема устройства для обработки аудиосигнала согласно одному варианту осуществления настоящего изобретения, соответствующему третьей схеме.

Фиг.8 - типовая блок-схема устройства для обработки аудиосигнала согласно другому варианту осуществления настоящего изобретения, соответствующему третьей схеме.

Фиг.9 - типовая блок-схема для объяснения основной идеи модуля воспроизведения.

Фиг.10A-10C - типовые блок-схемы первого варианта осуществления модуля обработки микширования с понижением, проиллюстрированного на Фиг.7.

Фиг.11 - типовая блок-схема второго варианта осуществления модуля обработки микширования с понижением, проиллюстрированного на Фиг.7.

Фиг.12 - типовая блок-схема третьего варианта осуществления модуля обработки микширования с понижением, проиллюстрированного на Фиг.7.

Фиг.13 - типовая блок-схема четвертого варианта осуществления модуля обработки микширования с понижением, проиллюстрированного на Фиг.7.

Фиг.14 - типовая блок-схема структуры потока двоичных сигналов сжатого аудиосигнала согласно второму варианту осуществления настоящего изобретения.

Фиг.15 - типовая блок-схема устройства для обработки аудиосигнала согласно второму варианту осуществления настоящего изобретения.

Фиг.16 - типовая блок-схема структуры потока двоичных сигналов сжатого аудиосигнала согласно третьему варианту осуществления настоящего изобретения.

Фиг.17 - типовая блок-схема устройства для обработки аудиосигнала согласно четвертому варианту осуществления настоящего изобретения.

Фиг.18 - типовая блок-схема для объяснения схемы передачи для переменного типа объекта.

Фиг.19 - типовая блок-схема устройства для обработки аудиосигнала согласно пятому варианту осуществления настоящего изобретения.

Лучший вариант осуществления изобретения

Для достижения этих целей и других преимуществ и в соответствии с целью изобретения, которая реализуется и в общих чертах описывается в этом документе, предоставляется способ для обработки аудиосигнала, содержащий получение сигнала, микшированного с понижением, информации об объекте и информации о микшировании; формирование информации об обработке микширования с понижением с использованием информации об объекте и информации о микшировании; обработку сигнала, микшированного с понижением, с использованием информации об обработке микширования с понижением и формирование многоканальной информации с использованием информации об объекте и информации о микшировании, в которой количество каналов у сигнала, микшированного с понижением, равно количеству каналов у обработанного сигнала, микшированного с понижением.

Согласно настоящему изобретению информация об объекте включает в себя по меньшей мере одну из информации об уровне объекта и информации о корреляции объекта.

Согласно настоящему изобретению информация об обработке микширования с понижением соответствует информации для управления панорамированием объекта, если количество каналов у сигнала, микшированного с понижением, соответствует по меньшей мере двум.

Согласно настоящему изобретению информация об обработке микширования с понижением соответствует информации для управления усилением объекта.

Согласно настоящему изобретению обработка сигнала, микшированного с понижением, выполняется с помощью модуля 2×2, если сигнал, микшированный с понижением, соответствует стереофоническому сигналу.

Согласно настоящему изобретению один канал обработанного сигнала, микшированного с понижением, соответствует сочетанию одного канала сигнала, микшированного с понижением, умноженного на первый коэффициент усиления, и другого канала сигнала, микшированного с понижением, умноженного на второй коэффициент усиления, если сигнал, микшированный с понижением, соответствует стереофоническому сигналу.

Согласно настоящему изобретению дополнительно содержится формирование выходного сигнала во временной области, используя обработанный сигнал, микшированный с понижением.

Согласно настоящему изобретению сигнал, микшированный с понижением, соответствует сигналу области поддиапазона, сформированному с помощью набора фильтров анализа поддиапазона.

Согласно настоящему изобретению многоканальная информация включает в себя по меньшей мере одну из информации об уровне канала и информации о корреляции канала.

Согласно настоящему изобретению дополнительно содержится формирование многоканального сигнала, используя обработанный сигнал, микшированный с понижением, и многоканальную информацию.

Согласно настоящему изобретению информация о микшировании формируется с использованием по меньшей мере одной из информации о положении объекта и информации о конфигурации воспроизведения.

Согласно настоящему изобретению сигнал, микшированный с понижением, принимается как сигнал вещания.

Согласно настоящему изобретению сигнал, микшированный с понижением, принимается на цифровом носителе.

В другом аспекте настоящего изобретения предоставляется способ для обработки аудиосигнала, содержащий: получение сигнала, микшированного с понижением, информации об объекте и информации о микшировании; разложение сигнала, микшированного с понижением, на сигнал поддиапазона; формирование информации об обработке микширования с понижением с использованием информации об объекте и информации о микшировании и обработку сигнала поддиапазона с использованием информации об обработке микширования с понижением; формирование выходного сигнала с использованием обработанного сигнала поддиапазона, где количество каналов у сигнала, микшированного с понижением, равно количеству выходных сигналов, и выходной сигнал соответствует сигналу временной области.

В другом аспекте настоящего изобретения предоставляется машиночитаемый носитель с сохраненными на нем командами, которые при выполнении процессором заставляют процессор выполнять операции, содержащие: получение сигнала, микшированного с понижением, информации об объекте и информации о микшировании; формирование информации об обработке микширования с понижением с использованием информации об объекте и информации о микшировании; обработку сигнала, микшированного с понижением, с использованием информации об обработке микширования с понижением и формирование многоканальной информации с использованием информации об объекте и информации о микшировании, в которой количество каналов у сигнала, микшированного с понижением, равно количеству каналов у обработанного сигнала, микшированного с понижением.

В другом аспекте настоящего изобретения предоставляется машиночитаемый носитель с сохраненными на нем командами, которые при выполнении процессором заставляют процессор выполнять операции, содержащие: получение сигнала, микшированного с понижением, информации об объекте и информации о микшировании; разложение сигнала, микшированного с понижением, на сигнал поддиапазона; формирование информации об обработке микширования с понижением с использованием информации об объекте и информации о микшировании и обработку сигнала поддиапазона с использованием информации об обработке микширования с понижением; формирование выходного сигнала с использованием обработанного сигнала поддиапазона, где количество каналов у сигнала, микшированного с понижением, равно количеству выходных сигналов, и выходной сигнал соответствует сигналу временной области.

В другом аспекте настоящего изобретения предоставляется устройство для обработки аудиосигнала, содержащее: модуль формирования информации, получающий информацию об объекте и информацию о микшировании и формирующий информацию об обработке микширования с понижением с использованием информации об объекте и информации о микшировании, и формирующий многоканальную информацию с использованием информации об объекте и информации о микшировании; и модуль обработки микширования с понижением, получающий сигнал, микшированный с понижением, и информацию об обработке микширования с понижением, и обрабатывающий сигнал, микшированный с понижением, с использованием информации об обработке микширования с понижением; где количество каналов у сигнала, микшированного с понижением, равно количеству каналов у обработанного сигнала, микшированного с понижением.

В другом аспекте настоящего изобретения предоставляется устройство для обработки аудиосигнала, содержащее: модуль формирования информации, получающий сигнал, микшированный с понижением, информацию об объекте и информацию о микшировании, причем модуль формирования информации формирует информацию об обработке микширования с понижением с использованием информации об объекте и информации о микшировании; и модуль обработки микширования с понижением, раскладывающий сигнал, микшированный с понижением, на сигнал поддиапазона, обрабатывающий сигнал поддиапазона с использованием информации об обработке микширования с понижением и формирующий выходной сигнал с использованием обработанного сигнала поддиапазона, где количество каналов у сигнала, микшированного с понижением, равно количеству выходных сигналов, и выходной сигнал соответствует сигналу временной области.

В другом аспекте настоящего изобретения предоставляется способ для обработки аудиосигнала, содержащий: получение сигнала, микшированного с понижением, с использованием сигнала множества объектов; формирование информации об объекте, представляющей связь между сигналами множества объектов, используя сигналы множества объектов и сигнал, микшированный с понижением, и передачу сигнала, микшированного с понижением, и информации об объекте, где сигналу, микшированному с понижением, разрешается быть обработанным сигналом, микшированным с понижением, для того, чтобы количество каналов у сигнала, микшированного с понижением, было равно количеству обработанных сигналов, микшированных с понижением.

Следует понимать, что как вышеизложенное общее описание, так и нижеследующее подробное описание настоящего изобретения являются иллюстративными и пояснительными и предназначаются для предоставления дополнительного пояснения заявленного изобретения.

Варианты осуществления для изобретения

Сейчас будет сделана подробная ссылка на предпочтительные варианты осуществления настоящего изобретения, примеры которых иллюстрируются на прилагаемых чертежах. Где, возможно, будут использоваться одинаковые ссылочные позиции на чертежах, чтобы ссылаться на одинаковые или похожие части.

Перед описанием настоящего изобретения необходимо отметить, что большинство терминов, раскрытых в настоящем изобретении, соответствуют общим терминам, хорошо известным в данной области техники, но некоторые термины выбраны заявителем в соответствии с необходимостью и будут раскрыты ниже в последующем описании настоящего изобретения. Поэтому предпочтительно, чтобы термины, определенные заявителем, понимались на основе их значений в настоящем изобретении.

В частности, "параметр" в нижеследующем описании означает информацию, включающую в себя значения, параметры в узком смысле, коэффициенты, элементы и так далее. В дальнейшем термин "параметр" будет использоваться вместо термина "информация" как параметр объекта, параметр микширования, параметр обработки микширования с понижением и так далее, что не накладывает ограничение на настоящее изобретение.

В микшировании сигналов нескольких каналов или сигналов объекта может извлекаться параметр объекта и пространственный параметр. Декодер может формировать выходной сигнал, используя сигнал, микшированный с понижением, и параметр объекта (или пространственный параметр). Выходной сигнал может воспроизводиться декодером на основе конфигурации воспроизведения и пользовательского управления. Процесс воспроизведения объяснен ниже подробно со ссылкой на Фиг.1.

Фиг.1 - типовая схема для объяснения основной идеи воспроизведения сигнала, микшированного с понижением, на основе конфигурации воспроизведения и пользовательского управления. Согласно Фиг.1 декодер 100 может включать в себя модуль 110 формирования информации воспроизведения и модуль 120 воспроизведения, а также может включать в себя рендерер 110a и синтез 120a вместо модуля 110 формирования информации воспроизведения и модуля 120 воспроизведения.

Модуль 110 формирования информации воспроизведения может быть сконфигурирован для получения от кодера дополнительной информации, включающей параметр объекта или пространственный параметр, а также для получения конфигурации воспроизведения или пользовательского управления из настройки устройства или интерфейса пользователя. Параметр объекта может соответствовать параметру, извлеченному в микшировании с понижением по меньшей мере одного сигнала объекта, и пространственный параметр может соответствовать параметру, извлеченному в микшировании с понижением по меньшей мере одного сигнала канала. Кроме того, информация о типе и характерная информация для каждого объекта могут включаться в дополнительную информацию. Информация о типе и характерная информация могут описывать название инструмента, имя исполнителя и так далее. Конфигурация воспроизведения может включать в себя положение динамика и окружающую информацию (виртуальное положение динамика), и пользовательское управление может соответствовать управляющей информации, введенной пользователем, чтобы управлять положениями объектов и усилениями объектов, и также может соответствовать управляющей информации, чтобы управлять конфигурацией воспроизведения. Между тем, конфигурация воспроизведения и пользовательское управление могут представляться в виде информации о микшировании, что не накладывает ограничение на настоящее изобретение.

Модуль 110 формирования информации воспроизведения может быть сконфигурирован для формирования информации воспроизведения, используя информацию о микшировании (конфигурацию воспроизведения и пользовательское управление) и принятую дополнительную информацию. Модуль 120 воспроизведения может конфигурироваться для формирования многоканального параметра, используя информацию воспроизведения, если не передается микширование с понижением аудиосигнала (сокращенно "сигнал, микшированный с понижением"), и формирования многоканальных сигналов, используя информацию воспроизведения и сигнал, микшированный с понижением, если передается микширование с понижением аудиосигнала.

Рендерер 110a может быть сконфигурирован для формирования многоканальных сигналов, используя информацию о микшировании (конфигурацию воспроизведения и пользовательское управление) и принятую дополнительную информацию. Синтез 120a может быть сконфигурирован для синтеза многоканальных сигналов, используя многоканальные сигналы, сформированные рендерером 110a.

Как излагалось ранее, декодер может воспроизводить сигнал, микшированный с понижением, на основе конфигурации воспроизведения и пользовательского управления. Между тем, чтобы управлять отдельными сигналами объектов, декодер может получить параметр объекта в качестве дополнительной информации и управлять панорамированием объекта и усилением объекта на основе переданного параметра объекта.

1. Управление усилением и панорамированием сигналов объектов

Могут предоставляться изменяемые способы для управления отдельными сигналами объектов. Во-первых, если декодер получает параметр объекта и формирует отдельные сигналы объектов с использованием параметра объекта, то можно управлять отдельными сигналами объектов на основании информации о микшировании (конфигурации воспроизведения, уровня объекта и т.д.).

Во-вторых, если декодер формирует многоканальный параметр для ввода в многоканальный декодер, то многоканальный декодер может раскладывать сигнал, микшированный с понижением, принятый от кодера, используя многоканальный параметр. Вышеупомянутый второй способ может классифицироваться на три типа схем. В частности, могут предоставляться 1) использование традиционного многоканального декодера, 2) изменение многоканального декодера, 3) обработка микширования с понижением аудиосигналов перед введением в многоканальный декодер. Традиционный многоканальный декодер может соответствовать канально-ориентированному пространственному звуковому кодированию (например, декодеру MPEG Surround), что не накладывает ограничение на настоящее изобретение. Подробности трех типов схем будут объясняться ниже.

1.1 Использование многоканального декодера

Первая схема может использовать традиционный многоканальный декодер как есть, без изменения многоканального декодера. Сначала случай использования ADG (произвольное усиление сигнала, микшированного с понижением) для управления усилениями объектов и случай использования конфигурации 5-2-5 для управления панорамированием объекта объяснен ниже со ссылкой на Фиг.2. Далее, случай связи с модулем повторного микширования сцены объяснен ниже со ссылкой на Фиг.3.

Фиг.2 - типовая блок-схема устройства для обработки аудиосигнала согласно одному варианту осуществления настоящего изобретения, соответствующему первой схеме. Согласно Фиг.2 устройство 200 для обработки аудиосигнала (в дальнейшем просто "декодер 200") может включать в себя модуль 210 формирования информации и многоканальный декодер 230. Модуль 210 формирования информации может получать дополнительную информацию, включающую параметр объекта, от кодера и информацию о микшировании из интерфейса пользователя и может формировать многоканальный параметр, включающий произвольное усиление сигнала, микшированного с понижением, или усиление изменения усиления (в дальнейшем просто "ADG"). ADG может описывать отношение первого коэффициента усиления, оцененного на основе информации о микшировании и информации об объекте, ко второму коэффициенту усиления, оцененному на основе информации об объекте. В частности, модуль 210 формирования информации может формировать ADG, только если сигнал, микшированный с понижением, соответствует монофоническому сигналу. Многоканальный декодер 230 может получать микширование с понижением аудиосигнала от кодера и многоканальный параметр от модуля 210 формирования информации и может формировать многоканальный выходной сигнал, используя сигнал, микшированный с понижением, и многоканальный параметр.

Многоканальный параметр может включать в себя разницу уровней каналов (в дальнейшем сокращенно "CLD"), межканальную корреляцию (в дальнейшем сокращенно "ICC"), коэффициент предсказания канала (в дальнейшем сокращенно "CPC").

Так как CLD, ICC и CPC описывают разницу интенсивности или корреляцию между двумя каналами, они предназначены для управления панорамированием и корреляцией объекта. Можно управлять положениями объекта и диффузностью (звучностью) объекта, используя CLD, ICC и т.д. Между тем, CLD описывает относительную разницу уровней вместо абсолютного уровня, и энергия двух разделенных каналов сохраняется. Поэтому нельзя управлять усилениями объектов путем манипулирования CLD и т.д. Другими словами, конкретный объект не может быть приглушен или увеличен по громкости с использованием CLD и т.д.

Кроме того, ADG описывает зависимое от времени и частоты усиление для управления поправочным коэффициентом с помощью пользователя. Если этот поправочный коэффициент применяется, можно управлять изменением сигнала, микшированного с понижением, перед многоканальным разложением. Поэтому, если параметр ADG принимается от модуля 210 формирования информации, многоканальный декодер 230 может управляться усилениями объектов с конкретным временем и частотой, используя параметр ADG.

Случай, когда принятый стереофонический сигнал, микшированный с понижением, выводится как стереоканал, может задаваться следующей формулой 1.

[формула 1]

где x[] - входные каналы, y[] - выходные каналы, gx - усиления и wxx - вес.

Необходимо контролировать перекрестную связь между левым каналом и правым каналом для панорамирования объекта. В частности, часть левого канала в сигнале, микшированном с понижением, может выводиться как правый канал выходного сигнала, часть правого канала в сигнале, микшированном с понижением, может выводиться как левый канал выходного сигнала. В формуле 1 w12 и w21 могут быть перекрестными компонентами.

Вышеупомянутый случай соответствует конфигурации 2-2-2, которая означает 2-канальный ввод, 2-канальную передачу и 2-канальный выход. Чтобы выполнить конфигурацию 2-2-2, может использоваться конфигурация 5-2-5 (2-канальный ввод, 5-канальная передача и 2-канальный выход) в традиционном канально-ориентированном пространственном звуковом кодировании (например, MPEG Surround). Сначала, чтобы вывести 2 канала для конфигурации 2-2-2, некоторый канал из 5 выходных каналов в конфигурации 5-2-5 может быть установлен в заблокированный канал (ложный канал). Чтобы получить перекрестную связь между 2 переданными каналами и 2 выходными каналами, могут регулироваться вышеупомянутые CLD и CPC. Коэффициент усиления gx в формуле (1) получается с использованием вышеупомянутого ADG, и весовой коэффициент w11~w22 в формуле (1) получается с использованием CLD и CPC.

В реализации конфигурации 2-2-2 с использованием конфигурации 5-2-5, чтобы уменьшить сложность, может применяться режим по умолчанию из традиционного пространственного аудиокодирования. Поскольку характеристика CLD по умолчанию предполагается для вывода 2 каналов, можно уменьшить объем вычислений, если применяется CLD по умолчанию. В частности, поскольку не нужно синтезировать ложный канал, можно значительно уменьшить объем вычислений. Поэтому применение режима по умолчанию является правильным. В частности, для декодирования используется только CLD по умолчанию из 3 CLD (соответствующих 0, 1 и 2 в стандарте MPEG Surround). С другой стороны, 4 CLD из левого канала, правого канала и центрального канала (соответствующие 3, 4, 5 и 6 в стандарте MPEG Surround) и 2 ADG (соответствующие 7 и 8 в стандарте MPEG Surround) формируются для управления объектом. В этом случае CLD, соответствующие 3 и 5, которые описывают разницу уровней каналов между левым каналом плюс правым каналом и центральным каналом ((l+r)/c), правильно установить в 150 дБ (почти бесконечным), чтобы приглушить центральный канал. И чтобы реализовать перекрестную связь, может выполняться основанное на энергии разложение или основанное на предсказании разложение, которое вызывается, если режим TTT ("bsTttModeLow" в стандарте MPEG Surround) соответствует основанному на энергии режиму (с вычитанием, задействована совместимость матриц) (3-й режим) или режиму предсказания (1-й режим или 2-й режим).

Фиг.3 - типовая блок-схема устройства для обработки аудиосигнала согласно другому варианту осуществления настоящего изобретения, соответствующему первой схеме. Согласно Фиг.3 устройство 300 для обработки аудиосигнала согласно другому варианту осуществления настоящего изобретения (в дальнейшем просто декодер 300) может включать в себя модуль 310 формирования информации, модуль 320 воспроизведения сцены, многоканальный декодер 330 и модуль 350 повторного микширования сцены.

Модуль 310 формирования информации может быть сконфигурирован для получения дополнительной информации, включающей параметр объекта от кодера, если сигнал, микшированный с понижением, соответствует сигналу моноканала (то есть количество каналов микширования с понижением равно "1"), может получать информацию о микшировании из интерфейса пользователя и может формировать многоканальный параметр, используя дополнительную информацию и информацию о микшировании. Количество каналов микширования с понижением может оцениваться на основе информации флажка, включенной в дополнительную информацию, а также самого сигнала, микшированного с понижением, и выбора пользователя. Модуль 310 формирования информации может иметь такую же конфигурацию, как и упомянутый выше модуль 210 формирования информации. Многоканальный параметр вводится в многоканальный декодер 330, многоканальный декодер 330 может иметь такую же конфигурацию, как и упомянутый выше многоканальный декодер 230.

Модуль 320 воспроизведения сцены может быть сконфигурирован для получения дополнительной информации, включающей параметр объекта от кодера, если сигнал, микшированный с понижением, соответствует сигналу не моноканала (то есть количество каналов микширования с понижением больше "2"), может получать информацию о микшировании из интерфейса пользователя и может формировать параметр повторного микширования, используя дополнительную информацию и информацию о микшировании. Параметр повторного микширования соответствует параметру, чтобы повторно микшировать стереоканал и сформировать более чем 2-канальные результаты. Параметр повторного микширования вводится в модуль 350 повторного микширования сцены. Модуль 350 повторного микширования сцены может быть сконфигурирован для повторного микширования сигнала, микшированного с понижением, с использованием параметра повторного микширования, если сигнал, микшированный с понижением, является более чем 2-канальным сигналом.

Вкратце, два тракта могли бы рассматриваться в качестве отдельных реализаций для отдельных применений в декодере 300.

1.2 Изменение многоканального декодера

Вторая схема может изменять традиционный многоканальный декодер. Сначала ниже поясняется случай использования виртуального выхода для управления усилениями объектов и случай изменения настройки устройства для управления панорамированием объекта со ссылкой на Фиг.4. Далее поясняется случай выполнения функциональности TBT(2×2) в многоканальном декодере со ссылкой на Фиг.5.

Фиг.4 - типовая блок-схема устройства для обработки аудиосигнала согласно одному варианту осуществления настоящего изобретения, соответствующему второй схеме. Согласно Фиг.4 устройство 400 для обработки аудиосигнала согласно одному варианту осуществления настоящего изобретения, соответствующему второй схеме (в дальнейшем просто "декодер 400"), может включать в себя модуль 410 формирования информации, внутренний многоканальный синтез 420 и выходной модуль 430 преобразования. Внутренний многоканальный синтез 420 и выходной модуль 430 преобразования могут включаться в модуль синтеза.

Модуль 410 формирования информации может быть сконфигурирован для получения дополнительной информации, включающей параметр объекта от кодера и параметр обработки микширования с понижением из интерфейса пользователя. И модуль 410 формирования информации может быть сконфигурирован для формирования многоканального параметра и информации о настройке устройства, используя дополнительную информацию и информацию о микшировании. Многоканальный параметр может иметь ту же конфигурацию, что и упомянутый выше многоканальный параметр. Поэтому подробности многоканального параметра в нижеследующем описании будут пропущены. Информация о настройке устройства может соответствовать параметризованной HRTF для бинауральной обработки, которая будет объясняться в описании "1.2.2 Использование информации о настройке устройства".

Внутренний многоканальный синтез 420 может быть сконфигурирован для получения многоканального параметра и информации о настройке устройства от модуля 410 формирования параметров и сигнала, микшированного с понижением, от кодера. Внутренний многоканальный синтез 420 может быть сконфигурирован для формирования временного многоканального выхода, включающего виртуальный выход, который будет объясняться в описании "1.2.1 Использование виртуального выхода".

1.2.1 Использование виртуального выхода

Поскольку многоканальный параметр (например, CLD) может управлять панорамированием объекта, сложно управлять усилением объекта, а также панорамированием объекта с помощью традиционного многоканального декодера.

Между тем, чтобы управлять усилением объекта, декодер 400 (в особенности внутренний многоканальный синтез 420) может преобразовать относительную энергию объекта в виртуальный канал (например, центральный канал). Относительная энергия объекта соответствует энергии, которую нужно уменьшить. Например, чтобы приглушить некоторый объект, декодер 400 может преобразовать более 99,9% энергии объекта в виртуальный канал. Затем декодер 400 (в особенности выходной модуль 430 преобразования) не выводит виртуальный канал, в который преобразуется остальная энергия объекта. В заключение, если больше 99,9% объекта преобразуется в виртуальный канал, который не выводится, нужный объект может быть практически приглушен.

1.2.2 Использование информации о настройке устройства

Декодер 400 может приспосабливать информацию о настройке устройства, чтобы управлять панорамированием объекта и усилением объекта. Например, декодер может быть сконфигурирован для формирования параметризованной HRTF для бинауральной обработки в стандарте MPEG Surround. Параметризованная HRTF может быть переменной в соответствии с настройкой устройства. Можно предположить, что сигналы объектов могут управляться в соответствии со следующей формулой 2.

[формула 2]

где objk - сигналы объектов, Lnew и Rnew - нужный стереофонический сигнал и ak и bk - коэффициенты для управления объектом.

Информация объекта о сигналах objk объектов может оцениваться из параметра объекта, включенного в переданную дополнительную информацию. Коэффициенты ak, bk, которые задаются в соответствии с усилением объекта и панорамированием объекта, могут оцениваться из информации о микшировании. Нужные усиление объекта и панорамирование объекта могут регулироваться с использованием коэффициентов ak, bk.

Коэффициенты ak, bk могут устанавливаться для соответствия параметру HRTF для бинауральной обработки, которая будет подробно объясняться ниже.

В стандарте MPEG Surround (конфигурация 5-1-51) (из документа ISO/IEC FDIS 23003-1:2006(E), Information Technology - MPEG Audio Technologies - Part1: MPEG Surround) бинауральная обработка происходит следующим образом.

[формула 3]

где yB - выход, матрица H - матрица преобразования для бинауральной обработки.

[формула 4]

Элементы матрицы H задаются следующим образом:

[формула 5]

[формула 6]

[формула 7]

1.2.3 Выполнение функциональности TBT (2×2) в многоканальном декодере

Фиг.5 - типовая блок-схема устройства для обработки аудиосигнала согласно другому варианту осуществления настоящего изобретения, соответствующему второй схеме. Фиг.5 - типовая блок-схема функциональности TBT в многоканальном декодере. Согласно Фиг.5 модуль 510 TBT может быть сконфигурирован для получения входных сигналов и управляющей информации TBT и для формирования выходных сигналов. Модуль 510 TBT может включаться в декодер 200 из Фиг.2 (или, в частности, в многоканальный декодер 230). Многоканальный декодер 230 может быть реализован в соответствии со стандартом MPEG Surround, что не накладывает ограничение на настоящее изобретение.

[формула 9]

где x - входные каналы, y - выходные каналы и w - вес.

Выход y1 может соответствовать сочетанию входа x1 из сигнала, микшированного с понижением, умноженного на первый коэффициент w11 усиления, и входа x2, умноженного на второй коэффициент w12 усиления.

Управляющая информация TBT, введенная в модуль 510 TBT, включает в себя элементы, которые могут составлять вес w (w11, w12, w21, w22).

В стандарте MPEG Surround модуль OTT (Один-в-Два) и модуль TTT (Два-в-Три) не являются подходящими для повторного микширования входного сигнала, хотя модуль OTT и модуль TTT могут раскладывать входной сигнал.

Чтобы повторно