Комплексная экзотермическая смесь
Комплексная экзотермическая смесь предназначена для внепечной обработки антифрикционных чугунов. Смесь содержит, мас.%: металлический алюминий 25-38; ферротитан 12-25; фтористый кальций 11-17; окислы меди 14-27; азотированный ферромарганец 7-18; угольная пыль 1-5. Достигается повышение трещиностойкости, выхода годного, ударной вязкости, износостойкости и антифрикционных свойств сплавов. 2 табл.
Реферат
Изобретение относится к области литейного производства, в частности к экзотермическим смесям, используемым для внепечной обработки антифрикционных чугунов.
Известна экзотермическая смесь (а.с. СССР №608608, МПК В22D 7/06, 1978), содержащая, мас.%: материал на основе оксидов железа 25-50; хромовая руда 5-25; алюминиевый порошок 10,5-18; материал на основе углерода 5-12; глина огнеупорная 5-10; огнеупорный наполнитель 3-25 и связующее 5-10. Известная смесь имеет недостаточную стабильность процесса протекания термохимических реакций и не обеспечивает при внепечной обработке литейных Fe-C сплавов существенного повышения температуры, износостойкости и выхода годного. Высокое содержание в известной смеси хромовой руды, огнеупорного наполнителя, оксидов железа и огнеупорной глины снижает рафинирующий и модифицирующий эффекты, механические, технологические и антифрикционные свойства сплавов.
Известна также комплексная экзотермическая смесь (патент Франции №2338097, МПК В22D 7/00, 1977), содержащая, мас.%:
Металлический алюминий | 10-40 |
Оксиды алюминия, кальция или магния | 10-80 |
Перлит и/или вермикулит | 0-30 |
Древесная мука | 5-30 |
Угольная пыль | 0-5 |
Данная комплексная экзотермическая смесь вызывает интенсивное протекание экзотермических реакций и повышение температуры расплава, но снижает технологические и антифрикционные свойства Fe-C сплавов.
Наиболее близкой по технической сущности и достигаемому эффекту к предложенной является комплексная экзотермическая смесь (патент РФ №2376101, МПК В22D 1/00, 2009, прототип), содержащая, мас.%:
Металлический алюминий | 25-38 |
Фтористый кальций | 18-35 |
Оксиды алюминия | 14-27 |
Силикокальций или ферротитан | 12-25 |
Угольная пыль | 1-5 |
При внепечной обработке антифрикционных Fe-C сплавов различными формованными модифицирующими таблетками, экзотермическими вкладышами и прессованными брикетами, изготовленными из этой комплексной экзотермической смеси, происходит интенсивное протекание экзотермических реакций, повышение жидкотекучести и температуры расплавов, повышение трещиностойкости отливок и выхода годного (для чугунов до 63-67%, для литейных сталей - до 44-50%). Однако при этом отмечается недостаточное микролегирующее влияние смеси, снижение износостойкости и антифрикционных свойств сплавов, что особенно наблюдается при повышенных концентрациях силикокальция, фтористого кальция и оксидов алюминия.
Задача изобретения - повышение износостойкости и антифрикционных свойств обрабатываемых сплавов.
Поставленная задача решается тем, что комплексная экзотермическая смесь, содержащая металлический алюминий, фтористый кальций, ферротитан и угольную пыль, дополнительно содержит окислы меди и азотированный ферромарганец при следующем соотношении компонентов, мас.%:
Металлический алюминий | 25-38 |
Ферротитан | 12-25 |
Фтористый кальций | 11-17 |
Окислы меди | 14-27 |
Азотированный ферромарганец | 7-18 |
Угольная пыль | 1-5 |
Дополнительное введение окислов меди обусловлено тем, что они являются эффективными химически активными экзотермическими и модифицирующими добавками, оказывающими положительное влияние на температурные, термодинамические и технологические параметры железоуглеродистых расплавов, их однородность и дисперсность структуры, износостойкость, коэффициент трения и другие антифрикционные свойства сплавов. При увеличении их содержания более 27% усиливается интенсивность протекания экзотермических реакций и повышаются кинетические параметры расплавов, что увеличивает угар металла и снижение однородности и износостойкости сплава в отливках. При концентрации окислов меди менее 14% их модифицирующий эффект, технологические и антифрикционные свойства сплавов в отливках недостаточны.
Дополнительное введение азотированного ферромарганца в количестве 7-18% обусловлено тем, что он является эффективной микролегирующей и модифицирующей добавкой, оказывающей положительное влияние на дисперсность структуры и технологические параметры железоуглеродистых сплавов, износостойкость, коэффициент трения и другие антифрикционные свойства. При увеличении его содержания более 18% уменьшаются кинетические параметры расплавов, что вызывает снижение жидкотекучести металла, однородности и износостойкости сплава в отливках. При концентрации его менее 7% микролегирующий и модифицирующий эффекты недостаточны, а дисперсность структуры, выход годного, технологические и антифрикционные свойства сплавов в отливках низкие.
Для сравнительных испытаний эффективности известной и предложенной комплексных экзотермических смесей проведена их апробация в производственных условиях при выплавке в тигельных индукционных печах и последующей внепечной обработке модифицированных антифрикционных чугунов. В табл.1 приведены составы комплексных экзотермических смесей, используемых для внепечной обработки.
Определение трещиностойкости сплавов (по среднему количеству трещин в пробе) проводили на звездообразных 250 мм технологических пробах высотой 140 мм, жидкотекучести - на спиральных технологических пробах, а прочностных свойств - по ГОСТ 1497-84 на образцах диаметром 14 мм с расчетной длиной 70 мм. Для определения ударной вязкости использовали образцы 10×10×55 мм. Металлографические исследования и анализ дисперсности структуры чугуна проводили в соответствии с ГОСТ 3443-87.
Опытные плавки антифрикционного чугуна АЧС-3 проведены в тигельных индукционных печах с использованием в качестве шихтовых материалов литейных чугунов Л3 и Л5, чугунного лома марки 17А, стального лома 1А, углеродистого феррохрома, никеля НПЗ, ферромарганца ФМн 75. При выпуске чугуна в ковш его температура составляла 1380…1410°С. Содержание компонентов в чугуне перед обработкой смесью, мас.%: углерод 3,5-3,6; кремний 2,3-2,5; марганец 0,5; никель 0,2; медь 0,5; хром 0,03; фосфор 0,05; сера 0,02 и железо - остальное.
Комплексные экзотермические смеси в бумажных пакетах или в прессованных цилиндрических таблетках диаметром 50 мм и высотой 50 мм вводили на дно чайникового ковша перед заливкой чугуна. Заливку чугуна с температурой 1370-1400°С производили в песчано-глинистые формы для получения технологических проб, отливок типа втулок и образцов для механических испытаний.
В табл.2 приведены технологические свойства антифрикционных чугунов, полученных после внепечной обработки известной и предложенными составами экзотермических смесей.
Апробация в производственных условиях показала, что предложенная комплексная экзотермическая смесь является эффективной химически активной и микролегирующей добавкой при внепечной обработке и оказывает положительное влияние на износостойкость, антифрикционные свойства, температурные и технологические параметры антифрикционных сплавов, способствует повышению твердости, трещиностойкости и выхода годного в большей степени, чем известная.
Таблица 1 | |||||||
Составы смесей | Содержание компонентов в экзотермических смесях, мас.% | ||||||
Металлический алюминий | Фтористый кальций | Окислы меди | Азотированный ферромарганец | Ферротитан | Угольная пыль | Оксиды алюминия | |
1 /Известная/ | 29,3 | 28 | - | - | 17 | 4 | 21,7 |
2 | 22,3 | 18 | 28 | 5 | 19,7 | 7 | - |
3 | 38 | 11 | 27 | 7 | 12 | 5 | - |
4 | 32 | 14 | 20 | 13 | 17 | 4 | - |
5 | 25 | 17 | 14 | 18 | 25 | 1 | - |
6 | 43 | 7 | 10 | 9,5 | 30 | 0,5 | - |
Таблица 2 | ||||||
Смесь | Твердость, НВ | Выход годного литья | Трещиностойкость, количество трещин в технологической пробе | Коэффициент трения | Средний износ, мг/гс | Ударная вязкость, Дж/см2 |
1 /Известная/ | 165 | 66 | 3,4 | 0,38 | 28 | 12 |
2 | 167 | 68 | 3,0 | 0,37 | 25 | 14 |
3 | 180 | 71 | 2,3 | 0,35 | 22 | 17 |
4 | 188 | 74 | 2,5 | 0,32 | 18 | 21 |
5 | 175 | 72 | 2,9 | 0,33 | 21 | 19 |
6 | 172 | 69 | 3,2 | 0,36 | 23 | 15 |
Комплексная экзотермическая смесь, содержащая металлический алюминий, ферротитан, фтористый кальций и угольную пыль, отличающаяся тем, что она дополнительно содержит окислы меди и азотированный ферромарганец при следующем соотношении компонентов, мас.%:
Металлический алюминий | 25-38 |
Ферротитан | 12-25 |
Фтористый кальций | 11-17 |
Окислы меди | 14-27 |
Азотированный ферромарганец | 7-18 |
Угольная пыль | 1-5 |