Гибридное транспортное средство
Иллюстрации
Показать всеИзобретение относится к гибридным транспортным средствам. По первому варианту гибридное транспортное средство содержит двигатель, средства генерирования энергии, накопитель энергии, средства генерирования движущей силы, средства внешней зарядки, блок управления для регулирования движущей силы транспортного средства. Блок управления управляет в первом рабочем режиме и втором рабочем режиме. В первом рабочем режиме зарядка накопителя энергии средствами генерирования энергии ограничена. Во втором рабочем режиме зарядка накопителя энергии средствами генерирования энергии поддерживается в заданном диапазоне с контрольным центральным значением. Блок управления включает в себя средства изменения контрольного центрального значения. По второму варианту гибридное транспортное средство содержит устройства с функциями вышеупомянутых средств. Технический результат заключается в повышении эффективности накопителя энергии в гибридных транспортных средствах. 2 н. и 8 з.п. ф-лы, 15 ил.
Реферат
Настоящее изобретение относится к гибридному транспортному средству, способному заряжать накопитель энергии, установленный на нем посредством внешнего источника энергии, и, в частности, относится к технологии оптимального управления величиной степени зарядки накопителя энергии в соответствии с характером управления пользователем.
В последнее время, принимая во внимание проблемы состояния окружающей среды, начало использоваться гибридное транспортное средство, которое работает за счет эффективного сочетания двигателя внутреннего сгорания и электродвигателя. Гибридное транспортное средство такого рода имеет перезаряжаемый накопитель энергии, установленный на нем, для подачи электроэнергии в электродвигатель при запуске и/или во время ускорения, и для рекуперации кинетической энергии транспортного средства при спуске по склону и/или во время торможения.
Предложенная конфигурация гибридного транспортного средства, которая связана посредством электрического соединения с внешним источником энергии, таким как электроснабжение от сети общего пользования, обеспечивает зарядку накопителя энергии, установленного на транспортном средстве. Заряжаемое извне транспортное средство способно двигаться, используя электроэнергию от внешнего источника энергии, аккумулированную в накопителе энергии, на относительно короткое расстояние, оставляя в это время двигатель выключенным, когда, например, совершает одну поездку на работу и обратно или отправляется за покупками, в результате чего общая экономичность расхода топлива может быть повышена. Рабочий режим такого рода иногда рассматривают как рабочий режим ЭМ (электромобиля).
Когда степень зарядки (СЗ) накопителя энергии становится ниже заданного нижнего предела, после того как транспортное средство работало в рабочем режиме ЭМ, транспортное средство переходит в общий рабочий режим ГТС (Гибридного Транспортного Средства), предусматривающий работу двигателя. В рабочем режиме ГТС рабочая мощность двигателя используется как движущая сила для перемещения и к тому же используется для выработки энергии для зарядки накопителя энергии.
В качестве примера конфигурации переключения между рабочим режимом ЭМ и рабочим режимом ГТС приводится публикация выложенной заявки на патент Японии JP 09-098513, раскрывающая контроллер зарядки и разрядки для гибридного электромобиля, в котором обеспечено начальное проходимое расстояние на электрической батарее и отношение работы по выработке электроэнергии (работа гибридного привода) уменьшается, для того чтобы получить достаточное преимущество в отсутствии шума, чтобы предотвратить снижение пробега транспортного средства на двигателе внутреннего сгорания для производства энергии и для снижения выбросов отработавших газов.
Различия в контроллере зарядки и разрядки для гибридного электромобиля раскрыты в указанной JP 09-098513, причем в транспортном средстве, в котором накопитель энергии может заряжаться посредством внешнего источника энергии, целесообразно при рабочем режиме ГТС иметь величину степени зарядки (степень зарядки аккумуляторной батареи), поддерживаемую на уровне относительно низкого значения. Это осуществляется для того, чтобы после движения обеспечивать сохранение настолько большого количества электроэнергии, полученной от внешнего источника энергии во время зарядки от внешнего источника энергии, насколько это возможно.
Тем не менее, характер управления транспортным средством отличается от пользователя к пользователю. В частности, один пользователь может в основном двигаться на относительно короткие дистанции, в то время как другой пользователь может двигаться на относительно длинные дистанции и, вследствие этого, степень выполнения зарядки при использовании внешнего источника энергии (частота зарядки) отличается от пользователя к пользователю.
В результате в гибридном транспортном средстве, которое не очень часто заряжается посредством внешнего источника энергии, величина степени зарядки накопителя энергии поддерживается на относительно низком уровне на длительный период времени. Низкая степень зарядки в течение длительного времени не желательна, принимая во внимание снижение эффективности накопителя энергии.
Настоящее изобретение разработано для решения описанной проблемы и его задачей является создание внешне перезаряжаемого гибридного транспортного средства, в котором снижение эффективности накопителя энергии может быть предотвращено в соответствии с характером управления пользователем.
Согласно аспекту настоящего изобретения создано гибридное транспортное средство, содержащее двигатель, работающий на сгорании топлива; средства генерирования энергии, способные вырабатывать электроэнергию, получающие энергию, образованную при работе двигателя; накопитель энергии, заряжаемый электроэнергией от средств генерирования энергии; средства генерирования движущей силы для образования движущей силы из электроэнергии от средств генерирования энергии и/или накопителя энергии; средства внешней зарядки, подключенные с помощью электрического соединения к внешнему источнику энергии, для зарядки накопителя энергии посредством внешнего источника энергии; и блок управления для управления движущей силы транспортного средства, образующейся в соответствии с требованиями водителя, и для управления электроэнергией, заряжающей/разряжающей накопитель энергии. Блок управления производит контроль в первом рабочем режиме до тех пор, пока величина степени зарядки накопителя энергии стремится к значению ниже, чем заданное, и выполняет переход во второй рабочий режим, когда величина степени зарядки становится ниже заданного значения. В первом рабочем режиме зарядка накопителя энергии посредством средств генерирования энергии ограничена, а во втором рабочем режиме зарядка накопителя энергии посредством средств генерирования энергии допускается так, что величина степени зарядки поддерживается в заданном диапазоне, при этом в центре диапазона находится контрольное центральное значение. Блок управления включает в себя средства изменения контрольного центрального значения для изменения контрольного центрального значения в соответствии со степенью выполнения внешней зарядки как степенью выполнения зарядки накопителя энергии посредством средств внешней зарядки.
В гибридном транспортном средстве в соответствии с этим аспектом, после перехода во второй рабочий режим, позволяющий зарядку накопителя энергии посредством средств генерирования энергии, контрольное центральное значение, определяющее диапазон, в котором поддерживается величина степени зарядки накопителя энергии, изменяется в соответствии со степенью выполнения внешней зарядки. Следовательно, можно предотвратить удержание величины степени зарядки накопителя энергии на низком значении по причине низкой степени выполнения зарядки накопителя энергии средствами внешней зарядки и, вследствие этого, возможно предотвратить снижение эффективности накопителя энергии.
Предпочтительно, чтобы блок управления регулировал электроэнергию, заряжаемую/разряжаемую с накопителя энергии, в соответствии с заданной характеристикой энергии зарядки, определяющей электроэнергию, необходимую для зарядки накопителя энергии, в соответствии с величиной степени зарядки накопителя энергии; и средства изменения контрольного центрального значения изменяли контрольное центральное значение посредством изменения заданной характеристики энергии зарядки.
Предпочтительно, чтобы средства изменения контрольного центрального значения увеличивали контрольное центральное значение по мере того как степень выполнения внешней зарядки уменьшается.
Предпочтительно, чтобы средства изменения контрольного центрального значения определяли степень выполнения внешней зарядки, основываясь на прошедшем промежутке времени и/или на пройденном расстоянии от последнего выполнения зарядки накопителя энергии внешним источником энергии.
Предпочтительно, чтобы средства изменения контрольного центрального значения изменяли контрольные центральные значения, когда прошедший промежуток времени и/или пройденное расстояние превышает соответствующее заданное предельное значение.
Предпочтительно, блок управления регулирует электроэнергию, заряжаемую/разряжаемую с накопителя энергии, при этом диапазон допустимой характеристики зарядки/разрядки определяет максимальную электроэнергию зарядки/разрядки, допустимую для накопителя энергии в соответствии с величиной степени зарядки накопителя энергии; и допустимая характеристика энергии зарядки/разрядки меняется в соответствии с контрольным центральным значением, изменяемым посредством средств изменения контрольного центрального значения.
Предпочтительно, чтобы гибридное транспортное средство в соответствии с этим аспектом дополнительно включало в себя преобразователь напряжения, расположенный между накопителем энергии и средствами генерирования движущей силы, для выполнения преобразования напряжения между накопителем энергии и средствами генерирования движущей силы, и для управления за работой по преобразованию напряжения в преобразователе напряжения блок управления дополнительно включает в себя систему управления, содержащую, по меньшей мере, один элемент управления; и характеристика, по меньшей мере, одного элемента управления включена в изменения системы управления в соответствии с контрольным центральным значением, которое изменяется посредством средств изменения контрольного центрального значения.
Предпочтительно, чтобы гибридное транспортное средство в соответствии с этим аспектом дополнительно включало в себя средства мониторинга за накопителем энергии для контроля для мониторинга величины степени зарядки накопителя энергии, и если величина степени зарядки находится за пределами заданного стандартного диапазона, выдавал сигнал, указывающий на отклонение в работе накопителя энергии. Стандартный диапазон, используемый средствами мониторинга за накопителем энергии, меняется в соответствии с контрольным центральным значением, которое изменяется средствами изменения контрольного центрального значения.
Предпочтительно, чтобы средства изменения контрольного центрального значения задействовались или отключались в соответствии с внешней командой выбора.
Согласно другому аспекту настоящего изобретения создано гибридное транспортное средство, содержащее двигатель, работающий на сгорании топлива; устройство генерирования энергии, способное вырабатывать электроэнергию, получая энергию, образованную при работе двигателя; накопитель энергии, заряжаемый электроэнергией от устройства генерирования энергии; устройство генерирования движущей силы для образования движущей силы из электроэнергии от устройства генерирования энергии и/или накопителя энергии; устройство внешней зарядки, подключенное с помощью электрического соединения к внешнему источнику энергии, для зарядки накопителя энергии посредством внешнего источника энергии; и блок управления для управления движущей силы транспортного средства, образующейся в соответствии с требованиями водителя, и для управления электроэнергией, заряжающей/разряжающей накопитель энергии. Блок управления производит контроль в первом рабочем режиме до тех пор, пока величина степени зарядки накопителя энергии стремится к значению ниже, чем заданное, и выполняет переход во второй рабочий режим, когда величина степени зарядки становится ниже заданного значения; причем в первом рабочем режиме зарядка накопителя энергии посредством устройства генерирования энергии ограничена, а во втором рабочем режиме зарядка накопителя энергии посредством устройства генерирования энергии осуществляется так, что величина степени зарядки поддерживается в заданном диапазоне, при этом значение контрольного центра является центром. Блок управления изменяет значение контрольного центра в соответствии со степенью выполнения внешней зарядки как степенью выполнения зарядки накопителя энергии посредством устройства внешней зарядки.
Таким образом, согласно настоящему изобретению может быть создано перезаряжаемое извне гибридное транспортное средство, в котором снижение эффективности накопителя энергии может быть предотвращено в соответствии с характером управления пользователем.
Далее изобретение будет пояснено со ссылкой на чертежи, на которых:
Фиг.1 - общая конфигурация, когда накопитель энергии, установленный на гибридном транспортном средстве в соответствии с Вариантом 1 осуществления настоящего изобретения, заряжается посредством внешнего источника энергии;
Фиг.2 - структурная схема гибридного транспортного средства в соответствии с Вариантом 1 осуществления настоящего изобретения;
Фиг.3 - схематический вид конфигурации инвертора и электродвигателя-генератора;
Фиг.4 - нуль-фазовая эквивалентная схема инвертора и электродвигателя-генератора в режиме нулевого напряжения;
Фиг.5 - схематический вид конфигурации преобразователя;
Фиг.6 - иллюстративные изменения во времени СЗ накопителя энергии в процессе движения транспортного средства гибридному;
Фиг.7 - иллюстративное изменение во времени СЗ накопителя энергии, когда контрольное центральное значение СЗ изменяется поэтапно от контрольного центрального значения SOCC(P) до SOCC(N);
Фиг.8 - иллюстративное изменение во времени контрольного центрального значения СЗ по отношению к периоду отсутствия внешней зарядки Tcum;
Фиг.9 - функциональная схема, изображающая структуру системы управления в ГТС-ЭБУ в соответствии с Вариантом 1 осуществления настоящего изобретения;
Фиг.10 - блок-схема, относящаяся к способу изменения контрольного центрального значения СЗ в соответствии с Вариантом 1 осуществления настоящего изобретения;
Фиг.11 - пример допустимой характеристики энергии зарядки/разрядки, хранимой в блоке установки допустимой энергии зарядки/разрядки;
Фиг.12 - функциональная схема, изображающая структуру системы управления, регулирующую работу преобразования напряжения преобразователя, включенного в ГТС-ЭБУ в соответствии с Вариантом 1 осуществления настоящего изобретения;
Фиг.13 - функциональная схема, изображающая структуру системы управления ЭБУ батареи в соответствии с Вариантом 1 осуществления настоящего изобретения;
Фиг.14 - функциональная схема, изображающая структуру системы управления ГТС-ЭБУ в соответствии с Вариантом 2 осуществления настоящего изобретения; и
Фиг.15 - пример заданной характеристики энергии зарядки, хранимой в блоке установки заданной энергии зарядки.
Наилучшие варианты осуществления изобретения
Варианты осуществления настоящего изобретения будут подробно описаны со ссылкой на чертежи. На чертежах одинаковые или соответствующие части обозначаются одинаковыми ссылочными позициями, и их описание не повторятся.
Вариант 1 осуществления настоящего изобретения.
Ссылаясь на Фиг.1, гибридное транспортное средство 100 (в дальнейшем также именуемое как "транспортное средство 100") имеет двигатель внутреннего сгорания (двигатель) и электродвигатель-генератор, как будет описано далее, и двигается от движущих сил, образованных ими, отрегулированных в оптимальном отношении. Кроме того, транспортное средство 100 имеет накопитель энергии (не показан) для обеспечения энергией электродвигателя-генератора, установленного на нем. Накопитель энергии может заряжаться, получая энергию, образованную от работы двигателя внутреннего сгорания, когда система транспортного средства 100 активна (в дальнейшем обозначается как "режим IGON"), и он может быть подключен посредством электрического соединения через соединительный блок 200 к внешнему источнику энергии и может таким образом заряжаться, когда система транспортного средства 100 остановлена (в дальнейшем обозначается как "режим IGOFF"). В последующем описании для того чтобы отличать зарядку накопителя энергии во время движения транспортного средства 100, зарядка посредством внешнего источника энергии будет также обозначаться как "внешняя зарядка".
Соединительный блок 200 образует соединительное устройство для питания от электроснабжения от сети общего пользования в качестве примера внешнего источника энергии для транспортного средства 100, и он подсоединяется через силовой провод ACL, образованный шланговым кабелем или чем-либо в этом роде к станции 300 зарядки. Соединительный блок 200 подсоединяется к транспортному средству 100 во время внешней зарядки и он обеспечивает электроснабжение от сети общего пользования в качестве примера внешнего источника энергии посредством электрического соединения с транспортным средством 100. Со стороны транспортного средства 100 предусмотрен соединительный участок приема (не показан), который необходимо соединять с соединительным блоком 200 для получения электроснабжения от сети общего пользования.
Станция 300 зарядки получает электроснабжение от сети общего пользования, подведенной к дому 302 через линию PSL внешнего источника энергоснабжения, и подводит энергию к соединительному блоку 200. Устройство хранения соединительного блока 200 или устройство наматывания силового провода ACL, подсоединяемого к соединительному блоку 200 (оба не показаны), могут быть включены в станцию 300 зарядки. Кроме того, в станцию 300 зарядки может быть включено устройство учета или устройство обеспечения безопасности пользователя.
Внешний источник энергии, подводимый через соединительный блок 200 к транспортному средству 100, может быть электроэнергией, образованной панелью солнечной батареи, установленной на крыше дома 302.
Согласно Фиг.2, гибридное транспортное средство 100 в соответствии с Вариантом 1 осуществления настоящего изобретения включает в себя двигатель 36 внутреннего сгорания, устройство 38 распределения энергии, первый электродвигатель-генератор 34-1, второй электродвигатель-генератор 43-2, первый инвертор (INV1) 30-1, второй инвертор (INV2) 30-2, преобразователь (CONV) 8, накопитель 6 энергии, ЭБУ 4 батареи и ГТС-ЭБУ 2. В последующем описании первый и второй электродвигатели-генераторы 34-1 и 34-2 могут также обозначаться как MG1 и MG2 соответственно.
Двигатель 36 внутреннего сгорания работает на сгорании топлива, такого как бензин или другие нефтепродукты. Энергия, образованная посредством работы двигателя 36 внутреннего сгорания, передается в устройство 38 распределения энергии, механически соединенное с выходным валом (коленчатым валом) двигателя 36 внутреннего сгорания.
Устройство 38 распределения энергии механически соединено с двигателем 36 внутреннего сгорания и электродвигателями-генераторами 34-1 и 34-2 и выполняет сочетание и распределение энергии между ними. В качестве примера устройство 38 распределения энергии образовано планетарным зубчатым механизмом, включающим в себя три элемента: солнечное зубчатое колесо, водило и кольцевое зубчатое колесо, и двигатель 36 внутреннего сгорания и электродвигатели-генераторы 34-1 и 34-2 соединены с соответствующими элементами. Часть энергии, образованная двигателем 36 внутреннего сгорания, объединяется с энергией от электродвигателя-генератора 34-2 и передается к ведущему колесу 32, и оставшаяся часть энергии передается к электродвигателю-генератору 34-1 и преобразуется электродвигателем-генератором 34-1 в электроэнергию.
Устройство 16 измерения скорости движения транспортного средства установлено рядом с валом вращения ведущего колеса 32 и определяется скорость вращения ведущего колеса 32, т.е. скорость SP движения транспортного средства транспортного средства 100.
Электродвигатель-генератор 34-1 функционирует исключительно как генератор электрического тока (генератор), который получает энергию, образованную работой двигателя 36 внутреннего сгорания, и генерирует электроэнергию и, получая вращательную движущую силу, передаваемую посредством устройства 38 распределения энергии, генерирует электроэнергию.
Электродвигатель-генератор 34-2 функционирует как электродвигатель (мотор), который образует движущую силу от электроэнергии, сгенерированной электродвигателем-генератором 34-1, и/или от электроэнергии, разряжаемой от накопителя 6 энергии. Вращательная движущая сила, образованная электродвигателем-генератором 34-1, объединяется с вращательной движущей силой от двигателя 36 внутреннего сгорания посредством устройства 38 распределения энергии и передается на ведущее колесо 32. Электродвигатель-генератор 34-2 также может работать как генератор электрического тока (генератор) при торможении транспортного средства, например когда водитель приводит в действие тормоз, и он способен регенерировать электроэнергию из кинетической энергии транспортного средства 100 и возвращать энергию в накопитель 6 энергии.
В качестве примера электродвигатели-генераторы 34-1 и 34-2 являются трехфазными синхронными ротационными электромашинами переменного тока, имеющими ротор со встроенным постоянным магнитом. Кроме того, каждый статор электродвигателей-генераторов 34-1 и 34-2 включает в себя катушки трехфазной обмотки статора, соединенные Y-образно (звездой). Во время внешней зарядки, для соединения точек соответствующих катушек обмотки статора, т.е. к нулевым точкам N1 и N2, внешняя энергия подводится через силовой провод ACL (положительная линия ACLp электропитания и отрицательная линия ACLn электропитания).
Инверторы 30-1 и 30-2 подключены с помощью электрического соединения к электродвигателям-генераторам 34-1 и 34-2 соответственно и соединены параллельно с преобразователем 8. Инверторы 30-1 и 30-2 управляют электроэнергией, передаваемой к/от электродвигателей-генераторов 34-1 и 34-2 соответственно. В качестве примера инверторы 30-1 и 30-2 образованы в виде мостовой схемы, включая плечи трехфазной системы, и работы по преобразованию энергии в следствие этого соответственно управляются командами на переключение PWM1 и PWM2, поступающими от ГТС-ЭБУ2, который будет описан позже. В настоящем варианте осуществления изобретения инвертор 30-1 и электродвигатель-генератор 34-1 выполняют функцию "средств генерирования энергии" или "устройства генерирования энергии", а инвертор 30-2 и электродвигатель-генератор 34-2 выполняют роль "средств генерирования движущей силы" или "устройства генерирования движущей силы".
Более того, во время внешней зарядки инверторы 30-1 и 30-2 работают скоординированным образом для преобразования питания от внешнего источника энергии (однофазный переменный ток), подводимого к нулевым точкам N1 и N2 электродвигателей-генераторов 34-1 и 34-2 соответственно в питание постоянного тока и для зарядки накопителя 6 энергии.
Согласно Фиг.3, инвертор 30-1 включает в себя транзисторы Q1Up и Q1Un, транзисторы Q1Vp и Q1Vn, и транзисторы Q1Wp и Q1Wn, образующие U-, V- и W-фазную цепи плеча соответственно, и каждая цепь плеча включена между основной положительной электрической линии MPL и основной отрицательной электрической линии MNL. Узлы соединений N1U, N1V и N1W транзисторов в соответствующей цепи плеча подсоединены к соответствующей катушке обмотки статора (не показаны) электродвигателя-генератора 34-1, и соответствующие фазные напряжения подводятся к электродвигателю-генератору 34-1. В качестве примера транзисторы Q1Up, Q1Un, Q1Vp, Q1Vn, Q1Wp и Q1Wn выполнены в виде переключающих элементов, таких как БТИЗ (Биполярный Транзистор с Изолированным Затвором).
Кроме того, инвертер 30-1 включает диоды D1Up, D1Un, D1Vp, D1Vn, D1Wp, и D1Wn и каждый из диодов соединен параллельно с соответствующим транзистором так, что он может заставлять протекать ток обратной связи со стороны эмиттера в сторону коллектора транзистора, имеющего такое же условное обозначение.
В то время как транспортное средство 100 двигается, в инверторе 30-1 посредством операций переключения соответствующих транзисторов в ответ на команду на переключение PWM1 проводится работа по преобразованию энергии между питанием постоянного тока и питанием переменного тока. Более конкретно выбраны транзисторы Q1Up, Q1Vp и Q1Wp на верхнем плече (положительный вывод), соединенные с основной положительной электрической линией MPL, и транзисторы Q1Un, Q1Vn и Q1Wn на нижнем плече (отрицательный вывод), соединенные с основной отрицательной электрической линией MNL, последовательно один от верхнего плеча и один от нижнего плеча, и выбранные два транзистора приведены в состояние "включено". Два транзистора, образующие одно одинаковое плечо, не выбираются одновременно.
Существует шесть различных сочетаний транзисторов, выбранных таким способом. Кроме того, величина преобразования энергии и направление преобразования энергии (питание постоянного тока в питание переменного тока или питание переменного тока в питание постоянного тока) могут регулироваться посредством настройки периода (скважности) и фазности (выдержки) проведения тока в каждом транзисторе.
Аналогично инвертору 30-1 инвертор 30-2 включает в себя транзисторы Q2Up и Q2Un, транзисторы Q2Vp и Q2Vn и транзисторы Q2Wp и Q2Wn, образующие U-, V- и W-фазную цепи плеча соответственно. Узлы соединений N2U, N2V и N2W транзисторов в соответствующей цепи плеча подсоединены к соответствующей катушке обмотки статора (не показаны) электродвигателя-генератора 34-2, и соответствующие фазные напряжения подводятся к электродвигателю-генератору 34-2. Кроме того, инвертор 30-2 включает в себя диоды D2Up, D2Un, D2Vp, D2Vn, D2Wp, и D2Wn. Работа по преобразованию энергии аналогична работе инвертора 30-1, описанной выше и, вследствие этого, подробное описание не будет повторяться.
Далее будет описана работа инверторов 30-1 и 30-2 и электродвигателей-генераторов 34-1 и 34-2 во время внешней зарядки.
Когда накопитель 6 энергии должен заряжаться внешним источником энергии, инверторы 30-1 и 30-2 работают в "режиме нулевого напряжения", отличающемся от нормальной операции переключения, описанной выше. В "режиме нулевого напряжения" три транзистора совместно переключаются (включаются или выключаются) в каждом из плеч - верхнем и нижнем. В данном рабочем режиме три переключающих элемента на верхнем плече все переходят в одинаковый режим оперативных переключений (все включены или все выключены), и три транзистора на нижнем плече все переходят в одинаковый режим оперативных переключений.
На Фиг.4 изображена нуль-фазовая эквивалентная схема инверторов 30-1 и 30-2 и электродвигателей-генераторов 34-1 и 34-2.
Согласно Фиг.4, когда инверторы 30-1 и 30-2 работают в режиме нулевого напряжения, как было описано выше, три транзистора Q1Up, Q1Vp и Q1Wp и диоды D1Up, D1Vp и D1Wp на верхнем плече инвертера 30-1 изображаются в собирательном значении, как верхнее плечо ARM1p, и три транзистора Q1Un, Q1Vn и Q1Wn и диоды D1Un, D1Vn и D1Wn на нижнем плече инвертора 30-1 изображаются в собирательном значении, как нижнее плечо ARM1n. Аналогичным образом три транзистора и диоды на верхнем плече инвертора 30-2 изображаются в собирательном значении, как верхнее плечо ARM2p, и три транзистора и диоды на нижнем плече инвертора 30-2 изображаются в собирательном значении, как нижнее плечо ARM2n.
В частности, каждое из плеч ARM1p, ARM1n, ARM2p, и ARM2n включает в себя транзистор Q, изображающий в собирательном значении три транзистора, и диод D, изображающий в собирательном значении три диода. Вследствие этого, нуль-фазовая эквивалентная схема может быть рассмотрена как однофазный инвертор, способный преобразовывать питание постоянного тока, подводимое через основную положительную электрическую линию MPL и основную отрицательную электрическую линию MNL, в однофазное питание переменного тока, и способный преобразовывать однофазное питание переменного тока, подводимое к нулевым точкам N1 и N2 через положительную линию электропитания ACLp и отрицательную линию электропитания ACLn, в питание постоянного тока.
Таким образом, посредством управления командами на переключение PWM1 и PWM2 скоординированным образом, имея инверторы 30-1 и 30-2, работающие как однофазные инверторы, можно генерировать питание постоянного тока для зарядки накопителя 6 энергии от однофазного питания переменного тока, подводимого от внешнего источника энергии, и подводить энергию к основной положительной электрической линии MPL и основной отрицательной электрической линии MNL.
Снова ссылаясь на Фиг.2, преобразователь 8 является преобразователем напряжения, расположенным между накопителем 6 энергии и инверторами 30-1 и 30-2, для выполнения работы по преобразованию напряжения между накопителем 6 энергии и инверторами 30-1 и 30-2. Более конкретно преобразователь 8 способен усиливать разряжаемую энергию (выходную энергию) от накопителя 6 энергии и подводить результат к инверторам 30-1 и 30-2 и способен снижать рекуперированную энергию подводимую от инверторов 30-1 и 30-2 и подводить результат к накопителю 6 энергии. Кроме того, устройство 13 измерения напряжения, подсоединенное между основной положительной электрической линией MPL и основной отрицательной электрической линией MNL, определяет величину напряжения Vh, возникающего между этими электрическими линиями.
Преобразователь 8 установлен для повышения напряжения, которое должно подводиться к электродвигателям-генераторам 34-1 и 34-2 для увеличения рабочего диапазона (диапазона угловой скорости вращения) электродвигателей-генераторов 34-1 и 34-2. Следовательно, в зависимости от рабочего диапазона электродвигателей-генераторов 34-1 и 34-2 и от выходного напряжения накопителя 6 энергии может быть использована конструкция, не имеющая преобразователя 8.
Кроме того, преобразователь 8 выполнен как, например, цепь повышения/понижения напряжения "модуляторного" типа, способная как к операциям по повышению напряжения, так и к операциям по понижению напряжения. Все данные операции по преобразованию напряжения управляются посредством команды на переключение PWC от ГТС-ЭБУ 2.
Согласно Фиг.5, цепь 8а повышения/понижения напряжения, образующая преобразователь 8, включает в себя два последовательно подсоединенных транзистора Q1A и Q1B. Последовательно подсоединенные транзисторы Q1A и Q1B имеют один конец, соединенный с основной положительной электрической линией MPL через электрическую линию LN1A, и другой конец, соединенный с электрической линией LN1C, обычно соединяющей основную отрицательную электрическую линию MNL с отрицательной электрической линией NL1. Кроме того, узел соединения между транзисторами Q1A и Q1B подсоединяется к положительной электрической линии PL1 через индуктор L1 и электрическую линию LN1B. Более того, между коллектором и эмиттером транзисторов Q1A и Q1B, диоды D1A и D1B подсоединяются параллельно, соответственно обеспечивая движение тока со стороны эмиттера в сторону коллектора.
Кроме того, между положительной электрической линией PL и отрицательной электрической линией NL установлен сглаживающий конденсатор С1 для снижения переменной составляющей тока, включенной в энергию, обмениваемую между накопителем 6 энергии и преобразователем 8. Более того, сглаживающий конденсатор С1 также производит эффект поглощения тока импульсов, образующегося в момент, когда накопитель энергии и преобразователь 8 подключаются с помощью электрического соединения, и таким образом предотвращается повреждение транзисторов Q1A и Q1B и диодов D1A и D1B, вызываемое данным током импульсов.
Транзисторы Q1A и Q1B, выполняющие операции переключения в ответ на команду на переключения PWC, осуществляют операции по повышению и понижению напряжения. В операции по повышению напряжения транзистор Q1B остается включенным, в то время как транзистор Q1A переключается с заданной скважностью. Посредством операций переключения транзистора Q1A сохранение и освобождение электромагнитной энергии повторяется в индукторе L1, и напряжение, соответствующее электромагнитной энергии, аккумулятивно выводится в сторону основной электрической линии ML. В операции по понижению напряжения транзистор Q1A остается выключенным, а транзистор Q1B переключается с заданной скважностью. Посредством операций переключения ток поступает в транзистор Q1B только в период соответствующей скважности и, вследствие этого, напряжение, понижаемое в соответствии со скважностью, выводится на положительную электрическую линию PL1 и отрицательную электрическую линию NL1.
Вновь ссылаясь на Фиг.2, накопитель 6 энергии является перезаряжаемым накопительным элементом постоянного тока и он подсоединен посредством электрического соединения к преобразователю 8 через положительную электрическую линию PL и отрицательную электрическую линию NL. В качестве примера накопитель 6 энергии выполнен в виде перезаряжаемой батареи, такой как никель-гидридная батарея или ионно-литиевая батарея, или конденсатор с двойным электрическим слоем.
Когда транспортное средство двигается, накопитель 6 энергии заряжается электроэнергией, генерируемой электродвигателем-генератором 34-1, и разряжает сохраненную электроэнергию в электродвигатель-генератор 34-2 для создания ведущей силы. Во время внешней зарядки накопитель 6 энергии заряжается посредством внешнего источника энергии (в данном примере - электроснабжение от сети общего пользования).
Несмотря на то, что гибридное транспортное средство, оборудованное только одним накопителем 6 энергии, показано в качестве примера на Фиг.2, число накопителей энергии не ограничивается одним. Конфигурация установки ряда накопителей энергии может быть принята в зависимости от ходовых характеристик, требуемых от транспортного средства 100. В данном случае предпочтительна конфигурация, имеющая преобразователи 8 в том же количестве, что и количество, соответствующее количеству накопителей энергии.
Далее, устройство 10 измерения силы тока, подсоединяемое к положительной электрической линии PL, определяет значение силы тока Ib, проходящего между накопителем 6 энергии и преобразователем 8, а устройство 12 измерения напряжения, устанавливаемое между положительной электрической линией PL и отрицательной электрической линией NL, определяет значение напряжения Vb, связанного с зарядкой или разрядкой накопителя 6 энергии. Далее, устройство 14 измерения температуры расположено рядом с элементом аккумуляторной батареи, образующем накопитель 6 энергии, и оно определяет температуру Tb накопителя 6 энергии. Устройство 14 измерения температуры может выводить характерные значения величин, определяемые измерительными элементами, расположенными на соответствующих элементах аккумуляторных батарей, образующих накопитель 6 энергии.
Участок 40 приема соединительного устройства является участком, к которому должен подсоединяться соединительный блок 200 во время внешней зарядки для получения подводимой внешней энергии в транспортное средство 100, и он образован для того, чтобы обеспечивать связь между соединительным блоком 200 и внешней поверхностью транспортного средства 100. Участок 40 приема соединительного устройства подключается с помощью электрического соединения к нулевым точкам N1 и N2 электродвигателей-генераторов 34-1 и 34-2, и, когда соединительный блок 200 подсоединяется к участку 40 приема соединительного устройства, образуется канал подвода электрической энергии, который питает внешней энергией, подводимой через положительную линию ACLp электропитания и отрицательную линию ACLn электропитания к нулевым точкам N1 и N2.
Кроме того, блок 42 контроля устанавливается на участок 40 приема соединительного устройства для контроля за соединением между соединительным блоком 200 и участком 40 приема соединительного устройства. Блок 42 контроля имеет контактную площадку, проходящую через участок 40 приема соединительного устройства, и когда соединительный блок 200 подсоединяется к участку 40 приема соединительного устройства, она распознает сигнал CNCT соединителя от соединительного блока 200. Сигнал CNCT соединителя может быть образован блоком связи (не показан), установленным на станции 300 зарядки (Фиг.1).
Компоненты, образующие транспортное средство 100, приводятся в исполнение согласованным управляющим воздействием ГТС-ЭБУ 2 и ЭБУ 4 батареи. ГТС-ЭБУ 2 и ЭБУ 4 батареи подсоединяются друг к другу через линию передачи данных, позволяющую обмениваться различными сигналами и информацией.
ЭБУ 4 батареи является контроллером, в основном управляющим степ