Соединения для органических электронных устройств

Иллюстрации

Показать все

Изобретение относится к органическим электролюминесцентным устройствам на основе соединений формулы (1)

где Y, Z выбраны из N, P, P=O, C=O, O, S, S=O и SO2; Ar1, Ar2, Ar3 выбраны из бензола, нафталина, антрацена, фенантрена, пиридина, пирена или тиофена, необязательно замещенных R1; Ar4, Ar5, Ar6, Ar7 выбраны из бензола, нафталина, антрацена, фенантрена, пиридина, пирена, тиофена, трифениламина, дифенил-1-нафтиламина, дифенил-2-нафтиламина, фенилди(1-нафтил)амина, фенилди(2-нафтил)амина или спиробифлуорена, необязательно замещенных R1; Е - одинарная связь, N(R1), О, S или C(R1)2; R1 представляет собой Н, F, CN, алкил, где СН2 группы могут быть заменены на -R2C=CR2-, -C≡C-, -О- или -S-, и Н может быть заменен на F, необязательно замещенные арил или гетероарил, где R1 могут образовывать кольцо друг с другом; R2 - Н, алифатический или ароматический углеводород; X1, X4, X2, X3 - выбраны из C(R1)2, C=O, C=NR1, О, S, S=O, SO2, N(R1), P(R1), P(=O)R1, C(R1)2-C(R1)2, C(R1)2-C(R1)2-C(R1)2, C(R1)2-O и C(R1)2-O-C(R1)2; n, о, p, q, r и t равны 0 или 1; s=1. Технический результат - получение новых соединений - допантов эмиссионного слоя, и новых электролюминесцентных устройств на их основе, излучающих голубой свет. 6 н. и 12 з.п. ф-лы, 6 табл.

Реферат

Изобретение описывает новые соединения и их применение в органических электронных устройствах.

Общая структура органических электролюминесцентных устройств описана, например, в US 4539507, US 5151629, EP 0676461 и WO 98/27136. Однако эти устройства все еще демонстрируют большие проблемы, которые требуют незамедлительного решения путем усовершенствования:

1. Эффективность, особенно в случае флуоресцентных ОСИД (органических светоиспускающих диодов), остается очень низкой и должна быть повышена.

2. Операционная продолжительность жизни остается низкой, в частности, в случае голубого излучения, это означает, что до сих пор является возможным достичь только простого коммерческого применения.

3. Операционное напряжение является достаточно высоким в случае флуоресцентных ОСИД и, таким образом, должно быть снижено для того, чтобы улучшить коэффициент полезного действия. Это составляет огромную важность для мобильного применения.

4. Многие излучающие голубой свет эмиттеры, которые включают как ароматические амины, так и винильные группы, являются термически нестабильными и разлагаются при сублимации или при нанесении методом испарения. Следовательно, применение этих систем является возможным только с большими потерями и с высокой технической сложностью, если вообще такое возможно.

5. В материалах для слоя, обеспечивающего транспорт дыр, в соответствии с уровнем техники напряжение зависит от толщины транспортного слоя. На практике была бы желательной большая толщина слоя, обеспечивающего транспорт дыр. Однако этого нельзя достичь при использовании материалов в соответствии с уровнем техники по причине ассоциированного с этим повышения напряжения.

В качестве ближайшего аналога может быть упомянуто применение определенных арилвиниламинов Idemitsu (например, WO 04/013073, WO 04/016575, WO 04/018587). В этих источниках приведены очень хорошие сроки службы для устройств с темно-голубым излучением. Однако эти результаты являются чрезвычайно зависимыми от используемого материала основы, что означает, что приведенные сроки службы не могут сравниваться как абсолютные значения, а вместо этого всегда только при использовании оптимизированной системы. Кроме того, эти соединения являются термально нестабильными и не могут испаряться при отсутствии разложения, что, таким образом, делает технически очень сложным получение ОСИД и, таким образом, представляет собой важное техническое препятствие. Дополнительное препятствие заключается в цвете излучения этих соединений. Несмотря на то что Idemitsu продемонстрировал темно-голубую эмиссию (CIE в интервале координат 0,15-0,18), не представилось возможным воспроизвести эти координаты цвета в простых устройствах в соответствии с уровнем техники. В противовес этому, была получена зелено-голубая эмиссия. Является непонятным, каким образом могла быть фактически получена голубая эмиссия при использовании этих соединений.

Таким образом, существует потребность в соединениях, излучающих голубой свет, что приводит к хорошей эффективности в устройствах для электролюминесценции и в то же время обеспечивает длительные сроки службы, указанные соединения могут подвергаться переработке без каких-либо технических проблем. Неожиданно было обнаружено, что устройства для органической электролюминесценции, которые включают определенные соединения - упомянутые ниже - в качестве испускающих голубое излучение допантов (допирующих веществ) в материале хозяина, имеют важные преимущества по сравнению с уровнем техники. При использовании этих материалов является возможным получить более длительные сроки службы вместе с более высокой эффективностью. Кроме того, эти соединения могут, в отличие от соединений уровня техники, быть сублимированы без заметного разложения, даже в относительно больших количествах, и являются, таким образом, значительно более легкими в обращении, чем материалы в соответствии с уровнем техники. Настоящее изобретением, таким образом, относится к соединениям и к их применению в ОСИД.

Изобретение относится к соединениям формулы (1)

где используются следующие символы и индексы:

Y, Z являются идентичными или различными и представляют собой N, Р, Р=O, PF2, P=S, As, As=O, As=S, Sb, Sb=O, Sb=S, Bi, Bi=O, Bi=S, C=O, O, S, Se, Те, S=O, SO2, Se=O, SeO2, Te=O или ТеО2;

Ar1, Ar2, Ar3 являются в каждом случае идентичными или различными и представляют собой арильную или гетероарильную группу, содержащую от 5 до 24 ароматических кольцевых атомов, которые могут быть замещенными одним или более радикалами R1;

Ar4, Ar5, Ar6, Ar7 являются в каждом случае идентичными или различными и представляют собой ароматическую или гетероароматическую кольцевую систему, содержащую от 5 до 40 ароматических кольцевых атомов, которые могут быть замещенными одним или более радикалами R1;

Е в каждом случае, идентично или различно, представляет собой одинарную связь, N(R1), О, S, C(R1)2, Si(R1)2 или B(R1);

R1 в каждом случае, идентично или различно, представляет собой H, F, Cl, Br, I, CN, NO2, B(OR2)2, Si(R2)3, алкил с неразветвленной цепью, алкокси или тиоалкокси группу, содержащую от 1 до 40 атомов С, разветвленную или циклическую алкильную группу, алкокси или тиоалкокси группу, содержащую от 3 до 40 атомов С, каждый из которых может быть замещенным одним или более радикалами R2, где одна или более несмежных СН2 групп могут быть заменены -R2C=CR2-, -C≡C-, Si(R2)2, Ge(R2)2, Sn(R2)2, C=O, C=S, C=Se, C=NR2, -O-, -S-, -COO- или -CONR2- и где один или более атомов Н могут быть заменены F, Cl, Br, I, CN или NO2, или ароматическую или гетероароматическую кольцевую систему, содержащую от 5 до 40 ароматических кольцевых атомов, которые могут быть замещены одним или более неароматическими радикалами R1, или арилокси или гетероарилокси группу, содержащую от 5 до 40 ароматических кольцевых атомов, которые могут быть замещенными одним или более неароматическими радикалами R1, или комбинацию этих систем; в данном случае два или более заместителей R1 могут образовывать моно- или полициклическую кольцевую систему друг с другом;

R2 в каждом случае, идентично или различно, представляет собой Н, алифатический или ароматический углеводородный радикал, содержащий от 1 до 20 атомов С;

Х1, Х4 являются в каждом случае идентичными или различными и представляют собой мостиковую связь, которая с Аr1 и Аr2 определяет циклическую систему, выбранную из B(R1), C(R1)2, Si(R1)2, C=O, C=NR1, С=C(R1)2, O, S, S=O, SO2, N(R1), P(R1), P(=O)R1, P(=S)R1 или комбинацию двух, трех или четырех этих групп;

Х2, Х3 являются в каждом случае идентичными или различными и представляют собой мостиковую связь, которая с Аr2 и Аr3 определяет циклическую кольцевую систему, выбранную из B(R1), C(R1)2, Si(R1)2, C=O, C=NR1, C-C(R1)2, O, S, S=O, SO2, N(R1), P(R1), P(=O)R1, P(=S)R1 или комбинацию двух, трех или четырех этих групп;

n, о, р являются в каждом случае идентичными или различными и представляют собой 0 или 1, при условии, что n, p и о могут только одновременно быть равными 0, если X1 представляет собой группу, отличную от C(R1)2 мостиковой связи, где R1 = алкильный радикал с открытой цепью; n=0 и о=0 и р=0 в данном случае означает, что два радикала Н или R1 присутствуют вместо мостиковой связи;

q, r в каждом случае равны 1, если соответствующий центральный атом группы Y или Z представляет собой элемент из 5-й основной группы, и в каждом случае являются равными 0, если соответствующий центральный атом группы Y или Z представляет собой элемент из 4-й или 6-й основной группы;

s равен 1, 2 или 3;

t в каждом случае, идентично или различно, представляет собой 0 или 1, где t=0 означает, что R1 радикалы являются связанными вместо группы Е; кроме того, t=0, если q=0.

Для целей настоящего изобретения, арильная группа или гетероарильная группа означает ароматическую группу или гетероароматическую группу, соответственно содержащую общую ароматическую электронную систему, где арильная группа содержит от 6 до 24 атомов С, а гетероарильная группа содержит от 2 до 24 атомов С и в общей сложности, по крайней мере, 5 ароматических кольцевых атомов. Гетероатомы являются предпочтительно выбранными из N, О и/или S. Для целей настоящего изобретения это может быть гомо- или гетероциклическое кольцо, например, бензол, пиридин, тиофен и т.д. или это может быть сконденсированная ароматическая кольцевая система, в которой, по крайней мере, два ароматических или гетероароматических кольца, например, кольца бензола, являются сконденсированными друг к другу, то есть имеют, по крайней мере, один общий край и, таким образом, также общую ароматическую систему. Эта арильная или гетероарильная группа может быть замещенной или незамещенной; любой присутствующий заместитель может также образовывать дополнительные кольцевые системы. Соответственно, такие системы, как например, нафталин, антрацен, фенантрен, пирен и т.д., являются такими, которые относятся к арильным группам для целей настоящего изобретения, а хинолин, акридин, бензотиофен, карбазол и т.д. являются такими, которые относятся к гетероарильным группам для целей настоящего изобретения, несмотря на то, что, например, бифенил, флуорен, спиробифлуорен и т.д. не являются арильными группами, поскольку здесь присутствуют раздельные ароматические электронные системы.

Для целей настоящего изобретения ароматическая кольцевая система содержит от 6 до 40 атомов С в кольцевой системе. Для целей настоящего изобретения гетероароматическая кольцевая система содержит от 2 до 40 атомов С и, по крайней мере, один гетероатом в кольцевой системе, при условии, что общее число С атомов и гетероатомов составляет, по крайней мере, 5. Гетероатомы являются предпочтительно выбранными из N, О и/или S. Для целей настоящего изобретения ароматическая или гетероароматическая кольцевая система означает систему, которая не содержит обязательно арильные или гетероарильные группы, но в которой, в дополнение, множество арильных или гетероарильных групп может быть прервано короткой неароматической единицей (менее чем 10% атомов, отличных от Н, предпочтительно менее чем 5% атомов, отличных от Н), такой, как, например, атом С, N или О. Таким образом, такие системы, как например, 9,9'-спиробифлуорен, 9,9-диарилфлуорен, триариламин, диариловый этер и т.д., также относятся к ароматическим кольцевым системам для целей настоящего изобретения.

Для целей настоящего изобретения С140-алкильная группа, в которой индивидуальные атомы Н или СН2 группы могут также быть замещены упомянутыми выше группами, в частности, предпочтительно означают радикалы метил, этил, н-пропил, и-пропил, н-бутил, и-бутил, втор-бутил, трет-бутил, 2-метилбутил, н-пентил, втор-пентил, циклопентил, н-гексил, циклогексил, н-гептил, циклогептил, н-октил, циклооктил, 2-этилгексил, трифторметил, пентафторэтил, 2,2,2-трифторэтил, этенил, пропенил, бутенил, пентенил, циклопентенил, гексенил, циклогексенил, гептенил, циклогептенил, октенил, циклооктенил, этинил, пропинил, бутинил, пентинил, гексинил или октинил. С140-алкокси группа, в частности, предпочтительно означает метокси, этокси, н-пропокси, и-пропокси, н-бутокси, и-бутокси, втор-бутокси, трет-бутокси или 2-метилбутокси. С224-арильная или гетероарильная группа, которая может быть моновалентной или дивалентной в зависимости от применения и может также быть замещенной радикалами R1 и может быть связанной с ароматической или гетероароматической кольцевой системой посредством любых желаемых положений, означает, в частности группы, которые имеют происхождение от бензола, нафталина, антрацена, фенантрена, пирена, дигидропирена, хризена, перилена, флюорантена, тетрацена, пентацена, бензопирена, фурана, бензофурана, изобензофурана, дибензофурана, тиофена, бензотиофена, изобензотиофена, дибензотиофена, пиррола, индола, изоиндола, карбазола, пиридина, хинолина, изохинолина, акридина, фенантридина, бензо-5,6-хинолина, бензо-6,7-хинолина, бензо-7,8-хинолина, фенотиазина, феноксазина, пиразола, индазола, имидазола, бензимидазола, нафтимидазола, фенантримидазола, пиридимидазола, пиразинимидазола, хиноксалинимидазола, оксазола, бензоксазола, нафтоксазола, антроксазола, фенантроксазола, изоксазола, 1,2-тиазола, 1,3-тиазола, бензотиазола, пиридазина, бензопиридазина, пиримидина, бензопиримидина, хиноксалина, пиразина, феназина, нафтиридина, азакарбазола, бензокарболина, фенантролина, 1,2,3-триазола, 1,2,4-триазола, бензотриазола, 1,2,3-оксадиазола, 1,2,4-оксадиазола, 1,2,5-оксадиазола, 1,3,4-оксадиазола, 1,2,3-тиадиазола, 1,2,4-тиадиазола, 1,2,5-тиадиазола, 1,3,4-тиадиазола, 1,3,5-триазина, 1,2,4-триазина, 1,2,3-триазина, тетразола, 1,2,4,5-тетразина, 1,2,3,4-тетразина, 1,2,3,5-тетразина, пурина, птеридина, индолизина и бензотиадиазола. Для целей настоящего изобретения ароматические и гетероароматические кольцевые системы означают, в частности, бифенилен, трет-фенилен, флуорен, спиробифлуорен, дигидрофенантрен, тетрагидропирен и цис- или транс-инденофлуорен, в дополнение к упомянутым выше арильным и гетероарильным группам.

Предпочтение отдается соединениям формулы (1), в которых символы Y и Z, идентично или различно, обозначают азот, С=O, фосфор или Р=O, в частности, предпочтительно азот, С=O или Р=O. Y и Z особенно предпочтительно обозначают азот.

Предпочтение также отдается соединениям формулы (1), в которых символы Аr1, Аr2 и Аr3, идентично или различно, в каждом случае обозначают арильную или гетероарильную группу, содержащую от 5 до 16 ароматических кольцевых атомов, которые могут быть замещены одним или двумя радикалами R1, особенно предпочтительно арильную или гетероарильную группу, выбранную из бензола, нафталина, антрацена, фенантрена, пиридина, пирена и тиофена, в частности, бензола, каждая из которых может быть замещена одним или двумя радикалами R1. Прямое связывание между Y, Аr1, Аr2, Аr3 и Z, в частности, предпочтительно происходит через пара-положения бензола (или соответствующие положения других ароматических соединений).

В частности, предпочтение, таким образом, отдается соединениям формулы (1а)

где символы и индексы имеют то же значение, как описано выше.

Предпочтение также отдается соединениям Формул (1) и (1а), в которых символы Аr4, Аr5, Аr6 и Аr7, идентично или различно в каждом случае, обозначают ароматическую или гетероароматическую кольцевую систему, содержащую от 5 до 16 ароматических кольцевых атомов, триариламин или спиробифлуорен, каждый из которых может быть замещенным одним или более радикалами R1, в частности, предпочтительно ароматическую или гетероароматическую кольцевую систему, выбранную из бензола, нафталина, антрацена, фенантрена, пиридина, пирена, тиофена, трифениламина, дифенил-1-нафталинамина, дифенил-2-нафталинамина, фенилди(1-нафтил)амина и фенилди-(2-нафтил)амина, каждый из которых может быть замещенным R1. Символы Аr4, Аr5, Аr6 и Аr7, в частности, весьма предпочтительно обозначают, идентично или различно для каждого случая, фенил, 1-нафтил или 2-нафтил, каждый из которых может быть замещен одним или более радикалами R1.

Предпочтение также отдается соединениям Формул (1) и (1а), в которых индекс t=0 или в которых индекс t=1, а соответствующий символ Е обозначает одинарную связь, О, S или N(R1). Весьма предпочтительно, когда предпочтение отдается соединениям Формул (1) и (1а), в которых индекс t=0 или в которых индекс t=1, а соответствующий символ Е обозначает одинарную связь.

Предпочтение также отдается соединениям формулы (1), в которых символ R1, идентично или различно для каждого случая, обозначает H, F, CN, алкильную группу с неразветвленной цепью, содержащую от 1 до 5 атомов С или разветвленную алкильную группу, содержащую от 3 до 5 атомов С, где в каждом случае одна или более несмежных СН2 групп могут быть заменены -R2C=CR2-, -С=С-, -О- или -S- и где один или более атомов Н могут быть заменены F, или моновалентную арильную или гетероарильную группу, содержащую от 5 до 16 ароматических кольцевых атомов, которые могут быть замещены одним или более неароматическими радикалами R1, где два или более радикалов R1 могут образовывать кольцевую систему друг с другом; R1, в частности, предпочтительно обозначает Н, F, CN, метил, трет-бутил или моновалентную арильную или гетероарильную группу, содержащую от 4 до 6 атомов С, которые могут быть замещены одним или более неароматическими радикалами R1, где два ароматических радикала R1 могут образовывать кольцевую систему друг с другом, R1, в частности, весьма предпочтительно означает Н, если он является связанным непосредственно с одной из групп Аr1-Аr7.

R1 является предпочтительно, если он связан с группой X1, X2, X3 и/или X4, а также предпочтительно представляет собой алкильную группу с неразветвленной цепью, содержащую от 1 до 10 атомов С или разветвленную или циклическую алкильную группу, содержащую от 3 до 10 атомов С, где в каждом случае одна или более несмежных СН2 групп могут быть заменены -R2C=CR2-, -О- или -S-, и где один или более атомов Н могут быть заменены F, или моновалентную арильную или гетероарильную группу, содержащую от 5 до 16 ароматических кольцевых атомов, которые могут быть замещены одним или более неароматическими радикалами R1; два радикала R1 в данном случае могут также образовывать кольцевую систему друг с другом.

Предпочтение также отдается соединениям, в которых р=0 и один из двух индексов n и о равен 1, в то время, как остальные два индекса равны 0; в частности, предпочтительно, р и n=0 и о=1.

Особое предпочтение, таким образом, отдается структурам формул (1b) и (1с), в частности, формулы (1с), показанным ниже

где символы и индексы имеют то же значение, как описано выше.

Предпочтение также отдается соединениям формул (1) и от (1а) до (1с), в которых символы X1, X2, X3 и X4 в каждом случае, идентично или различно, представляют собой мостиковую связь, которая совместно с Аr1 и Аr2 или с Аr2 и Аr3 определяет циклическую систему, выбранную из C(R1)2, C=O, C=NR1, О, S, S=O, SO2, N(R1), P(R1), P(=O)R1, C(R1)2-C(R1)2, C(R1)2-C(R1)2-C(R1)2, C(R1)2-O, C(R1)2-O-C(R1)2. В частности, особое предпочтение отдается соединениям формулы (1), в которых символы X1, X2, X3 и X4 в каждом случае, идентично или различно, являются выбранными из C(R1)2, N(R1), P(R1) и P(=O)(R1), в частности, особенно предпочтительно C(R1)2 и N(R1), в частности, C(R1)2.

В частности, особое предпочтение отдается соединениям формулы (1d)

где символы и индексы имеют то же значение, как описано выше.

В структурах формулы (1d) символы R1 являются предпочтительно выбранными из алкильных групп с неразветвленной цепочкой, содержащих от 1 до 10 атомов С или разветвленных или циклических алкильных групп, содержащих от 3 до 10 атомов С, где в каждом случае одна или две несмежные CH2 группы могут быть заменены -R2C=CR2-, -О- или -S-, и где один или более атомов H могут быть заменены F, или моновалентными арильными или гетероарильными группами, содержащими от 5 до 16 ароматических кольцевых атомов, которые могут быть замещены одним или более неароматическими радикалами R1; два радикала R1 в данном случае могут также образовывать кольцевую систему друг с другом. Радикалы R1 являются, в частности, предпочтительно, выбранными из неразветвленных алкильных групп, содержащих от 1 до 4 атомов С, и разветвленных алкильных групп, содержащих 3 или 4 атомов С, в частности, метильных групп и фенильных групп; два или более радикала R1 в данном случае могут образовывать кольцевую систему друг с другом.

Если множество радикалов R1 образуют кольцевую систему друг с другом, то образуется спироструктура. Это может быть предпочтительным, если радикалы R1 обозначают фенильные группы. Это дает начало образованию структур общей формулы (1е)

где символы и индексы имеют то же значение, как описано выше и где каждая из спиросистем может быть замещенной одним или более неароматическими радикалами R1.

Предпочтение также отдается соединениям Формул (1) и от (1а) до (1d), в которых символ s=1 или s=2. Особое предпочтение отдается соединениям, в которых s=1.

Предпочтение также отдается соединениям формул (1) и от (1а) до (1е), в которых Y=Z. Особое предпочтение отдается соединениям, в которых, в дополнение, Аr4=Аr6 и, в случае присутствия, Аr5=Аr7 и, в случае присутствия, обе группы Е выбираются идентичными.

Примеры предпочтительных соединений формулы (1) представляют собой структуры от (1) до (104), представленные ниже.

Соединения в соответствии с изобретением, описанные выше, например, соединения в соответствии со структурами (63), (85), (86), (89) и (91), могут применяться, например, в качестве сомономеров для получения соответствующих конъюгированных, частично конъюгированных или неконъюгированных полимеров, олигомеров, а также в качестве ядра дендримеров. Полимеризацию в данном случае предпочтительно осуществляют с помощью галогеновых групп.

Таким образом, изобретение также относится к конъюгированным, частично конъюгированным или неконъюгированным полимерам, олигомерам и дендримерам, включающим одно или более соединений формулы (1), где один или более радикалов R1 представляют собой связи соединения формулы (1) с полимером или дендримером. Единичная структура формулы (1) предпочтительно связывается в полимер с помощью групп Аr4, Аr5, Аr6 и/или Аr7.

Эти полимеры могут включать повторяющиеся звенья. Такие повторяющиеся структурные единицы предпочтительно выбирают из группы, которая состоит из флуоренов (например, в соответствии с ЕР 842208 или WO 00/22026), спиробифлуоренов (например, в соответствии с ЕР 707020, ЕР 894107 или ЕР 04028865.6), триариламинов, пара-фениленов (например, в соответствии с WO 92/18552), карбозолов (например, в соответствии с WO 04/070772 и WO 04/113468), тиофенов (например, в соответствии с ЕР 1028136), дигидрофенантренов (например, в соответствии с WO 05/014689), инденофлуоренов (например, в соответствии с WO 04/041901 и WO 04/113412), ароматических кетонов (например, в соответствии с WO 05/040302), фенантренов (например, в соответствии с WO 05/104264) и/или комплексных соединений металлов, в частности, ортометаллированных комплексов иридия. Следует особо обратить внимание в данном случае, что полимеры могут также содержать множество различных повторяющихся структурных единиц, выбранных из одной или более упомянутых выше групп.

Соединения в соответствии с изобретением могут быть получены синтетическими способами, которые известны специалисту в данной области, такими, как, например, бромирование, конденсация Suzuki, конденсация Hartwig-Buchwald и т.д.

Таким образом, инденофлуореновые предшественники могут быть получены, например, так, как представлено на схеме синтеза 1: конденсация Suzuki бензолбороновой кислоты и 1,4-дибром-2,5-бис(метилкарбоксилат)бензола с последующим открыванием кольца при воздействии сильной кислоты и восстановление обеспечивает получение транс-инденофлуорена, который может быть алкилирован при использовании алкилирующих агентов. Таковой может быть либо галогенирован, например, бромирован, либо превращен в соответствующее аминосоединение с помощью нитрирования и восстановления. Бисдиариламиноинденофлуорены могут быть синтезированы с помощью конденсации Hartwig-Buchwald соединения диброма, как показано на схеме синтеза 2.

Содержащие инденофлуорен фосфины и окиси фосфинов могут быть синтезированы из диброминденофлуорена путем литиирования и реакции с диарилхлорфосфинами, как представлено на схеме синтеза 3. Последующее окисление обеспечивает получение окиси фосфина. В данном случае также могут использоваться другие электрофилы, такие, как, например, AsCl3, арилРСl2, SOCl2, Ar2S2 и т.д. Другие соединения в соответствии с изобретением могут быть легко синтезированы в соответствии с этими и подобными схемами синтеза при использовании процессов, известных специалисту в области органического синтеза. Кроме того, полученные соединения могут быть бромированы с помощью стандартных процессов, а также могут использоваться в качестве мономеров для полимеров, олигомеров и дендримеров.

Схема синтеза 1: Предшественники производных инденофлуорена

Схема синтеза 2: Соединения инденофлуоренамина

Схема синтеза 3: Соединения инденофлуоренфосфина

Электрофилы, которые могут подвергаться аналогичной реакции: AsCl3, SbСl3, BiCl3, арилРСl2, арил2РСl, SCl2, SOCl2, SO2Cl, Ar2S2, Ar2Se2, Ar2Te2 и т.д.

Соединения формулы (1) могут использоваться в органических электролюминесцентных устройствах. Определенное применение соединений в данном случае зависит от заместителей и, в частности, от выбора групп Y и Z, а также от выбора групп от X1 до X4.

В предпочтительном воплощении изобретения соединение формулы (1) используется в эмиссионном слое, предпочтительно в смеси, по крайней мере, с одним дополнительным соединением. Является предпочтительным для соединения формулы (1) в смеси быть излучающим соединением (допантом). Таковые используются, в частности, если символы Y и Z означают азот.

Предпочтительные основы для люминесцентного вещества представляют собой органические соединения, эмиссия которых имеет более короткую длину волны, чем у соединения формулы (1), или те, которые не излучают вообще.

Таким образом, изобретение также относится к смесям одного или более соединений формулы (1) с одной или более основами люминесцентного вещества.

Соотношение соединения формулы (1) в смеси излучающего слоя составляет от 0,1 до 99,0% по весу, предпочтительно от 0,5 до 50,0% по весу, в частности, предпочтительно от 1,0 до 20,0% по весу, в частности от 1,0 до 10,0% по весу. Соответственно, соотношение материала основы люминесцентного вещества в слое составляет от 1,0 до 99,9% по весу, предпочтительно от 5,0 до 99,5% по весу, в частности, предпочтительно от 80,0 до 99,0% по весу, в частности от 90,0 и 99,0% по весу.

Приемлемые материалы основы люминесцентного вещества представляют собой таковые из различных классов веществ. Предпочтительные материалы основы являются такими, выбранными из классов олигоариленов (например, 2,2',7,7'-тетрафенилспиробифлуорен в соответствии с ЕР 676461 или динафтилантрацен), в частности, олигоариленов, содержащие конденсированные ароматические группы, олигоариленвиниленов (например, DPVBI или спиро-DPVBI в соответствии с ЕР 676461), полиподальных комплексов металлов (например, в соответствии с WO 04/081017), соединений, образующих дыры (например, в соответствии с WO 04/058911), соединений, образующих электроны, в частности, кетонов, окисей фосфина, сульфоксидов и т.д. (например, в соответствии с WO 05/084081 или WO 05/084082), атропоизомеров (например, в соответствии с неопубликованной заявкой ЕР 04026402.0) или производных бороновой кислоты (например, в соответствии с неопубликованной заявкой ЕР 05009643.7). Особенно предпочтительные материалы основы представляют собой такие, выбранные из классов олигоариленов, содержащих нафталин, антрацен и/или пирен, или атропоизомеров этих соединений, олигоариленвиниленов, кетонов, окисей фосфина и сульфоксидов. Особенно предпочтительными являются материалы основы, выбранные из классов олигоариленов, содержащих антрацен и/или пирен, и атропоизомеров этих соединений, окисей фосфина и сульфоксидов.

Кроме того, является предпочтительным для соединений формулы (1) применяться в качестве материала транспорта дыр и/или в качестве материала введения дыр. Это является, в частности, применимым, если символы Y и Z и/или символы от X1 до X4 обозначают азот. Соединения также предпочтительно применяются в слоях транспорта дыр и/или в слоях введения дыр. Для целей настоящего изобретения слой введения дыр представляет собой слой, который непосредственно примыкает к аноду. Для целей настоящего изобретения слой транспорта дыр представляет собой слой, который расположен между слоем введения дыр и слоем эмиссии электронов. Если соединение формулы (1) используется как материал транспорта дыр или материал введения дыр, то может быть предпочтительным для них быть допированными электрон-акцепторными соединениями, например, F4-TCNQ или соединениями, как описано в ЕР 1476881 или ЕР 1596445.

Если соединение формулы (1) используется в качестве материала транспорта дыр в слое транспорта дыр, также может быть предпочтительным применять соотношение 100%, то есть применять это соединение в виде чистого материала.

Является также предпочтительным использовать соединения формулы (1) в качестве материала транспорта электронов и/или в качестве материала, блокирующего дыры, для флуоресцентных и фосфофлуоресцентных ОСИД и/или в качестве триплетного матриксного материала для фосфоресцентных ОСИД. Это применимо, в частности, к соединениям, в которых группы Y и Z обозначают С=O, Р=O или S=O.

Соединения формулы (1) могут также использоваться в полимерах, или в качестве излучающей единицы, и/или в качестве единицы транспорта дыр, и/или единицы транспорта электронов.

Предпочтение также отдается органическим электролюминесцентным устройствам, которые характеризуются тем, что множество излучающих соединений используется в одном и том же слое или различных слоях, где, по крайней мере, одно из этих соединений имеет структуру формулы (1). Эти соединения, в частности, предпочтительно имеют, в общем случае, множество максимумов эмиссии между 380 нм и 750 нм, что в итоге приводит к эмиссии белого света, то есть, в дополнение к соединению формулы (1), по крайней мере, одно дополнительное соединение, которое может быть флуоресцентным или фосфоресцентным и излучать желтый, оранжевый или красный свет, также может использоваться. Особое предпочтение отдается трехслойным системам, где, по крайней мере, один из этих слоев включает соединение формулы (1) и где слои демонстрируют голубое, зеленое и оранжевое излучение (для основной структуры, смотри, например, WO 05/011013). Излучатели широкого диапазона могут также использоваться для ОСИД, излучающих белый свет.

В дополнение к катоду, аноду и излучающему слою, органическое электролюминесцентное устройство может также включать дополнительные слои. Таковые могут представлять собой, например: слой введения дыр, слой транспорта дыр, слой блокирования дыр, слой транспорта электронов, слой введения электронов и/или слой получения заряда (Т. Matsumoto и др., Multiphoton Organic EL Device Having Charge Generation Layer, IDMC 2003, Taiwan; Session 21 OLED (5)). Однако следует отметить в этой связи, что каждый из этих слоев не должен обязательно присутствовать. Таким образом, в частности, при использовании соединений формулы (1) с образующими электроны материалами основы очень хорошие результаты могут быть также получены, если органическое электролюминесцентное устройство не включает отдельного слоя транспорта электронов и излучающий слой непосредственно примыкает к слою введения электронов или к катоду. Альтернативно, материал основы может также одновременно служить в качестве материала транспорта электронов в слое транспорта электронов. Является также предпочтительным для органического электролюминесцентного прибора, когда он не включает отдельного слоя транспорта дыр, а также чтобы излучающий слой непосредственно соседствовал со слоем введения дыр или с анодом. Является также предпочтительным для соединения формулы (1) использоваться одновременно в качестве допанта в излучающем слое и в качестве соединения, создающего дыры (либо как чистое вещество, либо в виде смеси) в слое транспорта дыр и/или в слое введения дыр.

Предпочтение также отдается органическому электролюминесцентному устройству, которое характеризуется тем, что один или более слоев покрыты при использовании процесса сублимации. Материалы в данном случае являются нанесенными с помощью испарения в вакуумном сублимационном устройстве при давлении ниже 10-5 мбар, предпочтительно ниже 10-6 мбар, в частности, предпочтительно ниже 10-7 мбар.

Предпочтение также отдается органическому электролюминесцентному устройству, которое характеризуется тем, что один или более слоев покрыты при использовании процесса OVPD (нанесение органического вещества в паровой фазе) с помощью сублимации при использовании газа-носителя. В данном случае материалы применяются при давлении от 10-5 мбар до 1 бара.

Предпочтение также отдается органическому электролюминесцентному устройству, которое характеризуется тем, что один или более слоев получены из раствора, такого, как, например, покрытие с помощью центрифугирования или с помощью желаемого процесса печатания, такого, как, например, растровый оттиск, флексографическая печать или офсетная печать, но особенно предпочтительным является LITI (индуцированное светом термическое формирование изображений, печатания с использованием термопереноса) или струйное печатание. Растворимые соединения формулы (1) являются необходимыми для этих целей. Высокая растворимость может быть достигнута с помощью приемлемого замещения соединений. Эти процессы для получения слоев являются особенно приемлемыми для полимеров.

Соединения в соответствии с изобретением обладают следующими неожиданными преимуществами по сравнению с уровнем техники при использовании в органических электролюминесцентных устройствах:

1. Эффективность соответствующих устройств является более высокой по сравнению с системами в соответствии с уровнем техники.

2. Стабильность соответствующих устройств является более высокой по сравнению с системами в соответствии с уровнем техники, что является особенно очевидным в значительно более продолжительном сроке службы.

3. При использовании соединений в соответствии с изобретением в качестве материала транспорта дыр в слое транспорта дыр и/или в слое введения дыр было обнаружено, что напряжение является независимым от толщины соответствующего слоя транспорта дыр и/или введения дыр. В противовес этому, материалы в соответствии с уровнем техники с относительно большой толщиной слоя транспорта дыр или введения дыр дают значительное повышение напряжения, которое, в свою очередь, приводит к более низкому коэффициенту полезного действия ОСИД.

4. Соединения могут быть хорошо сублимированы без значительного разложения, они следовательно более легко поддаются обработке и, таким образом, более приемлемы для применения в ОСИД, чем материалы в соответствии с уровнем техники. Н