Антитела против глобуломера а , их антигенсвязывающие части, соответствующие гибридомы, нуклеиновые кислоты, векторы, клетки-хозяева, способы получения указанных антител, композиции, содержащие указанные антитела, применения указанных антител и способы использования указанных антител

Иллюстрации

Показать все

Настоящее изобретение относится к иммунологии и биотехнологии. Предложены варианты антитела, специфичного в отношении, по меньшей мере, одного глобуломера Аβ (20-42). Каждый из вариантов характеризуется тем, что включает VH и VL области, каждая из которых содержит по три соответствующих CDR. Раскрыта антигенсвязывающая область антитела. Описаны: кодирующая нуклеиновая кислота, а также вектор, ее содержащий, и клетка-хозяин, несущая вектор, - используемые для получения антитела. Раскрыт способ получения антитела с использованием клетки. Предложенные изобретения могут найти применение в терапии и диагностике болезни Альцгеймера и других амилоидозах. 6 н. и 4 з.п. ф-лы, 11 ил., 9 табл.

Реферат

Изобретение относится к антителам против глобуломера Aβ, их антигенсвязывающим частям, гибридомам, продуцирующим указанные антитела, нуклеиновым кислотам, кодирующим указанные антитела, векторам, содержащим указанные нуклеиновые кислоты, клеткам-хозяевам, содержащим указанные векторы, способам получения указанных антител, композициям, содержащим указанные антитела, терапевтическим и диагностическим применениям указанных антител и соответствующих способов, относящимся к болезни Альцгеймера и другим амилоидозам.

В 1907 врач Алоис Альцгеймер впервые описал невропатологические признаки формы деменции, впоследствии названной в его честь (Alzheimer 1907). Болезнь Альцгеймера (AD) является наиболее частой причиной деменции среди пожилых с заболеваемостью приблизительно 10% в популяции старше 65 лет. С увеличением возраста вероятность заболевания также возрастает. В мировом масштабе существует приблизительно 15 миллионов пораженных людей и ожидают, что с дальнейшим увеличением продолжительности жизни число заболевших людей увеличится приблизительно в три раза в течение следующих десятилетий.

С молекулярной точки зрения болезнь Альцгеймера (AD) характеризуется накоплением аномально агрегированных белков. В случае внеклеточных амилоидных бляшек эти отложения состоят главным образом из филаментов пептида β-амилоида, в случае внутриклеточных нейрофибриллярных узлов (NFT) - из белка tau. Пептид β-амилоида (Aβ) образуется из белка-предшественника β-амилоида посредством протеолитического расщепления. Это расщепление происходит благодаря кооперативной активности нескольких протеаз, обозначенных α-, β- и γ-секретазой. Расщепление приводит к ряду специфических фрагментов различной длины. Амилоидные бляшки состоят в основном из пептидов длиной 40 или 42 аминокислоты (Aβ40, Aβ42). Доминирующим продуктом расщепления является Aβ40; однако, Aβ42 обладает намного более сильным токсическим эффектом.

Церебральные отложения амилоида и когнитивные нарушения, очень похожие на нарушения, наблюдаемые при заболевании Альцгеймера, являются также признаками синдрома Дауна (трисомии 21), которая возникает с частотой приблизительно 1 на 800 рождений.

Гипотеза амилоидного каскада Харди и Хиггинса постулирует, что увеличенная продукция Aβ(1-42) будет приводить к формированию протофибрилл и фибрилл, главных компонентов бляшек Aβ, причем эти фибриллы отвечают за симптомы болезни Альцгеймера. Несмотря на слабую корреляцию между тяжестью деменции и уровнем накопления бляшек Aβ, этой гипотезе до недавнего времени отдавали предпочтение. Обнаружение растворимых форм Aβ в мозге при AD, которое лучше коррелирует с симптомами AD, чем уровень бляшек, привела к пересмотренной гипотезе амилоидного каскада.

Активная иммунизация пептидами Aβ приводит к уменьшению формирования бляшек, так же как к частичному разложению существующих бляшек. В то же самое время она приводит к облегчению когнитивных нарушений на моделях трансгенных мышей APP.

Для пассивной иммунизации антителами, направленными против пептидов Aβ, также обнаружили уменьшение уровня бляшек Aβ.

Результаты испытания фазы IIa (ELAN Corporation Plc, South San Francisco, CA, USA и Dublin, UK) для активной иммунизации AN-1792 (пептид Aβ(1-42) в состоянии фибриллярной агрегации) позволяют предполагать, что эта иммунотерапия, направленная против пептида Aβ, являлась успешной. В подгруппе из 30 пациентов прогрессирование заболевания было значительно снижено у пациентов с положительным титром антитела против Aβ, измеренным посредством индекса MMSE и DAD. Однако это исследование было остановлено из-за серьезных побочных эффектов в форме менингоэнцефалита (Bennett and Holtzman, 2005, Neurology, 64, 10-12).

Менингоэнцефалит характеризуется нейровоспалением и инфильтрацией T-клеток в мозг. Вероятно, это вызвано T-клеточным иммунным ответом, индуцированным инъекцией Aβ(1-42) в качестве антигена. Такого иммунного ответа не ожидали после пассивной иммунизации. До настоящего времени еще не существует доступных клинических данных относительно этого. Однако по отношению к такому пассивному способу иммунизации высказывали опасения относительно профиля побочных эффектов из-за доклинических исследований на очень старых мышах APP23, которым вводили антитело, направленное против N-концевого эпитопа Aβ(1-42) один раз в неделю в течение 5 месяцев. Для этих мышей показали увеличение количества и тяжести микрокровоизлияний по сравнению с контрольными животными, обработанными физиологическим раствором (Pfeifer et al., 2002, Science, 298, 1379). Описано также сравнительное увеличение микрокровоизлияний у очень старых (> 24 месяцев) мышей Tg2576 и PDAPP (Racke et al., 2005, J. Neurosci, 25, 629-636; Wilcock et al. 2004, J. Neuroinflammation, 1(1):24; De Mattos et al., 2004, Neurobiol. Aging 25(S2):577). Для обеих линий мышей инъекция антитела приводила к значительному увеличению микрокровоизлияний. В отличие от этого антитело, направленное против центральной области пептида Aβ(1-42), не индуцирует микрокровоизлияний (de Mattos et al., выше). Отсутствие индукции микрокровоизлияний являлось связанным с обработкой антителом, которое не связывалось с агрегированным пептидом Aβ при форме CAA (Racke et al., J. Neurosci, 25, 629-636). Однако точный механизм, приводящий к микрокровоизлияниям у трансгенных по APP мышей, неясен. Возможно, церебральная амилоидная ангиопатия (CAA) индуцирует или по меньшей мере усиливает кровоизлияние в мозг. CAA присутствует почти в каждом мозге при болезни Альцгеймера, и приблизительно 20% случаев оценивают как «тяжелую CAA». Пассивная иммунизация таким образом должна быть направлена на исключение микрокровоизлияний посредством выбора антитела, узнающего центральную или C-концевую область пептида Aβ.

В WO 2004/067561 описаны стабильные олигомеры Aβ(1-42) (глобуломеры Aβ(1-42)) и антитела, специфически направленные против глобуломеров. Расщеплением неспецифическими протеазами показали, что глобуломер Aβ можно расщеплять, начиная с гидрофильного N-конца, высунутого из глобулярной коровой структуры (Barghom et al., 2005, J. Neurochem, 95, 834-847). Такие усеченные с N-конца глобуломеры Aβ (Aβ(12-42) и глобуломеры Aβ(20-42)) представляют собой основную структурную единицу этого олигомерного Aβ. Они являются очень высокоиммунным антигеном для активной иммунизации кроликов и мышей, приводящим к высоким титрам антитела (WO 2004/067561). Предположительную патологическую роль усеченных с N-конца форм Aβ in vivo предположили по нескольким недавним сообщениям о их существовании в мозге при AD (Sergeant et al., 2003, J. Neurochem, 85, 1581-1591; Thai et al., 1999, J. Neuropathol. Exp Neurol, 58, 210-216). В ходе расщепления in vivo могут быть вовлечены конкретные протеазы, обнаруженные в мозге, например, неприлизин (NEP 24.11) или инсулиндеградирующий фермент (IDE) (Selkoe, 2001, Neuron, 32, 177-180).

Целью настоящего изобретения являлось предоставление антител, направленных против глобуломеров Aβ, улучшающих когнитивное поведение пациента при иммунотерапии, в то же самое время вступающих в реакцию только с малой частью полного количества пептида Aβ в мозге. Ожидают, что это будет предотвращать значительный дисбаланс церебрального Aβ и приводить к меньшим побочным эффектам. (Например, наблюдали терапевтически сомнительное уменьшение объема мозга при исследовании активной иммунизации пептидами Aβ в состоянии фибриллярной агрегации (испытание ELAN с AN1792). Более того, в этом испытании наблюдали тяжелые побочные эффекты в форме менингоэнцефалита.

Настоящее изобретение решает эту проблему предоставлением глобуломерспецифических антител, обладающих высокой аффинностью для усеченных форм глобуломеров Aβ. Эти антитела способны к дискриминации не только других форм пептидов Aβ, в частности мономеров и фибрилл, но также неусеченных форм глобуломеров Aβ.

Таким образом, настоящее изобретение относится к антителу, обладающему аффинностью связывания для глобуломера Aβ(20-42), превышающей аффинность связывания этого антитела для глобуломера Aβ(1-42).

Кроме того, настоящее изобретение относится к антителу, обладающему аффинностью связывания с глобуломером Aβ(20-42), превышающей аффинность связывания этого антитела для глобуломера Aβ(12-42).

Согласно конкретному варианту осуществления изобретение таким образом относится к антителам, обладающим аффинностью связывания для глобуломера Aβ(20-42), превышающей аффинность связывания этого антитела как для глобуломера Aβ(1-42), так и для глобуломера Aβ(12-42).

Термин «Aβ(X-Y)» здесь относится к аминокислотной последовательности от положения аминокислоты X до положения аминокислоты Y белка β-амилоида человека, включая как X, так и Y, в частности к аминокислотной последовательности от положения аминокислоты X до положения аминокислоты Y аминокислотной последовательности DAEFRHDSGY EVHHQKLVFF AEDVGSNKGA IIGLMVGGVV IAT (соответствующей положениям аминокислот 1-43) или любому из ее встречающихся в природе вариантов, в частности вариантов по меньшей мере с одной мутацией, выбранной из группы, состоящей из A2T, H6R, D7N, A21G («фламандская»), E22G («арктическая»), E22Q («голландская»), E22K («итальянская»), D23N («Айова»), A42T и A42V, где номера приведены относительно старта пептида Aβ, включая как положение X, так и положение Y, или последовательности, содержащей вплоть до трех дополнительных замен аминокислот, ни одна из которых не может предотвращать формирование глобуломера, предпочтительно без дополнительных замен аминокислот в части от аминокислоты 12 или X, в зависимости от того, какой номер выше, до аминокислоты 42 или Y, в зависимости от того, какой номер ниже, более предпочтительно, без дополнительных замен аминокислот в части от аминокислоты 20 или X, в зависимости от того, какой номер выше, до аминокислоты 42 или Y, в зависимости от того, какой номер ниже, и наиболее предпочтительно, без дополнительных замен аминокислот в части от аминокислоты 20 или X, в зависимости от того, какой номер выше, до аминокислоты 40 или Y, в зависимости от того, какой номер ниже, где «дополнительная» замена аминокислоты здесь представляет собой любое отклонение от канонической последовательности, не обнаруженное в природе.

Более конкретно, термин «Aβ(1-42)» здесь относится к аминокислотной последовательности от положения аминокислоты 1 до положения аминокислоты 42 в белке β-амилоида, включая как 1, так и 42, в частности к аминокислотной последовательности DAEFRHDSGY EVHHQKLVFF AEDVGSNKGA IIGLMVGGVV IA или любому из ее встречающихся в природе вариантов, в частности вариантов по меньшей мере с одной мутацией, выбранной из группы, состоящей из A2T, H6R, D7N, A21G («фламандская»), E22G («арктическая»), E22Q («голландская»), E22K («итальянская»), D23N («Айова»), A42T и A42V, где номера приведены относительно старта пептида Aβ, включая как 1, так и 42, или последовательности, содержащей вплоть до трех дополнительных замен аминокислот, ни одна из которых не может предотвращать формирование глобуломера, предпочтительно без дополнительных замен аминокислот в части от аминокислоты 20 до аминокислоты 42. Подобным образом, термин «Aβ(1-40)» здесь относится к аминокислотной последовательности от положения аминокислоты 1 до положения аминокислоты 40 белка β-амилоида человека, включая как 1, так и 40, в частности к аминокислотной последовательности DAEFRHDSGY EVHHQKLVFF AEDVGSNKGA IIGLMVGGVV или любому из ее встречающихся в природе вариантов, в частности вариантов по меньшей мере с одной мутацией, выбранной из группы, состоящей из A2T, H6R, D7N, A21G («фламандская»), E22G («арктическая»), E22Q («голландская»), E22K («итальянская»), и D23N («Айова»), где номера приведены относительно старта пептида Aβ, включая как 1, так и 40, или последовательности, содержащей вплоть до трех дополнительных замен аминокислот, ни одна из которых не может предотвращать формирование глобуломера, предпочтительно, без дополнительных замен аминокислот в части от аминокислоты 20 до аминокислоты 40.

Более конкретно, термин «Aβ(12-42)» здесь относится к аминокислотной последовательности от положения аминокислоты 12 до положения аминокислоты 42 белка β-амилоида человека, включая как 12, так и 42, в частности, к аминокислотной последовательности VHHQKLVFF AEDVGSNKGA IIGLMVGGVV IA или любому из ее встречающихся в природе вариантов, в частности вариантов по меньшей мере с одной мутацией, выбранной из группы, состоящей из A21G («фламандская»), E22G («арктическая»), E22Q («голландская»), E22K («итальянская»), D23N («Айова»), A42T и A42V, где номера приведены относительно старта пептида Aβ, включая как 12, так и 42, или последовательности, содержащей вплоть до трех дополнительных замен аминокислот, ни одна из которых не может предотвращать формирование глобуломера, предпочтительно, без дополнительных замен аминокислот в части от аминокислоты 20 до аминокислоты 42.

Более конкретно, термин «Aβ(20-42)» здесь относится к аминокислотной последовательности от положения аминокислоты 20 до положения аминокислоты 42 белка β-амилоида человека, включая как 20, так и 42, в частности к аминокислотной последовательности F AEDVGSNKGA IIGLMVGGVV IA или любому из ее встречающихся в природе вариантов, в частности вариантов по меньшей мере с одной мутацией, выбранной из группы, состоящей из A21G («фламандская»), E22G («арктическая»), E22Q («голландская»), E22K («итальянская»), D23N («Айова»), A42T и A42V, где номера приведены относительно старта пептида Aβ, включая как 20, так и 42, или последовательности, содержащей вплоть до трех дополнительных замен аминокислот, ни одна из которых не может предотвращать формирование глобуломера, предпочтительно, без каких-либо дополнительных замен аминокислот.

Термин «глобуломер Aβ(X-Y)» (глобулярный олигомер Aβ(X-Y)) здесь относится к растворимому, глобулярному, нековалентному объединению пептидов Aβ(X-Y), как определено выше, обладающему гомогенностью и четкими физическими характеристиками. Согласно одному аспекту глобуломеры Aβ(X-Y) представляют собой стабильные, нефибриллярные, олигомерные ансамбли пептидов Aβ(X-Y), которые можно получить инкубацией с анионными детергентами. В отличие от мономеров и фибрилл, эти глобуломеры характеризуются определенным числом субъединиц в ансамбле (например, формы ранних ансамблей, n=4-6, «олигомеры A», и формы поздних ансамблей, n=12-14, «олигомеры B», как описано в WO2004/067561). Глобуломеры обладают 3-мерной структурой глобулярного типа («расплавленная глобула», см. Barghorn et al., 2005, J. Neurochem, 95, 834-847). Они могут дополнительно характеризоваться одним или несколькими из следующих свойств:

- возможность отщепления N-концевых аминокислот X-23 неспецифическими протеазами (такими как термолизин или эндопротеаза GluC) с получением усеченных форм глобуломеров;

- недоступность C-концевых аминокислот 24-Y для неспецифических протеаз и антител;

- усеченные формы этих глобуломеров поддерживают 3-мерную коровую структуру указанных глобуломеров с лучшей доступностью корового эпитопа Aβ(20-Y) в его глобуломерной конформации.

Согласно изобретению и, в частности, для целей оценки аффинностей связывания антител по настоящему изобретению термин «глобуломер Aβ(X-Y)» здесь относится, в частности, к продукту, который можно получить способом, как описано в WO 2004/067561, содержание которого приведено здесь в качестве ссылки.

Указанный способ включает в себя разворачивание природного, рекомбинантного или синтетического пептида Aβ(X-Y) или его производного; подвергание по меньшей мере частично развернутого пептида Aβ(X-Y) или его производного воздействию детергента, уменьшение действия детергента и продолжение инкубации.

Для целей разворачивания пептида можно допускать воздействие на белок разрушающих водородную связь средств, например, таких как гексафторизопропанол (HFIP). Времени воздействия несколько минут, например приблизительно 10-60 минут, достаточно, когда температура воздействия составляет от приблизительно 20 до 50°C и в частности, приблизительно 35-40°C. Последующим растворением осадка, выпаренного до сухости, предпочтительно, в концентрированной форме, в подходящих органических растворителях, способных смешиваться с водными буферами, например, таких как диметилсульфоксид (DMSO), получают суспензию по меньшей мере частично развернутого пептида или его производного, которые можно затем использовать. Если необходимо, исходную суспензию можно хранить при низкой температуре, например, приблизительно при -20°C, в течение временного периода.

Альтернативно, пептид или его производное можно помещать в слабокислый, предпочтительно водный, раствор, например, в водный раствор приблизительно 10 мМ HCl. После времени инкубации, обычно нескольких минут, нерастворимые компоненты удаляют центрифугированием. Подходят несколько минут при 10000 g. Эти стадии способа предпочтительно проводят при комнатной температуре, т.е. температуре в диапазоне от 20 до 30°C. Супернатант, полученный после центрифугирования, содержит пептид Aβ(X-Y) или его производное, и его можно хранить при низкой температуре, например, приблизительно при -20°C, в течение временного периода.

Следующее воздействие детергента относится к олигомеризации пептида или его производного для получения промежуточного типа олигомеров (обозначенных в WO 2004/067561 как олигомеры A). Для этой цели детергенту позволяют действовать на по меньшей мере частично развернутый пептид или его производное до получения достаточного количества промежуточного олигомера.

Предпочтение оказывают применению ионных детергентов, в частности анионных детергентов.

Согласно конкретному варианту осуществления используют детергент формулы (I):

R-X,

в котором радикал R представляет собой неразветвленный или разветвленный алкил, обладающий от 6 до 20 и, предпочтительно, от 10 до 14 атомов углерода, или неразветвленный или разветвленный алкенил, обладающий от 6 до 20 и, предпочтительно, от 10 до 14 атомов углерода, радикал X представляет собой кислую группу или ее соль, с X, предпочтительно, выбранным из -COO-M+, -SO3-M+, и особенно -OSO3-M+, и M+ представляет собой катион водорода или неорганический или органический катион, предпочтительно, выбранный из катионов щелочного металла и щелочноземельного металла и катионов аммония.

Преимущественными являются детергенты формулы (I), в которых R представляет собой неразветвленный алкил, в котором, в частности, должны быть приведены алкильные радикалы. Особенное предпочтение отдают додецилсульфату натрия (SDS). Предпочтительно можно использовать также лауриновую кислоту и олеиновую кислоту. Натриевая соль детергента лаурилсаркозина (известная также как саркозил NL-30 или Gardol®) также является особенно предпочтительной.

Время воздействия детергента зависит, в частности, от того, является ли - и если является, до какой степени, - пептид или его производное, подвергаемое олигомеризации, развернутым. Если согласно стадии разворачивания пептид или его производное предварительно обрабатывают разрушающим водородные связи средством, т.е., в частности, гексафторизопропанолом, времени воздействия в диапазоне нескольких часов, преимущественно от приблизительно 1 до 20 и, в частности, от приблизительно 2 до 10 часов, достаточно при температуре воздействия приблизительно 20-50°C и, в частности, приблизительно 35-40°C. Если исходной точкой является несвернутый или в основном не свернутый пептид или его производное, соответственно, более длительное время воздействия является целесообразным. Если пептид или его производное предварительно обработан, например, согласно способу, указанному выше, в качестве альтернативы обработке HFIP, или указанный пептид или его производное непосредственно подвергают олигомеризации, достаточно времени воздействия в диапазоне от приблизительно 5 до 30 часов и, в частности, от приблизительно 10 до 20 часов, когда температура воздействия составляет приблизительно 20-50°C и, в частности, приблизительно 35-40°C. После инкубации нерастворимые компоненты предпочтительно удаляют центрифугированием. Несколько минут при 10000 g являются целесообразными.

Выбираемая концентрация детергента зависит от используемого детергента. Если применяют SDS, доказано, что концентрация в диапазоне от 0,01 до 1% по массе, предпочтительно от 0,05 до 0,5% по массе, например приблизительно 0,2% по массе, является целесообразной. Если применяют лауриновую кислоту или олеиновую кислоту, целесообразными являются несколько более высокие концентрации, например, в диапазоне от 0,05 до 2% по массе, предпочтительно от 0,1 до 0,5% по массе, например, приблизительно 0,5% по массе.

Действие детергента должно происходить при концентрации соли приблизительно в физиологическом диапазоне. Таким образом, целесообразными являются концентрации NaCl, в частности, в диапазоне от 50 до 500 мМ, предпочтительно от 100 до 200 мМ и, в частности, приблизительно 140 мМ.

Последующее уменьшение действия детергента и продолжение инкубации относится к дальнейшей олигомеризации для получения глобуломера Aβ(X-Y) по изобретению (в WO 2004/067561 обозначенного как олигомеры B). Поскольку композиция, полученная на предшествующих стадиях, обычно содержит детергент и концентрацию соли в физиологическом диапазоне, является целесообразным уменьшить действие детергента и, предпочтительно, также концентрацию соли. Это можно осуществлять уменьшением концентрации детергента и соли, например разведением, целесообразно водой или буфером с более низкой концентрации соли, например Трис-HCl, pH 7,3. Доказано, что подходят факторы разведения, лежащие в диапазоне от приблизительно 2 до 10, преимущественно в диапазоне от приблизительно 3 до 8 и, в частности, приблизительно 4. Уменьшения действия детергента можно также достигать добавлением веществ, которые могут нейтрализовать указанное действие детергента. Примеры веществ включают в себя вещества, способные к образованию комплексов с детергентами, такие как вещества, способные стабилизировать клетки в ходе способов очистки и выделения, например, конкретные блок-сополимеры EO/PO, в частности блок-сополимеры под торговым наименованием Pluronc® F 68. Равным образом, можно использовать алкоксилированные и, в частности, этоксилированные алкилфенолы, такие как этоксилированные t-октилфенолы серии Triton® X, в частности Triton® X100, 3-(3-хлорамидопропилдиметиламмоний)-1-пропансульфонат (CHAPS®) или алкоксилированные и, в частности, этоксилированные жирные сложные эфиры сорбитана, такие как эфиры серий Tween®, в частности Tween® 20, в диапазонах концентраций в районе или выше конкретной критической концентрации мицелл.

Затем раствор инкубируют до получения достаточного количества глобуломера Aβ(X-Y) по изобретению. Времени действия в диапазоне нескольких часов, предпочтительно в диапазоне от приблизительно 10 до 30 часов, и в частности, в диапазоне от приблизительно 15 до 25 часов, достаточно, когда температура действия составляет приблизительно 20-50°C и, в частности, приблизительно 35-40°C. Раствор затем можно концентрировать и возможные осадки можно удалять центрифугированием. Доказано, что здесь также являются целесообразными несколько минут при 10000 g. Супернатант, полученный после центрифугирования, содержит глобуломер Aβ(X-Y) по изобретению.

Глобуломер Aβ(X-Y) по изобретению можно окончательно выделять в чистом виде известным способом, например, ультрафильтрацией, диализом, преципитацией или центрифугированием.

Кроме того, является предпочтительным, если при электрофоретическом разделении глобуломеров Aβ(X-Y) в денатурирующих условиях, например, в SDS-PAGE, получают двойную полосу (например, с кажущейся молекулярной массой 38 / 48 кДа для Aβ(1-42)), и особенно предпочтительно, если при обработке глутардиальдегидом глобуломеров перед разделением эти две полосы сливаются в одну. Также является предпочтительным, если при эксклюзионной хроматографии глобуломеров получают отдельный пик (например, соответствующий молекулярной массе приблизительно 100 кДа для глобуломера Aβ(1-42) или приблизительно 60 кДа для перекрестно сшитого глутардиальдегидом глобуломера Aβ(1-42)), соответственно.

Начиная с пептида Aβ(1-42), пептида Aβ(12-42) и пептида Aβ(20-42), указанные способы, в частности, являются пригодными для получения глобуломеров Aβ(1-42), глобуломеров Aβ(12-42) и глобуломеров Aβ(20-42).

В конкретном варианте осуществления по изобретению глобуломеры Aβ(X-Y), где X выбран из группы, состоящей из номеров 2.. 24 и Y является таким, как определено выше, представляют собой такие, какие можно получить усечением глобуломеров Aβ(1-Y) до более коротких форм, где X выбран из группы, состоящей из номеров 2.. 24, где X предпочтительно представляет собой 20 или 12, и Y является таким, как определено выше, которые можно получить обработкой соответствующими протеазами. Например, глобуломер Aβ(20-42) можно получить, подвергая глобуломер Aβ(1-42) протеолизу термолизином, и глобуломер Aβ(12-42) можно получить, подвергая глобуломер Aβ(1-42) протеолизу эндопротеазой GluC. При достижении желаемой степени протеолиза протеазу инактивируют общеизвестным способом. Полученные глобуломеры затем можно выделять согласно способам, уже описанным здесь и, если необходимо, посредством дополнительной обработки посредством дополнительных стадий воздействия и очистки. Подробное описание указанных способов описано в WO 2004/067561, содержание которого приведено здесь в качестве ссылки.

Для целей по настоящему изобретению глобуломер Aβ(1-42), в частности, представляет собой глобуломер Aβ(1-42), как описано в примере 1a здесь; глобуломер Aβ(20-42), в частности, представляет собой глобуломер Aβ(20-42), как описано в примерах 1c здесь, и глобуломер Aβ(12-42), в частности, представляет собой глобуломер Aβ(12-42), как описано в примерах 1d здесь.

Предпочтительно, для глобуломера показывают аффинность для нейрональных клеток. Предпочтительно, для глобуломера также показывают нейромодулирующие эффекты.

Согласно другому аспекту изобретения глобуломер состоит из 11-16 и, наиболее предпочтительно, из 12-14 пептидов Aβ(X-Y).

Согласно другому аспекту изобретения термин «глобуломер Aβ(X-Y)» здесь относится к глобуломеру, состоящему в основном из субъединиц Aβ(X-Y), где является предпочтительным, если в среднем по меньшей мере 11 из 12 субъединиц принадлежат к типу Aβ(X-Y), более предпочтительно, если менее чем 10% глобуломеров содержат какие-либо не относящиеся к Aβ(X-Y) пептиды и, наиболее предпочтительно, если содержание не относящихся к Aβ(X-Y) пептидов ниже порога детекции.

Более конкретно, термин «глобуломер Aβ(1-42)» здесь относится к глобуломеру, состоящему в основном из единиц Aβ(1-42), как определено выше; термин «глобуломер Aβ(12-42)» здесь относится к глобуломеру, состоящему в основном из единиц Aβ(12-42), как определено выше; и термин «глобуломер Aβ(20-42)» здесь относится к глобуломеру, состоящему в основном из единиц Aβ(20-42), как определено выше.

Термин «перекрестно-сшитый глобуломер Aβ(X-Y)» здесь относится к молекуле, которую можно получить из глобуломера Aβ(X-Y), как описано выше, посредством перекрестного сшивания, предпочтительно, химического перекрестного сшивания, более предпочтительно, перекрестного сшивания альдегидом, наиболее предпочтительно, перекрестного сшивания глутардиальдегидом составляющих глобуломер единиц. В другом аспекте изобретения перекрестно-сшитый глобуломер в основном представляет собой глобуломер, в котором единицы являются по меньшей мере частично соединенными посредством ковалентных связей, а не удерживаемыми вместе посредством только нековалентных взаимодействий. Для целей настоящего изобретения перекрестно сшитый глобуломер Aβ(1-42) представляет собой, в частности, перекрестно-сшитый олигомер Aβ(1-42), как описано в примере 1b здесь.

Термин «производное глобуломера Aβ(X-Y)» здесь относится, в частности, к глобуломеру, который является меченым посредством ковалентного связывания с группой, облегчающей детекцию, предпочтительно флуорофором, например, флуоресцеинизотиоцианатом, фикоэритрином, флуоресцентным белком Aequorea victoria, флуоресцентным белком Dictyosoma или любым их сочетанием или флуоресцентно активным производным; хромофором; хемилюминофором, например люциферазой, предпочтительно люциферазой Photinus pyralis, люциферазой Vibrio fischeri или любым их сочетанием или хемилюминесцентно активным производным; ферментативно активной группой, например, пероксидазой, например, пероксидазой хрена или любым их ферментативно активным производным; электронноплотной группой, например, группой, содержащей тяжелый металл, например, группой, содержащей золото; гаптеном, например, полученным из фенола гаптеном; структурой сильного антигена, например пептидной последовательностью, как предсказано, являющейся антигенной, например, являющейся антигенной, как предсказано по алгоритму Kolaskar и Tongaonkar; аптамером для другой молекулы; хелатообразующей группой, например гексагистидинилом; природной или полученной из природной белковой структурой, опосредующей дополнительные белок-белковые взаимодействия, например, членом пары fos/jun; магнитной группой, например ферромагнитной группой; или радиоактивной группой, например группой, содержащей 1H, 14C, 32P, 35S или 125I, или любое их сочетание; или к глобуломеру, маркированному посредством ковалентного или нековалентного высокоаффинного взаимодействия, предпочтительно ковалентно связанному с группой, облегчающей инактивацию, секвестрацию, деградацию и/или преципитацию, предпочтительно маркированному группой, стимулирующей деградацию in vivo, более предпочтительно убиквитином, где особенно предпочтительным является, чтобы этот маркированный олигомер являлся собранным in vivo; или к глобуломеру, модифицированному любым сочетанием вышеуказанного. Такие группы для мечения и маркировки и способы для присоединения их к белкам известны в данной области. Мечение и/или маркировку можно выполнять до, во время или после глобуломеризации. В другом аспекте изобретения производное глобуломера представляет собой молекулу, которую можно получить из глобуломера посредством реакции мечения и/или маркировки.

Соответственно, термин «производное мономера Aβ(X-Y)» здесь относится, в частности, к мономеру Aβ, который является меченым или маркированным, как описано для глобуломера.

Целесообразно, если антитело по настоящему изобретению связывает глобуломер Aβ(20-42) с KD в диапазоне от 1×10-6 M до 1×10-12 M. Предпочтительно, антитело связывает глобуломер Aβ(20-42) с высокой аффинностью, например с KD 1×10-7 M или большей аффинностью, например с KD 3×10-8 M или большей аффинностью, с KD 1×10-8 M или большей аффинностью, например, с KD 3×10-9 M или большей аффинностью, с KD 1×10-9 M или большей аффинностью, например, с KD 3×10-10 M или большей аффинностью, с KD 1×10-10 M или большей аффинностью, например, с KD 3×10-11 M или большей аффинностью, или с KD 1×10-11 M или большей аффинностью.

Термин «большая аффинность» здесь относится к степени взаимодействия, где равновесие между несвязанным антителом и несвязанным глобуломером, с одной стороны, и комплексом антитело-глобуломер, с другой, больше сдвинуто в сторону комплекса антитело-глобуломер. Подобным образом, термин «меньшая аффинность» здесь относится к степени взаимодействия, где равновесие между несвязанным антителом и несвязанным глобуломером, с одной стороны, и комплексом антитело-глобуломер, с другой, больше сдвинуто в сторону несвязанного антитела и несвязанного глобуломера. Термин «большая аффинность» является синонимом термина «более высокая аффинность», а термин «меньшая аффинность» является синонимом термина «более низкая аффинность».

Согласно конкретному варианту осуществления изобретение относится к антителу, связывающему глобуломер Aβ(20-42) с KD в диапазоне от 1×10-6 M до 1×10-12 M, глобуломер Aβ(1-42) с KD 10-12 M или меньшей аффинностью, где аффинность связывания с глобуломером Aβ(20-42) больше, чем аффинность связывания с глобуломером Aβ(1-42).

Является предпочтительным, чтобы аффинность связывания антитела по настоящему изобретению с глобуломером Aβ(20-42) по меньшей мере в 2 раза, например, по меньшей мере в 3 раза или по меньшей мере в 5 раз, предпочтительно, по меньшей мере в 10 раз, например, по меньшей мере в 20 раз, по меньшей мере в 30 раз или по меньшей мере в 50 раз, более предпочтительно, по меньшей мере в 100 раз, например, по меньшей мере в 200 раз, по меньшей мере в 300 раз или по меньшей мере в 500 раз и даже, более предпочтительно, по меньшей мере в 1000 раз, например по меньшей мере в 2000 раз, по меньшей мере в 3000 раз или по меньшей мере в 5000 раз, даже более предпочтительно, по меньшей мере в 10000 раз, например, по меньшей мере в 20000 раз, по меньшей мере в 30000 или по меньшей мере в 50000 раз и, наиболее предпочтительно, по меньшей мере в 100000 раз превышала аффинность связывания антитела с глобуломером Aβ(1-42).

Согласно конкретному варианту осуществления изобретение относится к антителу, связывающему глобуломер Aβ(12-42) с KD 10-12 M или меньшей аффинностью, где аффинность связывания с глобуломером Aβ(20-42) превышает аффинность связывания с глобуломером Aβ(12-42).

Является предпочтительным также, чтобы аффинность связывания антитела по настоящему изобретению с глобуломером Aβ(20-42) по меньшей мере в 2 раза, например, по меньшей мере в 3 раза или по меньшей мере в 5 раз, предпочтительно по меньшей мере в 10 раз, например, по меньшей мере в 20 раз, по меньшей мере в 30 раз или по меньшей мере в 50 раз, более предпочтительно по меньшей мере в 100 раз, например, по меньшей мере в 200 раз, по меньшей мере в 300 раз или по меньшей мере в 500 раз, и даже, более предпочтительно, по меньшей мере в 1000 раз, например, по меньшей мере в 2000 раз, по меньшей мере в 3000 раз или по меньшей мере в 5000 раз, даже более предпочтительно по меньшей мере в 10000 раз, например, по меньшей мере в 20000 раз, по меньшей мере в 30000 или по меньшей мере в 50000 раз, и, наиболее предпочтительно, по меньшей мере в 100000 раз превышала аффинность связывания антитела с глобуломером Aβ(12-42).

Предпочтительно, антитела по настоящему изобретению связывают по меньшей мере один глобуломер Aβ, как определено выше, и обладают сравнительно меньшей аффинностью по меньшей мере для одной не относящейся к глобуломеру формой Aβ.

Антитела по настоящему изобретению, обладающие сравнительно меньшей аффинностью по меньшей мере для одной не относящейся к глобуломеру формы Aβ, чем по меньшей мере для одного глобуломера Aβ, включают в себя антитела, обладающие аффинностью связывания с глобуломером Aβ(20-42), превышающей аффинность для мономера Aβ(1-42). Кроме того, является предпочтительным, чтобы, альтернативно или дополнительно, аффинность связывания антитела с глобуломером Aβ(20-42) превышала аффинность для мономера Aβ(1-40).

В предпочтительном варианте осуществления по изобретению аффинность антитела для глобуломера Aβ(20-42) превышает его аффинность как к мономеру Aβ(1-40), так и к мономеру Aβ(1-42).

Термин «мономер Aβ(X-Y)» здесь относится к выделенной форме пептида Aβ(X-Y), предпочтительно, в форме пептида Aβ(X-Y), не вступающей в главным образом нековалентные взаимодействия с другими пептидами Aβ. На практике, мономер Aβ(X-Y) обычно получают в форме водного раствора. В особенно предпочтительном варианте осуществления по изобретению водный раствор мономера содержит 0,05%-0,2%, более предпочтительно, приблизительно 0,1% NH4OH. В другом особенно предпочтительном варианте осуществления изобретения водный раствор мономера содержит 0,05%-0,2%, более предпочтительно, приблизительно 0,1% NaOH. При использовании (например, для определения аффинностей связывания антител по настоящему изобретению), может являться целесообразным разводить указанный раствор подходящим образом. Кроме того, обычно целесообразно использовать указанный раствор в течение 2 часов, в частности в течение 1 часа, и особенно в течение 30 минут после его приготовления.

Более конкретно, термин «мономер Aβ(1-40)» здесь относится к препарату мономера Aβ(1-40), как описано в примере 2 здесь, и термин «мономер Aβ(1-42)» здесь относится к препарату Aβ(1-42), как описано в примере 2 здесь.

Целесообразно, чтобы антитело по настоящему изобретению связывало один или, более предпочтительно, оба мономера с низкой аффинностью, наиболее предпочтительно, с KD 1×10-8 M или с меньшей аффинностью, например, с KD 3×10-8 M или с меньшей аффинностью, с KD 1×10-7 M или с меньшей аффинностью, например, с KD 3×1-7 M или с меньшей аффинностью, или с KD 1×10-6 M или с меньшей аффинностью, например, с KD 3×10-5 M или с меньшей аффинностью, или с KD 1×10-5 M или с меньшей аффинностью.

Особенно предпочтительным является, чтобы аффинность связывания антитела по насто