Инкапсулирование легко окисляемых компонентов

Изобретение относится к пищевой промышленности. Компонент масляного инкапсулянта, содержащий активный, чувствительный к нагреванию инкапсулянт, растворенный и/или диспергированный в масле, смешивают с водным компонентом и пленкообразующим компонентом, таким как белок, с получением эмульсии. Эмульсию смешивают с материалом матрицы для получения формуемой смеси или теста. Кислотный антиоксидант для предотвращения окисления легко окисляемого, чувствительного инкапсулянта и пластификатор, растворяющий кислотный антиоксидант, включают в материал матрицы, который инкапсулирует покрытые пленкой капли масла, содержащие легко окисляемый компонент. Пластификатор, такой как глицерин, обеспечивает кислотному антиоксиданту материала матрицы гранул мобильность для реагирования с атмосферным кислородом и неприятно пахнущими аминами. Изобретение обеспечивает получение стабильных при длительном хранении дискретных твердых гранул, содержащих инкапсулированный, чувствительный к нагреванию или легко окисляемый компонент. 8 н. и 13 з.п. ф-лы, 17 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к непрерывному способу получения стабильных при длительном хранении, дискретных твердых гранул, содержащих инкапсулированный и/или заключенный в капсулу компонент, такой как чувствительная к нагреванию или легко окисляемая фармацевтически, биологически или питательно активная полиненасыщенная жирная кислота, такая как омега-3 жирные кислоты.

Уровень техники, предшествующий изобретению

При инкапсулировании компонента в матрицу материал матрицы, как правило, нагревают до достаточно высокой температуры для пластифицирования массы, что облегчает заключение в оболочку или покрытие оболочкой компонента. При охлаждении материал матрицы отверждается или застывает и защищает инкапсулянт от нежелательной или преждевременной реакции. Измельчение отвержденного или стекловидного продукта с получением кусочков требуемого размера для введения в пищевые продукты или напитки, как правило, приводит к образованию кусочков неправильной формы с грубой поверхностью. Неправильная форма кусочков и мелкотрещинная поверхность приводят к неравномерному выделению инкапсулянта, к повышенной диффузии жидких инкапсулянтов и повышенному проникновению кислорода и воды, которые могут оказать разрушающее воздействие на чувствительные инкапсулянты, такие как легко окисляемые компоненты. Введение водорастворимого антиоксиданта, такого как кислотный антиоксидант, в сухой материал матрицы может быть неэффективным для предотвращения окисления по существу из-за отсутствия жидкой реакционной среды для антиоксиданта или иммобилизации антиоксиданта. Повышение содержания влаги в материале матрицы для улучшения мобилизации антиоксиданта может привести к активности воды, что ведет к нестабильности при длительном хранении, может оказывать негативное воздействие на рассыпчатую консистенцию или может оказывать негативное воздействие на выделительные свойства матрицы.

Положительные профилактические и терапевтические воздействия омега-3 жирных кислот и их роль в качестве противовоспалительных агентов доказаны. Кроме того, согласно недавним клиническим исследованиям рекомендуется потреблять достаточные количества этих полиненасыщенных жирных кислот, что может явиться адекватным интервенционным лечением для животных и людей, страдающих от ревматоидного артрита. Пищевыми источниками омега-3 жирных кислот, главным образом, являются морепродукты, такие как морские водоросли и рыба. Однако большинство населения не получает положительного питательного воздействия соединений полиненасыщенной жирной кислоты (ПНЖК) из-за низкого потребления рыбы и употребляемых в пищу морских водорослей. Действующим нормативом Управления по контролю качества пищевых продуктов, лекарственных и косметических средств США утверждается полезность для здоровья потребления омега-3 жирных кислот для профилактики сердечно-сосудистых заболеваний, что вызывает повышенный интерес к пищевым продуктам, обогащенным этими компонентами. Одной из основных проблем, связанных с введением масел, содержащих омега-3 ПНЖК, в пищевые продукты, подвергшиеся технологической обработке, является высокая степень ненасыщенности масел, их подверженность окислению и последующему негативному воздействию на вкус и аромат масел.

Стабилизация соединений омега-3 жирной кислоты описана в патенте США № 5567730 (Miyashita et al.). Одно или несколько соединений, или масло, или жир, содержащий соединения, диспергируют в водном растворе, необязательно с использованием поверхностно-активного агента или эмульгирующего агента, такого как Tween 20, жирнокислотные эфиры сахарозы, жирнокислотные эфиры сорбитана, лецитин и моноглицерид. Водорастворимый или жирорастворимый антиоксидант или клатратное соединение включения, такое как циклодекстрин, можно использовать совместно с поверхностно-активным агентом или эмульгирующим агентом. Когда не используют поверхностно-активный агент или эмульгирующий агент, количество омега-3 жирной кислоты, вводимой в водную систему для стабилизации, составляет 0,0001-0,3 (масса/объем)%. Когда используют агент, количество омега-3 жирной кислоты, вводимой в водную систему для стабилизации, составляет всего лишь только 0,0001-7 (масса/объем)%. Получение стабильных при длительном хранении, дискретных твердых гранул, содержащих омега-3 жирные кислоты или рыбий жир, не раскрывается.

В международной патентной публикации WO 95/26752 (опубликованной 12 октября 1995 года) описано получение пищевого продукта для энтерального введения жирной кислоты, вещества, содержащего жирную кислоту, аминокислоту или вещество, содержащее аминокислоту, по меньшей мере, частично комплексообразующее жирную кислоту или аминокислоту в амилозную спираль крахмала для маскировки кислоты. Продукт может содержать один или несколько ароматизаторов и красителей, жирорастворимые вещества, антиоксиданты или фармакологически эффективные вещества. Сначала компоненты можно смешать сухими и затем подать в экструдер, где их по существу смешивают и подвергают последующему нагреванию приблизительно до температуры клейстеризации крахмала с получением эластичной массы, которую экструдируют и формируют в пеллеты. Однако чувствительные к нагреванию компоненты могут быть разрушены во время стадии нагревания.

В патенте США № 4895725 (Kantor et al.) описано микроинкапсулирование биоактивных материалов на основе масла, таких как рыбий жир, которые содержат полиненасыщенные жирные кислоты. Микрокапсулы получают из эмульсии рыбьего жира и энтеросолюбильного покрытия, суспендированного в основном растворе, предпочтительно 25% суспензии этилцеллюлозы в гидроксиде аммония. Эмульсию распыляют в кислый раствор с использованием инертного газа, такого как азот или аргон. Полученные микрокапсулы отфильтровывают из кислого раствора, промывают водой и поверхностно-активным веществом и сушат. Условия, в которых распыляют эмульсию, определяют размер гранул, который находится в пределах от приблизительно 0,1 до 500 микрон, предпочтительно от приблизительно 0,5 до 100 микрон. Однако энтеросолюбильное покрытие, такое как этилцеллюлоза, не растворяется, и полученная суспензия требует распыления в кислом водном растворе для получения микрокапсул. Стадии фильтрования и нескольких промывок необходимы для извлечения микрокапсул. Контроль размера капель масла гомогенизацией, позволяющий избежать слипания и получить капли масла по существу одинакового размера, не описывается. Не описана защита микрокапсул от растрескивания или предотвращение растрескивания микрокапсул или разрушения. Также не описывается предотвращение или ингибирование диффузии масла через стенку капсулы на поверхность микрокапсулы и проникновение кислорода через стенку капсулы в масло.

В европейских патентных публикациях ЕР 0465364 А1 (опубликованной 8 января 1992 года) и ЕР 0462012 А2 (опубликованной 18 декабря 1991 года), в патенте США № 3962416 (Katzen) и в патенте США № 3786123 (Katzen) описано получение воздушных продуктов. В двух европейских патентных публикациях описано получение пищевого продукта против ожирения и способ его получения экструзией крахмала с жирными кислотами в воздушном продукте с плотностью от 0,1 до 0,3 г/см3. В патенте США № 3962416 (Katzen) описан воздушный продукт, содержащий, по меньшей мере, один нутриент и один клейстеризованный крахмал.

В патенте США № 37861236 (Katzen) описан способ получения инкапсулированных нутриентов с использованием экструзии при температуре от 250°F до 400°F (121,1°C до 204,4°C) и показателях давления при экструзии от 200 фунтов на квадратный дюйм до 2500 фунтов на квадратный дюйм. Может быть использован инкапсулирующий агент с высоким содержанием белка, содержащий вплоть до 40% крахмала. Крахмал клейстеризуют и экструдируют в воздушный продукт.

Однако при получении продукта с контролируемым выделением или замедленным выделением избыточное увеличение объема или вспенивание может привести к слишком быстрому выделению или нежелательному выделению инкапсулянта из-за деструктивных реакций. Например, в случае пищевой композиции для доставки инкапсулированного фармацевтического или питательного активного компонента или непищевого сельскохозяйственного продукта для доставки биоцидов или гербицидов, желательно, чтобы продукты имели по существу сферическую форму и высокую плотность. Такие продукты по существу демонстрируют низкое соотношение площади поверхности и объема, что позволяет минимизировать или предотвращать деструктивные реакции поверхности, которые могут иметь место при контакте с воздухом или кислородом и светом. Сферическая форма и высокая плотность также позволяют минимизировать удельную поверхность, которая подвергается воздействию включенного материала, который не инкапсулирован. Кроме того, для пищевых продуктов для доставки фармацевтических или питательных активных компонентов желательно, чтобы продукты можно было употреблять или глотать без разжевывания, или по существу не разжевывая. Отсутствие необходимости разжевывать дополнительно гарантирует, что продукты достигают пищеварительного тракта без существенного ферментного гидролиза во рту. Кроме того, это помогает контролировать или снижать растворение продукта в желудочном соке и контролировать выделение заключенных в капсулу или инкапсулированных компонентов в желудке и/или кишечнике.

В международной патентной публикации WO 92/00130 (опубликованной 9 января 1992 года) описан непрерывный способ получения инкапсулированного биологически активного продукта в крахмальной матрице. Биологически активный агент и крахмал смешивают перед экструзией и экструдируют в виде смеси с инкапсулянтом или биологически активным агентом, нагретыми вместе с крахмалом. В качестве альтернативы, материал ядра для инкапсулирования может быть смешан с водной дисперсией крахмала после того, как крахмал и вода были подвергнуты обработке при повышенной температуре, достаточной для клейстеризации крахмала. Описан процесс экструдирования, при котором смесь подвергают механическому воздействию с высоким усилием сдвига при температуре, равной приблизительно температуре клейстеризации крахмала. Температура шнековой камеры равна от приблизительно 136,4°F до 208,4°F (58°C до 98°C). Температура шнековой камеры может быть выше температуры клейстеризации крахмала, когда у используемого экструдера отношение длины к диаметру цилиндра составляет только три к одному. Скорость вращения шнеков составляет от 400 оборотов в минуту до 200 оборотов в минуту в результате очень короткого времени нахождения смеси внутри экструдера и позволяет только нагреть смесь воды и крахмала. В результате полученная температура является, как правило, слишком низкой, чтобы добиться по существу клейстеризации нативных крахмалов. Дополнительно, используемая температура шнековой камеры, в частности, является слишком низкой для значительной клейстеризации высоко амилозного крахмала, который, как правило, клейстеризуется при температуре существенно выше 212°F (100°C), например при температуре 257°F (125°C). Использование шнековой камеры при температуре, недостаточно высокой для существенной или полной клейстеризации крахмала, не позволяет получить достаточно непрерывную, пластичную и гомогенную матрицу для эффективного заключения в капсулу или инкапсуляции.

Кроме того, применение относительно низких температур экструзии, высокой скорости смешивания и высокой вязкости крахмальной композиции, как правило, требует приложения большой механической энергии. Высокое усилие сдвига непосредственно относится к высокой удельной механической энергии, которая, в свою очередь, увеличивает разрушение молекулярной структуры и декстринизацию крахмала. Разрушение молекул крахмала, и в частности амилопектина, увеличивает растворимость экструдированной крахмальной композиции в водных системах, как описано у P. Colonna, et al., «Extrusion Cooking of Starch & Starchy Products», Extrusion Cooking, C. Mercier, et al., pp. 247-319, AACC, St. Paul, Minn. (1989) и F. Meuser, et al., «A System Analytical Approach To Extrusion», Food Extrusion Science & Technology, ed. J. Kokini, Dekker Publ., pp. 619-630 (1992). Повышенная растворимость экструдированного крахмала в водных системах снижает стойкость продукта против влаги и соответственно снижает или уменьшает защиту и контроль выделения заключенных в капсулу или инкапсулированных веществ. Кроме того, обработка инкапсулянта с таким высоким усилием сдвига и при такой высокой температуре, при которой обрабатывают крахмал, может оказать негативное воздействие на инкапсулянт, по меньшей мере, частично разрушая его или приводя к распаду на неизвестные твердые или летучие вещества.

Предварительно клейстеризованный крахмал находит широкое применение в пищевой промышленности в качестве вызывающего набухание агента и для ускоренной и усиленной абсорбции воды такими пищевыми продуктами, как супы, соусы, готовые смеси для пудинга, детское питание и загустители. Однако было обнаружено, что применение предварительно клейстеризованного крахмала или применение крахмала только в качестве материала матрицы во время варочной экструзии, как правило, приводит к тому, что матрица выделяет инкапсулянт слишком быстро. Было обнаружено, что проникновение воды в матрицу из чистого крахмала является причиной быстрого выделения инкапсулянта в окружающую среду. Как правило, время выделения 100% инкапсулянта является слишком коротким для обеспечения требуемого времени выделения или контролируемого выделения, которое является эффективным для доставки инкапсулянта в требуемое место или за требуемый период времени.

В патенте США № 5183690 (Carr, et al.) описан непрерывный способ придания выделительных свойств в предопределенное время инкапсулированному биологически активному агенту в матрице из крахмального материала. Крахмальный материал, активный агент и воду непрерывно смешивают в потоке ингредиентов, где концентрация крахмального материала по сухому веществу составляет, по меньшей мере, 40%. Поток ингредиентов непрерывно экструдируют в виде экструдата и экструдат непрерывно удаляют. Условия смешивания, экструдирования и удаления задают заранее для получения свойств выделения в заранее заданное время. Температуру увеличивают, по меньшей мере, приблизительно до 149°F (65°C) для клейстеризации крахмала и гарантии существенной молекулярной дисперсии крахмала в воде. В качестве альтернативы, инкапсулируемый материал ядра вводят и смешивают с водной дисперсией крахмала после того, как крахмал и воду подвергают обработке при высокой температуре, достаточной для клейстеризации крахмала. В этом варианте осуществления изобретения температура водно-крахмального потока, содержащего клейстеризованный крахмал, может быть понижена до такой низкой температуры, как приблизительно 77°F (25°C), перед введением и обработкой инкапсулируемого материала ядра механическим воздействием с высоким усилием сдвига. Описано, что при такой низкой температуре смешивания активность чувствительного биологического материала, такого как бактерии и вирусы, сохраняется и минимизируется потеря летучих органических веществ. Скорость набухания продуктов в воде и скорость выделения активных агентов контролируют изменением количества воды, присутствующей в смеси крахмал-агент-вода во время обработки. Поскольку количество воды уменьшено, то как скорость набухания, так и скорость выделения увеличиваются. Скорость набухания продуктов в воде и скорость выделения активного агента также контролируют варьированием размеров выходной фильеры, через которую проходит экструдат. Поскольку размер выходной фильеры уменьшен, то оба показателя, скорость и степень набухания, и скорость выделения агента увеличиваются.

В патенте США № 6190591 и международной публикации WO 98/18610, опубликованной 7 мая 1998 года (оба документа Bernhard H. van Lengerich), описание которых полностью включено в данное изобретение путем ссылки, описано контролируемое выделение композиции гранул, которые содержат гидрофобный компонент для контроля выделения инкапсулированного и/или заключенного в пластифицированную матрицу активного компонента. Также для отсрочки или контроля выделения инкапсулянта из матрицы может быть использована высокая влагоудерживающая способность агентов. Для облегчения пластификации материала матрицы при низком усилии сдвига применяют большое количество пластификатора и затем снижают его перед введением инкапсулянта для облегчения последующего формования и снижения постэкструзионной сушки. Жидкие активные компоненты или растворы, дисперсии, эмульсии или суспензии могут быть инжектированы в пластифицированный материал матрицы. Контролируемое выделение или замедленное выделение композиции может быть получено по существу без увеличения материала матрицы, таким образом, избегая получения продукта с низкой плотностью, который выделяет инкапсулянт или заключенный в оболочку компонент преждевременно или слишком быстро.

В находящихся в процессе одновременного рассмотрения заявке США № 09/233443, поданной 20 января 1999 года от имени Bernhard H. van Lengerich, международной публикации WO 00/21504, опубликованной 20 апреля 2000 года, патенте США № 6500463 (Van Lengerich) и международной публикации WO 01/25414, опубликованной 12 апреля 2001 года, описание которых полностью включено в данное изобретение путем ссылки, описан непрерывный способ получения стабильных при длительном хранении, с контролируемым выделением, дискретных, твердых гранул из жидкого компонента инкапсулянта, содержащего чувствительный инкапсулянт, такой как чувствительный к нагреванию или легко окисляющийся фармацевтически, биологически или питательно активный компонент, такой как незаменимая и/или высоко ненасыщенная жирная кислота. Жидкий компонент инкапсулянта, содержащий активный, чувствительный инкапсулянт, такой как живые микроорганизмы или фермент, растворенный или диспергированный в жидком пластификаторе, смешивают с пластифицируемым материалом матрицы. Материал матрицы пластифицируется жидким пластификатором, и инкапсуляция активного инкапсулянта проводится при низкой температуре и при низком усилии сдвига. Активный компонент инкапсулируют и/или заключают в пластифицируемый компонент или материал матрицы с применением непрерывного способа, получая дискретные твердые гранулы. Инкапсулянты могут представлять собой суспензии микроорганизмов в воде и суспензии, или дисперсии, или эмульсии, или растворы витаминов, ферментов, минеральных веществ или микроэлементов в воде или в других жидкостях. Жидкое содержимое жидкого компонента инкапсулянта обеспечивает по существу всю или полностью всю потребность в жидком пластификаторе для пластификации компонента матрицы с получением формуемой, экструдируемой, нарезаемой смеси или теста. Удаление жидкого пластификатора перед экструдированием не является необходимым для регулирования вязкости формуемой смеси.

В патенте США № 5064669 (Tan et al.) описано получение пищевых продуктов с контролируемым выделением вкусоароматических добавок, приготавливаемых с применением микроволнового излучения. Легко сыпучие, придающие вкус и аромат порошки с контролируемым выделением получают путем: а) нагревания инкапсулируемого или глазированного сырьевого материала с высокой температурой плавления (жир и/или воск и один или несколько эмульгаторов) для плавления; b) смешивания одной или нескольких придающих вкус и аромат композиций, содержащих влагу, с улучшающим текстуру агентом; с) смешивания придающих вкус и аромат композиций и улучшающего текстуру агента с расплавленным жиром или воском с получением гомогенной смеси в форме эмульсии; и d) охлаждения смеси, содержащей придающую вкус и аромат композицию, с получением дискретных гранул из твердого инкапсулированного, придающего вкус и аромат агента.

В патенте США № 5106639 (Lee et al.) описан способ получения жировой добавки к корму для скота смешиванием эмульгатора, носителя и жирового вещества, содержащего омега-3 жирные кислоты, с получением эмульсии, гомогенизированием эмульсии и сушкой эмульсии с получением порошкообразного жира. Эмульсия может также содержать воду и сыворотку. Носителем может быть соевый белок, сухие вещества обезжиренного молока, крахмал, пектин, желатин, казеин, коллаген и яичный белок. После распылительной сушки или сушки в псевдоожиженном слое, как правило, средний размер гранул жира находится в пределах от приблизительно 0,1 до приблизительно 1,0 миллиметра. Энтеросолюбильное покрытие включает целлюлозный материал, который может быть использован с порошкообразным жиром.

В публикации патентной заявки США № 2004/0017017 А1, опубликованной 29 января 2004 года (Van Lengerich et al.), полностью включенной в данное описание путем ссылки, описано получение стабильной эмульсии масло-в-воде, содержащей легко окисляемый компонент или компонент, чувствительный к нагреванию. В эмульсию может быть включен антиоксидант для предотвращения окисления активного, чувствительного инкапсулянта и смягчающий пленку компонент или пластификатор для пленкообразующего компонента. Эмульсию стабилизируют, подвергая ее обработке гомогенизацией. Стабильные при длительном хранении, с контролируемым выделением, дискретные, твердые гранулы или пеллеты, содержащие инкапсулированный и/или заключенный в капсулу легко окисляемый компонент или чувствительный к нагреванию компонент, получают посредством первого снижения содержания влаги в стабилизированной эмульсии. Снижение содержания влаги является причиной того, что пленкообразующий компонент образует пленку вокруг капель масла и инкапсулирует инкапсулянт. Содержание влаги в гомогенизированной эмульсии может быть снижено распылительной сушкой с получением порошка. В других вариантах осуществления изобретения после гомогенизации содержание влаги в эмульсии может быть снижено смешиванием эмульсии, по меньшей мере, с одним материалом матрицы, таким образом, инкапсулируя покрытые пленкой капли масла материалом матрицы. После снижения содержания влаги в эмульсии на покрытые пленкой капли масла наносят защитное покрытие с получением пеллет. Защитное покрытие помогает предотвратить диффузию масляного компонента на поверхность пеллет и помогает ингибировать проникновение атмосферного кислорода в инкапсулированный масляный компонент. Защитное покрытие также заполняет или герметизирует сколы, трещины, неровности или поры нижнего слоя и помогает обеспечить более гладкую поверхность пеллет одинакового размера или кластера. После нанесения защитного покрытия пеллеты сушат с получением конечного инкапсулированного продукта.

Включение антиоксиданта в масляную фазу или капли масла, как правило, делает его мобильным для взаимодействия с атмосферным кислородом, проникающим в инкапсулированный легко окисляемый компонент. Однако введение кислотного антиоксиданта в водную фазу эмульсии может привести к повышению вязкости эмульсии за счет взаимодействия определенных белков (белка эмульгаторов), что может препятствовать получению капель масла малого размера. Также было бы выгодно включать антиоксидант в материал матрицы для того, чтобы способствовать предотвращению окисления, даже если кислород достиг легко окисляемого компонента в каплях масла. Однако при введении кислотного антиоксиданта в материал матрицы было обнаружено, что во время сушки пеллет для получения стабильной активности воды при длительном хранении кислотный антиоксидант склонен к кристаллизации и становится неподвижным. Неподвижность кислотного антиоксиданта ингибирует взаимодействие с проникающим атмосферным кислородом.

Настоящее изобретение относится к способу получения дискретных, твердых гранул, стабильных при длительном хранении, инкапсулированных чувствительными компонентами, такими как компоненты, чувствительные к нагреванию или легко окисляемые компоненты, такие как омега-3 жирные кислоты. Воздействие на чувствительные компоненты атмосферного кислорода может быть по существу предотвращено без необходимости нанесения защитного покрытия на поверхность гранул. В способе отсутствует необходимость введения существенного количества кислотных антиоксидантов в водный компонент эмульсии, который склонен к реагированию с определенными содержащими белок пленкообразующими компонентами, что может препятствовать получению капель масла малого размера. Согласно настоящему изобретению кислотный антиоксидант может быть введен в материал матрицы без потери мобильности, например, путем применения неводного пластификатора для усиления антиоксидантной эффективности, для взаимодействия с проникающим атмосферным кислородом. Способы по настоящему изобретению могут быть использованы для непрерывного получения пищевой композиции для доставки фармацевтических или питательных активных компонентов, таких как омега-3 жирные кислоты. Гранулы, содержащие инкапсулированные масла с полиненасыщенными жирными кислотами, например, из рыбы, водорослей, семян льна или других семян, и пищевые продукты, содержащие гранулы, не имеют прогорклого запаха или вкуса в течение длительного периода времени, например, по меньшей мере, в течение шести месяцев.

Краткое описание изобретения

Легко окисляемый компонент, такой как полиненасыщенная жирная кислота, инкапсулируют посредством образования эмульсии масло-в-воде с пленкообразующим компонентом, таким как белок или модифицированный крахмал, для покрытия капель масла масляной фазы. Легко окисляемый компонент присутствует в масляной фазе и защищен от окисления пленкой, образуемой из пленкообразующего компонента. Эмульсию масло-в-воде смешивают, по меньшей мере, с одним материалом матрицы, жидким пластификатором, таким как вода или глицерин, для пластифицирования материала матрицы и кислотным антиоксидантом для предотвращения окисления легко окисляемого компонента. Кислотный антиоксидант растворяют в жидком пластификаторе. Отделение кислотного антиоксиданта от белкового пленкообразующего компонента, такого как казеинат, во время образования эмульсии и гомогенизации позволяет избежать разрушающего взаимодействия между белком и кислотным антиоксидантом.

Формуемую смесь или тесто получают, когда, по меньшей мере, один материал матрицы содержит кислотный антиоксидант и инкапсулирует покрытые пленкой капли масла эмульсии масло-в-воде. Из теста формуют кусочки или пеллеты, которые могут быть высушены с получением стабильной активности воды при длительном хранении менее чем или равной приблизительно 0,7.

Пластификатор обеспечивает мобильность кислотного антиоксиданта в материале матрицы в сухих кусочках таким образом, что антиоксидант может реагировать с атмосферным кислородом, поступающим в кусочки перед тем, как кислород достигнет и будет реагировать с легко окисляемым компонентом. Кислотный антиоксидант нейтрализует и помогает предотвратить появление неприятного запаха основных соединений, таких как амины рыбьего жира, от проникновения наружу из пеллет.

Подробное описание изобретения

Стабилизированную эмульсию используют для получения стабильных при длительном хранении, с контролируемым выделением, дискретных твердых гранул или пеллет, содержащих инкапсулированный и/или заключенный в капсулу компонент, такой как легко окисляемый компонент, содержащий полиненасыщенную жирную кислоту. Компонент масляного инкапсулянта, содержащий активный, чувствительный инкапсулянт, растворенный и/или диспергированный в масле, смешивают с водным компонентом и пленкообразующим компонентом с получением эмульсии. Эмульсию стабилизируют, подвергая ее гомогенизации. Стабилизированную эмульсию смешивают, по меньшей мере, с одним пластифицируемым материалом матрицы и пластификатором для пластификации, по меньшей мере, одного материала матрицы для инкапсуляции капель масла, покрытых пленкообразующим компонентом. Кислотный антиоксидант для предотвращения окисления активного, чувствительного инкапсулянта диспергируют, по меньшей мере, в один материал матрицы. Пластификатор обеспечивает мобильность антиоксиданта в пластифицированном материале матрицы. Кислотный антиоксидант нейтрализует и помогает предотвращать проникновение неприятного запаха основных соединений, таких как амины, из пеллет.

В вариантах осуществления настоящего изобретения антиоксидант может быть введен, по меньшей мере, в один материал матрицы, в пластификатор, который смешивают, по меньшей мере, с одним материалом матрицы, или в пластификатор в процессе получения и образования эмульсии. Примерными кислотными антиоксидантами или антиоксидантами, отдающими протоны, которые могут быть использованы в эффективном количестве в материале матрицы, являются органические кислоты, такие как L-цистеин, уксусная кислота, винная кислота, молочная кислота, яблочная кислота, лимонная кислота, муравьиная кислота, пропионовая кислота, дубильная (дигалловая) кислота, аскорбиновая кислота, изоаскорбиновая кислота и эриторбиновая кислота, токоферол, катехин, их соли, их изомеры, их производные и их смеси. Примерными солями, которые могут быть использованы, являются соли щелочноземельных и щелочных металлов, такие как кальциевые, калиевые и натриевые соли аскорбиновой кислоты, эриторбиновой кислоты и L-цистеина, и фенольные соли. Примерные производные включают кислые ангидраты, сложные эфиры, амиды и липофильные кислоты. Предпочтительными кислотными антиоксидантами для применения в материале матрицы являются органические кислоты, такие как лимонная кислота, аскорбиновая кислота и эриторбиновая кислота, наиболее предпочтительна эриторбиновая кислота или аскорбиновая кислота.

Количество кислотного антиоксиданта может составлять от приблизительно 1 мас.% до приблизительно 40 мас.%, предпочтительно от приблизительно 2 мас.% до приблизительно 30 мас.%, например от приблизительно 3 мас.% до приблизительно 20 мас.%, более предпочтительно от приблизительно 10 мас.% до приблизительно 30 мас.%, наиболее предпочтительно от приблизительно 15 мас.% до приблизительно 25 мас.% от массы масляного компонента или массы пеллеты. В вариантах осуществления настоящего изобретения количество кислотного антиоксиданта может составлять вплоть до приблизительно 5 мас.% или 6 мас.%, например от приблизительно 0,5 мас.% до приблизительно 6 мас.%, например от приблизительно 0,5 мас.% до приблизительно 4 мас.%, от массы пеллеты.

Пластификатор или комбинация пластификаторов для диспергирования и обеспечения мобильности кислотного антиоксиданта в материале матрицы может содержать, по меньшей мере, один жидкий пластификатор, который растворяет кислотный антиоксидант и остается в пеллете после сушки в количестве, достаточном для предотвращения значительной кристаллизации кислотного антиоксиданта, и обеспечивает мобильность кислотного антиоксиданта в сухой пеллете. Подразумевается, что достигнутая мобильность должна быть такой, чтобы кислотный антиоксидант смог реагировать с атмосферным кислородом, проникающим внутрь пеллеты или материала матрицы, для предотвращения проникновения кислорода в покрытые пленкой капли масла. Также пластификатор обеспечивает растворимость антиоксиданта и предотвращает значительную кристаллизацию в сухой пеллете. Благодаря мобильности кислотный антиоксидант отдает протоны терминальному концу любого радикала жирных кислот и/или реагирует с неприятно пахнущими аминами, выделяемыми рыбьим жиром. Примерными обеспечивающими мобильность пластификаторами, которые могут быть использованы с кислотным антиоксидантом, являются вода, многоатомные спирты или гликоли, такие как глицерин, пропиленгликоль и полиэтиленгликоль, сахарные спирты, такие как сорбит, моносахариды и дисахариды, такие как фруктоза и декстроза, и их смеси. Предпочтительным обеспечивающим мобильность пластификатором или смягчителем для смешивания с кислотным антиоксидантом является глицерин.

Вода может быть использована как для пластификации материала матрицы, так и для растворения кислотного антиоксиданта, сушка пеллет обеспечивает стабильную активность воды при длительном хранении, которая составляет менее чем приблизительно 0,7, что, как правило, приводит к значительной кристаллизации и неподвижности кислотного антиоксиданта в сухой пеллете. Следовательно, в качестве пластификатора матрицы можно использовать воду или водные растворы, способные образовывать тесто, такие как фруктовый сок, для облегчения смешивания и начального диспергирования и гомогенизации антиоксиданта. Однако для обеспечения стабильности при длительном хранении и мобильности кислотного антиоксиданта в конечной пеллете также может быть использован менее летучий жидкий пластификатор или смягчитель, такой как многоатомный спирт. Вода или водные растворы, используемые в качестве пластификатора для материала матрицы, могут быть смешаны с неводным пластификатором или смягчителем или могут быть введены в материал матрицы по отдельности. Вода, которую применяют для получения эмульсии масло-в-воде, также служит для пластификации пластифицируемой части материала матрицы.

Количество неводного придающего мобильность пластификатора или смягчителя, такого как глицерин, должно быть достаточным для растворения антиоксиданта. Примерные количества неводного придающего мобильность пластификатора или смягчителя могут составлять в пределах от приблизительно 1 мас.% до приблизительно 50 мас.%, предпочтительно от приблизительно 1 мас.% до приблизительно 25 мас.%, более предпочтительно от приблизительно 10 мас.% до приблизительно 20 мас.% от массы пеллеты.

Пеллеты получают первым снижением содержания влаги в стабилизированной эмульсии таким образом, что пленкообразующий компонент образует пленку вокруг капель масла и инкапсулирует инкапсулянт. После гомогенизации содержание влаги в эмульсии может быть снижено смешиванием эмульсии, по меньшей мере, с одним материалом матрицы, таким образом, инкапсулируя покрытые пленкой капли масла внутрь материала матрицы. В вариантах осуществления настоящего изобретения рН пеллет может составлять в пределах от приблизительно 2,5 до приблизительно 8.

Получение стабилизированной эмульсии масло-в-воде

Улучшенную дисперсию и инкапсуляцию активных, чувствительных материалов инкапсулянта в дискретных, стабильных при длительном хранении гранулах получают предварительным эмульгированием инкапсулянта. Инкапсулянт вводят в эмульсию масло-в-воде или образуют масляную фазу эмульсии масло-в-воде. Эмульсию масло-в-воде, содержащую инкапсулянт, смешивают, по меньшей мере, с одним материалом матрицы, таким как пластифицируемый материал матрицы, для инкапсулирования инкапсулянта внутрь материала матрицы. Применение материалов матрицы, которые пластифицируются эмульсией или водным компонентом эмульсии, приводит к инкапсулированию инкапсулянта в пластифицированный материал матрицы. Инкапсулянт или чувствительный активный компонент может быть твердым или жидким. Твердые инкапсулянты диспергируют в масло перед эмульгированием водой или водной жидкостью. Если инкапсулянт представляет собой масло, то он может быть непосредственно эмульгирован водой или водной жидкостью.

В вариантах осуществления настоящего изобретения водный компонент, такой как вода или кислый водный раствор, такой как 0,2N уксусная кислота в воде, может быть смешан с пленкообразующим компонентом, таким как белок, с получением водного раствора. Пленкообразующий компонент помогает стабилизировать эмульсию, сохранять размер капель масла, ингибировать диффузию масляного компонента и инкапсулянта на поверхность гранул или пеллет и ингибировать контактирование кислорода, являющегося причиной прогорклого запаха и вкуса, с масляным компонентом.

Содержание пленкообразующего компонента или белка в водном растворе, таком как водный раствор белка, может составлять от приблизительно 1 мас.% до приблизительно 50 мас.%, предпочтительно от приблизительно 5 мас.% до приблизительно 25 мас.%, наиболее предпочтительно от приблизительно 8 мас.% до приблизительно 15 мас.% о