Устройство для передачи и приема и способ передачи и приема сигнала

Иллюстрации

Показать все

Изобретение относится к способу передачи сигнала. Способ содержит вывод кадра, содержащего поток услуг; выполнение исправления ошибок для потока услуг, чтобы вывести данные с исправленными ошибками; создание сетевой информации сети для системы доставки, доставляющей поток услуг, и информации с описанием услуг, описывающей поток услуг, преобразование данных с исправленными ошибками в символы и создание сигнального кадра, содержащего символы, сигнального кадра, имеющего множество областей интервалов времени на каждой из множества частот; модуляцию сигнального кадра с использованием схемы мультиплексирования с ортогональным частотным разделением каналов и вставки защитного интервала в модулированный сигнальный кадр; и передачу модулированного сигнального кадра через аналоговый сигнал, в котором символы потока услуг смещены по времени и частоте. Изобретение также связано с соответствующим способом приема сигнала и с соответствующим приемником и передатчиком. Технический результат - увеличение скорости передачи и эффективности передачи данных. 4 н. и 8 з.п. ф-лы, 31 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к способу и устройству для передачи/приема сигнала и, более конкретно, к способу и устройству для увеличения скорости передачи данных (или эффективности передачи данных).

УРОВЕНЬ ТЕХНИКИ

С ростом развития цифровых широковещательных технологий пользователь получил возможность приема движущихся изображений высокой четкости (HD). С развитием алгоритма сжатия и высококачественного оборудования пользователь сможет в будущем пользоваться лучшими средами. Цифровое телевидение (DTV) принимает цифровые широковещательные сигналы и предоставляет пользователю множество дополнительных или добавочных услуг наряду с видео- и аудиоданными.

При широком распространении цифровых широковещательных технологий быстро увеличивается спрос на высококачественные видео- и аудиоуслуги и желаемый пользователем размер данных и число каналов вещания также увеличиваются.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Техническая проблема

Однако в существующей структуре кадра передачи трудно справиться с увеличением размера данных или количества широковещательных каналов. Соответственно, существует потребность в новой технологии передачи/приема сигналов, при которой эффективность использования полосы пропускания канала выше, чем при существующем способе передачи/приема сигналов, а стоимость, необходимая для формирования конфигурации сети передачи/приема сигнала, ниже.

Соответственно, настоящее изобретение направлено на устройства для передачи/приема сигнала и способ передачи/приема сигнала, которые, по существу, устраняют одну или более проблем, существующих из-за ограничений и недостатков предшествующего уровня техники.

Задача настоящего изобретения состоит в решении проблемы, заключающейся в способе передачи/приема сигнала и устройстве для передачи/приема сигнала, которые способны использовать существующую сеть передачи/приема сигнала и повысить эффективность передачи данных.

Техническое решение

Настоящее изобретение обеспечивает устройство для передачи сигнала, устройство, содержащее входной процессор, выполненный с возможностью вывода кадра, содержащего поток данных услуг, блок кодирования и модуляции, выполненный с возможностью исправления ошибок потока данных услуг и вывода данных с исправленными ошибками, блок сигнальной информации, выполненный с возможностью создания сетевой информации для системы доставки, доставляющей поток услуг и информацию с описанием услуг, устройство компоновки кадров, выполненное с возможностью преобразования данных с исправленными ошибками в символы и создания сигнального кадра, содержащего символы, причем сигнальный кадр имеет множество областей интервалов времени на каждой из множества частот, блок модуляции, выполненный с возможностью модуляции сигнального кадра, используя схемы мультиплексирования с ортогональным частотным разделением каналов, и вставления защитного интервала в модулированный символ, и аналоговый процессор, выполненный с возможностью передачи модулированного сигнала через аналоговый сигнал, в котором устройство компоновки кадра выполнено с возможностью компоновки сигнального кадра, в котором символы потока услуг смещаются по времени и частоте. Устройство может дополнительно содержать кодер мультитрактового сигнала, выполненный с возможностью кодирования потока услуг в сигнальном кадре и вывода кодированного потока услуг в мультитракт. Сетевая информация содержит, по меньшей мере, информацию о структуре передачи сигнала, переданного, по меньшей мере, через один тракт, или информацию о защитном интервале и одну из центральных частот в сигнальном кадре.

Кроме того, настоящее изобретение обеспечивает также способ передачи сигнала, способ, содержащий вывод кадра, содержащего поток услуг, выполнение исправления ошибок потока услуг, чтобы вывести данные с исправленными ошибками, создание сетевой информации для системы доставки, доставляющей поток услуг, и информации с описанием услуг, описывающей поток услуг, преобразование данных с исправленными ошибками в символы, и создание сигнального кадра, содержащего символы, причем сигнальный кадр имеет множество областей интервалов времени на каждой из множества частот, модулирование сигнального кадра с использованием схемы мультиплексирования с ортогональным частотным разделением каналов и вставление защитного интервала в кадр модулированного сигнала и передачу кадра модулированного сигнала через аналоговый сигнал, в котором символы потока услуг смещаются по времени и частоте.

В другом аспекте настоящее изобретение обеспечивает устройство для приема сигнала, устройство, содержащее приемный блок, выполненный с возможностью приема сигнала, содержащегося в сигнальном кадре, имеющем множество областей интервалов времени на каждой из множества частот, демодулятор, выполненный с возможностью удаления защитного интервала в сигнале, демодуляции сигнала с удаленным защитным интервалом, используя схему мультиплексирования с ортогональным частотным разделением каналов, и получения из преамбулы демодулированного сигнала сетевой информации для системы доставки, доставляющей поток услуг в сигнальном кадре, и информации с описанием услуг, описывающей поток услуг, синтаксический анализатор кадра, выполненный с возможностью синтаксического анализа сигнального кадра, используя сетевую информацию и информацию с описанием услуг, и вывода потока услуг из проанализированного сигнального кадра, блок декодирования и демодуляции, выполненный с возможностью исправления ошибок потока услуг, и выходной процессор, выполненный с возможностью демультиплексирования и вывода потока услуг с исправленными ошибками. Устройство для приема сигналов может дополнительно содержать декодер мультитрактового сигнала, выполненный с возможностью декодирования демодулированного сигнала и вывода декодированного сигнала в единый тракт, когда принятый сигнал передается через мультитракт.

Также настоящее изобретение обеспечивает способ приема сигнала, содержащий прием сигнала, содержащегося в сигнальном кадре, имеющем множество областей интервалов времени на каждой из множества частот, удаление защитного интервала в сигнале, демодуляцию сигнала с удаленным защитным интервалом, используя схему мультиплексирования с ортогональным частотным разделением каналов, и получение из преамбулы демодулированного сигнала сетевой информации для системы доставки, доставляющей поток услуг в сигнальном кадре, и информации с описанием услуг, описывающей поток услуг, синтаксический анализ сигнального кадра, используя сетевую информацию и информацию с описанием услуг, и вывод потока услуг из проанализированного сигнального кадра, выполнение исправления ошибок для потока услуг и демультиплексирование и вывод потока услуг с исправленными ошибками.

Преимущества

В соответствии со способом и устройством для передачи/приема сигналов согласно настоящему изобретению сигнал передачи может легко обнаруживаться и восстанавливаться и характеристики передачи/приема сигнала общей системы передачи/приема могут быть улучшены.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 - сигнальный кадр для передачи услуг в соответствии с настоящим изобретением.

Фиг.2 - первый пилотный сигнал (Р1), содержащийся в сигнальном кадре, показанном на фиг.1, в соответствии с настоящим изобретением.

Фиг.3 - сигнальное окно, соответствующее настоящему изобретению.

Фиг.4 - блок-схема устройства для передачи сигнала, соответствующего одному варианту осуществления настоящего изобретения.

Фиг.5 - блок-схема входного процессора 110, соответствующего настоящему изобретению.

Фиг.6 - блок-схема блока кодирования и модуляции, соответствующего настоящему изобретению

Фиг.7 - блок-схема устройства компоновки кадра, соответствующего настоящему изобретению.

Фиг.8 - блок-схема кодера MIMO/MISO, соответствующего настоящему изобретению.

Фиг.9 - блок-схема модулятора, соответствующего настоящему изобретению.

Фиг.10 - блок-схема аналогового процессора 160, соответствующего настоящему изобретению.

Фиг.11 - блок-схема устройства приема сигнала, соответствующего настоящему изобретению.

Фиг.12 - блок-схема приемника сигнала, соответствующего настоящему изобретению.

Фиг.13 - блок-схема демодулятора, соответствующего настоящему изобретению.

Фиг.14 - блок-схема декодера MIMO/MISO, соответствующего настоящему изобретению.

Фиг.15 - блок-схема синтаксического анализатора кадров, соответствующего настоящему изобретению.

Фиг.16 - блок-схема декодирующего демодулятора, соответствующего настоящему изобретению.

Фиг.17 - блок-схема выходного процессора, соответствующего настоящему изобретению.

Фиг.18 - блок-схема устройства для передачи сигнала, соответствующего другому варианту осуществления настоящего изобретения.

Фиг.19 - блок-схема устройства для приема сигнала, соответствующего другому варианту осуществления настоящего изобретения.

Фиг.20 - NIT, содержащаяся в информации таблицы услуг, соответствующая настоящему изобретению.

Фиг.21 - концептуальная схема способа приема информации сигнального кадра, используя NIT, соответствующего настоящему изобретению.

Фиг.22 - дескриптор системы доставки, содержащийся в NIT, соответствующей настоящему изобретению.

Фиг.23 - SDT, соответствующая настоящему изобретению.

Фиг.24 - значения поля совокупности, содержащегося в дескрипторе системы доставки, в соответствии с настоящим изобретением.

Фиг.25 - значения поля "guard_interval", содержавшегося в дескрипторе системы доставки, в соответствии с настоящим изобретением.

Фиг.26 - значения поля "pilot_pattern", содержащегося в дескрипторе системы доставки, в соответствии с настоящим изобретением.

Фиг.27 - значения поля "error_correction_mode", содержащегося в дескрипторе системы доставки, в соответствии с настоящим изобретением.

Фиг.28 - дескриптор, пригодный для использования в дескрипторе системы доставки в соответствии с настоящим изобретением.

Фиг.29 - значения поля "MIMO_indicator" в соответствии с настоящим изобретением.

Фиг.30 - блок-схема устройства для приема сигнала, соответствующего еще одному варианту осуществления настоящего изобретения.

Фиг.31 - блок-схема последовательности выполнения операций способа приема сигнала в соответствии с настоящим изобретением.

ПРЕДПОЧТИТЕЛЬНЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

В последующем описании термин "услуга" указывает либо на содержание широковещательной радиопередачи, которая может передаваться устройством передачи/приема сигналов, либо на предоставление содержания.

Прежде чем описывать варианты осуществления устройства передачи/приема сигнала, соответствующего настоящему изобретению, здесь далее будет описан сигнальный кадр, передаваемый/принимаемый устройством передачи/приема сигнала.

На фиг.1 показан сигнальный кадр для передачи услуги в соответствии с настоящим изобретением.

Сигнальный кадр, приведенный на фиг.1, показывает пример сигнального кадра для широковещательной передачи услуги, содержащей аудио/видеопотоки (A/V). В этом случае одиночная услуга мультиплексируется во временном и частотном каналах и мультиплексированная услуга передается. Упомянутая выше схема передачи сигнала называется схемой временного-частотного распределения (TFS). По сравнению с существующим уровнем техники, на котором единая услуга передается в единой радиочастотной (RF) полосе, устройство передачи сигнала, соответствующее настоящему изобретению, передает связанный с услугой сигнал в нескольких радиочастотных полосах, так что при этом может быть получен выигрыш статистического мультиплексирования, дающий возможность передавать гораздо больше услуг. Устройство передачи/приема сигнала передает одиночную услугу по нескольким радиочастотным каналам, получая выигрыш от разноса по частоте.

Услуги с первой по третью (Services 1-3) передаются по четырем полосам в радиочастотном диапазоне (RF1-RF4). Однако это количество полос радиочастотного диапазона и такое количество услуг были раскрыты только в качестве примера, и, таким образом, по мере необходимости, могут также использоваться другие количества. Два опорных сигнала (то есть первый пилот-сигнал (Р1) и второй пилот-сигнал (P2)) расположены в начальной части сигнального кадра. Например, в случае полосы RF1 первый пилот-сигнал (Р1) и второй пилот-сигнал (P2) располагаются в начальной части сигнального кадра. Полоса RF1 содержит три временных интервала (слота), связанные с Услугой 1, два слота, связанные с Услугой 2, и один слот, связанный с Услугой 3. Слоты, связанные с другими услугами, могут быть также расположены в других слотах (Слоты 4-17), расположенных после того, как одиночный слот связан с Услугой 3.

Полоса RF2 содержит первый пилот-сигнал (Р1), второй пилот-сигнал (P2) и другие слоты 13-17. Кроме того, полоса RF2 содержит три слота, связанные с Услугой 1, два слота, связанные с Услугой 2, и одиночный слот, связанный с Услугой 3.

Услуги 1-3 мультиплексируются и затем передаются в полосы RF3 и RF4 в соответствии со схемой частотно-временного распределения (TFS). Схема модуляции для передачи сигнала может быть основана на схеме мультиплексирования с ортогональным частотным разделением каналов (OFDM).

В сигнальном кадре индивидуальные услуги смещаются в радиочастотные полосы и по оси времени.

Если сигнальные кадры, соответствующие упомянутому выше сигнальному кадру, последовательно выстраиваются по времени, суперкадр может быть составлен из нескольких сигнальных кадров. Будущий расширенный кадр может также быть расположен среди нескольких сигнальных кадров. Если будущий расширенный кадр расположен среди нескольких сигнальных кадров, суперкадр может заканчиваться в будущем расширенном кадре.

На фиг.2 показан первый пилот-сигнал (Р1), содержащийся в сигнальном кадре, показанном на фиг.1, соответствующий настоящему изобретению.

Первый пилот-сигнал Р1 и второй пилот-сигнал P2 располагаются в начальной части сигнального кадра. Первый пилот-сигнал Р1 модулируется с помощью режима 2К FFT и может передаваться одновременно с защитным интервалом в 1/4. На фиг.2 полоса 7,61 МГц первого пилота-сигнала P1 содержит полосу 6,82992 МГц. Первый пилот-сигнал использует 256 несущих из числа 1705 активных несущих. Одиночная активная несущая используется, в среднем, для каждых 6 несущих. Интервалы данные-несущая могут быть расположены в нерегулярном порядке 3, 6 и 9. На фиг.2 сплошная линия указывает местоположение используемой несущей тонкая пунктирная линия указывает местоположение неиспользуемой несущей и штрихпунктирная линия указывает центральное местоположение неиспользуемой несущей. В первом пилоте-сигнале используемая несущая может преобразовываться в символы с помощью двоичной фазовой манипуляции (BPSK) и псевдослучайная последовательность битов (PRBS) может быть модулирована. Размер FFT, используемый для второго пилота-сигнала, может быть обозначен несколькими PRBS.

Устройство приема сигнала обнаруживает структуру пилот-сигнала и распознает частотно-временное распределение (TFS), используя обнаруженную структуру. Устройство приема сигнала получает размер FFT второго пилот-сигнала, компенсирует грубое смещение по частоте принимаемого сигнала и получает синхронизацию по времени.

Тип передачи и основные параметры передачи могут быть установлены в первом пилот-сигнале.

Второй пилот-сигнал P2 может быть передан с размером FFT и защитным интервалом, равными их значениям в символе данных. Во втором пилот-сигнале единая несущая используется как пилот-сигнал с интервалами в три несущих. Устройство приема сигнала компенсирует точное смещение синхронизации по частоте, используя второй пилот-сигнал, и выполняет точную синхронизацию по времени. Второй пилот-сигнал передает информацию первого уровня (Ll) из числа уровней модели взаимодействия открытых систем (OSI). Например, второй пилот-сигнал может содержать физический параметр и информацию о структуре кадра. Второй пилот-сигнал передает значение параметра, посредством которого приемник может получить доступ к потоку услуг канала физического уровня (PLP).

Информация уровня L1 (Уровень 1), содержащаяся во втором пилот-сигнале P2, является следующей.

Информация уровня 1 (L1) содержит индикатор длины, указывающий длину данных, в том числе информации L1, так чтобы можно было легко использовать сигнальные каналы Уровней 1 и 2 (L1 и L2). Информация уровня 1 (L1) содержит индикатор частоты, длину защитного интервала, максимальное количество блоков FEC (прямого исправления ошибок) для каждого кадра, связанных с индивидуальными физическими каналами, и количество фактических блоков FEC, которое должно содержаться в буфере блоков FEC, связанном с текущим/предыдущим кадром в каждом физическом канале. В этом случае индикатор частоты указывает информацию о частоте, соответствующую радиочастотному каналу.

Информация уровня 1 (L1) может содержать множество информации, связанной с индивидуальными слотами. Например, информация уровня 1 (L1) содержит количество кадров, связанных с услугой, начальный адрес слота, имеющий точность OFDM-несущей, содержащейся в символе OFDM, длину слота, количество слотов, соответствующее несущей OFDM, число битов, добавленных в последней несущей OFDM, информацию о модуляции услуги, информацию о скорости режима услуги и информацию о схеме со многими входами и многими выходами (MIMO).

Информация уровня 1 (L1) может содержать идентификатор ячейки, флажок услуги, подобный сообщению уведомления об услуге (например, экстренное сообщение), количество текущих кадров и количество дополнительных битов для будущего использования. В этом случае идентификатор ячейки указывает широковещательную зону, охваченную передачей широковещательного передатчика.

Второй пилот-сигнал P2 выполнен с возможностью осуществления оценки канала для декодирования символа, содержащегося в сигнале P2. Второй пилот-сигнал P2 может использоваться как начальное значение для оценки канала для следующего символа данных. Второй пилот-сигнал P2 может также передавать информацию уровня 2 (L2). Например, второй пилот-сигнал может описать информацию, связанную с услугой передачи, в информации уровня 2 (L2). Устройство передачи сигнала декодирует второй пилот-сигнал таким образом, что оно может получить информацию об услуге, содержащуюся в кадре с временным-частотным распределением (TFS), и может эффективно выполнить сканирование канала. Кроме того, эта информация уровня 2 (L2) может вводиться в конкретный PLP кадра TFS. В другом случае информация L2 может быть введена в конкретный PLP и информация с описанием услуги также может быть передана в конкретном PLP.

Например, второй пилот-сигнал может содержать два символа OFDM режима 8k FFT. В целом, второй пилот-сигнал может быть любым из следующих: одиночный символ OFDM режима 32K FFT, одиночный символ OFDM режима 16k FFT, два символа OFDM режима 8k FFT, четыре символа OFDM режима 4k FFT и восемь символов OFDM режима 2k FFT.

Другими словами, одиночный символ OFDM, имеющий размер большого FFT или нескольких символов OFDM, каждый из которых имеет размер малого FFT, может содержаться во втором пилот-сигнале P2, так чтобы мог сохраняться объем, пригодный для передачи в пилот-сигнале.

Если информация, которая должна быть передана во втором пилот-сигнале, превышает объем символа OFDM второго пилот-сигнала, символы OFDM после второго пилот-сигнала могут использоваться дополнительно. Информация L1 (Уровень 1) и L2 (Уровень 2), содержащаяся во втором пилот-сигнале, кодируется с исправлением ошибок и затем чередуется таким образом, чтобы выполнялось восстановление данных, несмотря на присутствующие импульсные помехи. Как описано выше, информация L2 может также быть введена в конкретный PLP, передающий информацию с описанием услуг.

На фиг.3 показано сигнальное окно, соответствующее настоящему изобретению. Кадр с временным-частотным распределением (TFS) показывает концепцию смещения сигнальной информации. Информация уровня 1 (L1), содержащаяся во втором пилот-сигнале, содержит информацию о структуре кадра и информацию физического уровня, запрошенную устройством приема сигнала, декодирующим символ данных. Поэтому, если информация о следующих символах данных, расположенных после второго пилот-сигнала, содержится во втором пилот-сигнале и результирующий второй пилот-сигнал передается, устройство приема сигнала может быть неспособно немедленно декодировать упомянутые выше последующие символы данных из-за времени декодирования второго пилот-сигнала.

Поэтому, как показано в фиг.3, информация L1, содержащаяся во втором пилот-сигнале (P2), содержит информацию о размере одиночного кадра с временным-частотным распределением (TFS) и содержит информацию, содержащуюся в сигнальном окне в месте, удаленном от второго пилот-сигнала на величину смещения сигнального окна.

Между тем, чтобы выполнить оценку канала для символа данных, составляющего услугу, символ данных может содержать рассеянный пилот-сигнал и непрерывный пилот-сигнал.

Здесь далее будет описана система передачи/приема сигнала, способная к передаче/приему сигнала, показанного на фиг.1-3. Индивидуальные услуги могут передаваться и приниматься по нескольким радиочастотным каналам. Канал для передачи индивидуальных услуг или потока, передаваемого через этот канал, называют PLP.

На фиг.4 показана блок-схема, показывающая устройство для передачи сигнала в соответствии с одним вариантом осуществления настоящего изобретения. Со ссылкой на фиг.4, устройство передачи сигнала содержит входной процессор 110, блок 120 кодирования и модуляции, устройство 130 компоновки кадра, кодер 140 MIMO/MISO, множество модуляторов (150a..., 150r) кодера 140 MIMO/MISO и множество аналоговых процессоров (160a..., 160r).

Входной процессор 110 принимает потоки, содержащие несколько услуг, генерирует P кадров в полосе модулирующего сигнала (P - натуральное число), которые содержат информацию модуляции и кодирования, соответствующую трактам передачи индивидуальных услуг, и выводит P кадров в полосе модулирующего сигнала.

Блок 120 кодирования и модуляции принимает кадры в полосе частот модулирующего сигнала от входного процессора 110, выполняет кодирование канала и перемежевание на каждом из кадров в полосе частот модулирующих сигналов и выводит результат кодирование канала и перемежевания.

Устройство 130 компоновки кадров формирует кадры, которые переносят кадры в полосе частот модулирующих сигналов, содержащиеся в P PLP, в R радиочастотных каналов (где R - натуральное число), разделяет сформированные кадры и выводит разделенные кадры на тракты, соответствующие R радиочастотным каналам. Несколько услуг могут быть мультиплексированы в едином радиочастотном канале одновременно. Сигнальные кадры, созданные устройством 140 компоновки кадров, могут содержать структуру с временным-частотным распределением (TFS), в которой услуга мультиплексируется во временной и частотной областях.

Кодер 140 MIMO/MISO кодирует сигналы, которые должны быть переданы в R высокочастотных каналов, и выводит кодированные сигналы к трактам, соответствующим А антенн (где A - натуральное число). Кодер MIMO/MISO 140 выводит кодированный сигнал, в котором единый сигнал должен быть передан в единый радиочастотный канал, который кодируется, к А антеннам, так что сигнал передается/принимается структурой MIMO (много входов -много выходов) или MISO (много входов - единый выход).

Модуляторы (150a..., 150r) модулируют сигналы в частотной области, введенные через тракт, соответствующий каждому радиочастотному каналу, превращая их в сигналы во временной области. Модуляторы (150a..., 150r) модулируют входные сигналы в соответствии со схемой мультиплексирования с частотным разделением каналов (OFDM) и выводят модулированные сигналы.

Аналоговые процессоры (160a..., 160r) преобразуют входные сигналы в радиочастотные сигналы, так чтобы радиочастотные сигналы могли быть выведены к радиочастотным каналам.

Устройство передачи сигналов, соответствующее этому варианту осуществления, может содержать заданное количество модуляторов (150a...,150r), соответствующее количеству радиочастотных каналов, и заданное количество аналоговых процессоров (160a...,160r), соответствующее количеству радиочастотных каналов. Однако в случае использования схемы MIMO количество аналоговых процессоров должно быть равно произведению R (то есть количества радиочастотных каналов) и А (то есть количества антенн).

На фиг.5 показана блок-схема входного процессора 110, соответствующего настоящему изобретению. Со ссылкой на фиг.5, входной процессор 110 содержит первый мультиплексор 111а потоков, первый разделитель 113a услуг и множество устройств (115a..., 115m) в первой полосе (ВВ) частот модулирующих сигналов. Входной процессор 110 содержит второй мультиплексор 111b потоков, второй разделитель 113b услуг и множество устройств (115n...,115p) во второй полосе (ВВ) частот модулирующих сигналов.

Например, первый мультиплексор 111а потоков принимает несколько транспортных потоков (TS) MPEG-2 и выводит мультиплексированные потоки TS MPEG-2. Первый разделитель 113a услуг принимает мультиплексированные потоки, разделяет входные потоки индивидуальных услуг и выводит разделенные потоки. Как описано выше, при условии, что услуга, переданная через канал физического уровня, называется PLP, первый разделитель 113a услуги разделяет услугу, которая должна быть передана каждому PLP, и выводит разделенную услугу.

Первые устройства (115a..., 115m) компоновки кадров в полосе ВВ организуют данные, содержащиеся в услуге, так чтобы они передавались в каждый PLP в форме определенного кадра, и выводят данные в виде определенным образом сформатированного кадра. Первые устройства (115a..., 115m) компоновки кадров в полосе ВВ организуют кадр, содержащий заголовок и полезную нагрузку, снабженную данными услуги. Заголовок каждого кадра может содержать информацию о режиме, основанную на модуляции и кодировании данных услуги, и значение счетчика, основанное на тактовой частоте модулятора, чтобы синхронизировать входные потоки.

Второй мультиплексор 111b потоков принимает несколько потоков, мультиплексирует входные потоки и выводит мультиплексированные потоки. Например, второй мультиплексор 111b потоков может мультиплексировать потоки Интернет-протокола (IP) вместо TS MPEG-2. Эти потоки могут быть инкапсулированы схемой инкапсуляции группового потока (GSE). Потоки, мультиплексированные вторым мультиплексором 111b потоков, могут быть любыми из потоков. Поэтому упомянутые выше потоки, отличные от потоков TS MPEG-2, называются групповыми потоками (потоки GS).

Второй разделитель 113b потоков принимает мультиплексированные групповые потоки, разделяет принятые групповые потоки согласно индивидуальным услугам (то есть типам PLP) и выводит разделенные потоки GS.

Вторые устройства (115n..., 115p) компоновки кадров компонуют данные, содержащиеся в услуге, так чтобы они передавались в индивидуальные PLP в форме определенного кадра, используемого в качестве блока обработки сигнала, и выводят результирующие данные услуги. Формат кадра, скомпонованного вторыми устройствами (115n..., 115p) компоновки кадров, может быть эквивалентен формату кадра, скомпонованного первыми устройствами (115a, ..., 115m) компоновки кадров в ВВ, если необходимо. Если требуется, может быть также предложен другой вариант осуществления. В другом варианте осуществления формат кадра, скомпонованный вторыми устройствами (115n,..., 115p) компоновки кадров в ВВ, может отличаться от формата, скомпонованного первыми устройствами (115a..., 115 m) компоновки кадров в ВВ. Заголовок TS MPEG-2 дополнительно содержит пакет Syncword, который не содержится в потоке GS, приводя в результате к появлению разных заголовков.

На фиг.6 показана блок-схема блока кодирования и модуляции, соответствующего настоящему изобретению. Блок кодирования и модуляции содержит первый перемежитель 123, второй кодер 125 и второй перемежитель 127.

Первый кодер 121 действует как внешний кодер входного кадра в полосе частот модулирующих сигналов и способен выполнять кодирование с исправлением ошибок. Первый кодер 121 выполняет кодирование с исправлением ошибок входного кадра в полосе частот модулирующих сигналов, используя схему Бозе-Чоудхури-Хоквингема (BCH). Первый перемежитель 123 выполняет чередование кодированных данных таким образом, что это препятствует созданию пакета ошибок в сигнале передачи. Первый перемежитель 123 не может содержаться в упомянутом выше варианте осуществления.

Второй кодер 125 действует как внутренний кодер выходных данных первого кодера 121 или выходных данных первого перемежителя 123 и способен выполнить кодирование с исправлением ошибок. Схема проверки на четность низкой интенсивности (LDPC) может использоваться как схема кодирования с исправлением ошибок. Второй перемежитель 127 смешивает данные, кодированные с исправлением ошибок, созданные вторым кодером 125, и выводит смешанные данные. Первый перемежитель 123 и второй перемежитель 127 способны выполнять чередование данных в битах.

Блок 120 кодирования и модуляции связан с единым потоком PLP. Поток PLP кодируется с исправление ошибок и модулируется блоком 120 кодирования и модуляции и затем передается устройству 130 компоновки кадров.

На фиг.7 показана блок-схема устройства компоновки кадров, соответствующего настоящему изобретению. Со ссылкой на фиг.7, устройство 130 компоновки кадров принимает потоки нескольких трактов блока 120 кодирования и модуляции и организует принятые потоки в единый сигнальный кадр. Например, устройство компоновки кадров может содержать первый преобразователь 131a и первый временной перемежитель 132a в первом тракте и может содержать второй преобразователь 131b и второй временной перемежитель 132b во втором тракте. Количество входных трактов равно количеству PLP для передачи услуг или количеству потоков, передаваемых через каждый PLP.

Первый преобразователь 131a выполняет преобразование данных, содержащихся во входном потоке, в соответствии со схемой преобразования первого символа. Например, первый преобразователь 131a может выполнить преобразование входных данных, используя схему QAM (например, 16 QAM, 64 QAM и 256 QAM).

Если первый преобразователь 131a выполняет преобразование символа, входные данные могут быть преобразованы в символы нескольких видов в соответствии с несколькими схемами преобразования символов. Например, первый преобразователь 131a классифицирует входные данные в блоке кадра в полосе частот модулирующих сигналов и субблоке кадра в полосе частот модулирующих сигналов. Индивидуальные классифицированные данные могут быть гибридным символом, преобразованным, по меньшей мере, двумя схемами QAM (например, 16 QAM и 64 QAM). Поэтому данные, содержащиеся в единой услуге, могут быть преобразованы в символы, основываясь на различных схемах преобразования символов, действующих в индивидуальных интервалах.

Первый временной перемежитель 132a принимает последовательность символов, преобразованную первым преобразователем 131a, и способен выполнять чередование во временной области. Первый преобразователь 131a преобразует в символы данные, которые содержатся в блоке кадра с исправленными ошибками, полученном от блока 120 кодирования и модуляции. Первый временной перемежитель 132a принимает последовательность символов, преобразованную первым преобразователем 131a, и чередует принятую последовательность символа в блоках кадра с исправленными ошибками.

Таким образом, p-й преобразователь 131p или p-й временной перемежитель 132p принимает данные услуги, которые будут переданы к p-му PLP, и преобразует данные услуги в символы в соответствии со схемой преобразования p-го символа. Преобразованные символы могут чередоваться во временной области. Следует отметить, что эта схема преобразования символов и эта схема чередования соответствуют первому временному перемежителю 132a и первому преобразователю 131a.

Схема преобразования символов первого преобразователя 131a может быть такой же или отличаться от схемы p-го преобразователя 131p. Первый преобразователь 131a и p-й преобразователь 131p способны преобразовывать входные данные в индивидуальные символы, используя одну и ту же или различные гибридные схемы преобразования символов.

Данные временных перемежителей, расположенных в индивидуальных трактах (то есть данные услуги, чередующиеся первым временным перемежителем 132a, и данные услуги, которые должны быть переданы к R радиочастотных каналов p-м временным перемежителем 132p), чередуются таким образом, что физический канал позволяет упомянутым выше данным чередоваться по нескольким радиочастотным каналам.

Вместе с потоками, принятыми по такому же количеству трактов, как и количество PLP, устройство 133 компоновки кадров TFS создает сигнальный кадр TFS, такой как упомянутый выше сигнальный кадр, так что услуга смещается по времени в соответствии с радиочастотными каналами. Устройство 133 компоновки кадра TFS разделяет данные услуги, принятые по любому из трактов, и выводит данные услуги, разделенные на данные R радиочастотных полос в соответствии со схемой планирования сигналов.

Устройство 133 компоновки кадра TFS принимает первый пилот-сигнал и второй пилот-сигнал от блока 137 сигнальной информации (обозначен как сигнал Ref/PL), компонует первый и второй пилот-сигналы в сигнальный кадр и вставляет сигнальный сигнал (L1 и L2) упомянутого выше физического уровня во второй пилот-сигнал. В этом случае первый и второй пилот-сигналы используются в качестве начальных сигналов сигнального кадра, содержавшегося в каждом радиочастотном канале из числа кадров сигнала TFS, принятых от блока 137 сигнальной информации (сигнал Ref/PL). Как показано на фиг.2, первый пилот-сигнал может содержать тип передачи и основные параметры передачи, а второй пилот-сигнал может содержать физический параметр и информацию о структуре кадра. Кроме того, второй пилот-сигнал содержит сигнальный сигнал L1 (Уровень 1) и сигнальный сигнал L2 (Уровень 2). Сетевая информация (здесь далее обозначена как NIT), содержащая информацию о радиочастотной структуре, передается через сигнальный сигнал L1. Информация с описанием услуги (здесь далее обозначена как SDT) для обеспечения информации об услуге передается через сигнальный сигнал L2. В то же время сигнальный сигнал L2, содержащий информацию с описанием услуги, также может быть передан в конкретном PLP.

R частотных перемежителей (137a..., 137r) чередуют в частотной области данные услуги, которые должны быть переданы к соответствующим радиочастотным каналам кадра сигнала TFS. Частотные перемежители (137a..., 137r) могут чередовать данные услуги на уровне ячеек данных, содержащихся в символе OFDM.

Поэтому данные услуги, которые должны быть переданы каждому радиочастотному каналу в сигнальном кадре TFS, являются частотно избирательными, обработанными с учетом фединга, так что они не могут быть потеряны в конкретной частотной области.

На фиг.8 показана блок-схема кодера MIMO/MISO, соответствующего настоящему изобретению. Со ссылкой на фиг.8, кодер MIMO/MISO кодирует входные данные, используя схему кодирования MIMO/MISO, и выводит кодированные данные к нескольким трактам. Если на приемном конце принимается сигнал, переданный по нескольким трактам, от одного или более трактов, возможно получить усиление (также называемое усиление при приеме на разнесенные антенны, усиление полезной нагрузки или усиление за счет мультиплексирования).

Кодер 140 MIMO/MISO кодирует данные услуги каждого тракта, созданные устройством 130 компоновки кадра, и выводит кодированные данные к А трактам, соответствующим количеству выходных антенн.

На фиг.9 показана блок-схема модулятора, соответствующего настоящему изобретению. Со ссылкой на фиг.9, модулятор содержит первый контроллер 151 мощности (PAPR Reduce 1), блок 153 преобразования во временной области (IFFT), второй контроллер 157 мощности (PAPR Reduce 2) и устройство 159 вставки защитного интервала.

Первый контроллер 151 мощности уменьшает PAPR (отношение пиковой и средней мощностей) для данных, переданных к R трактам передачи сигналов в частотной области.

Блок 153 преобразования во временной области (IFFT) преобразует принятые сигналы в частотной облас