Элемент, полученный с помощью микрообработки, способ его изготовления и устройство травления

Иллюстрации

Показать все

Способ изготовления элемента, полученного с помощью микрообработки, содержит этапы, на которых: формируют слой резиста на штампе, экспонируют и проявляют слой резиста, сформированного на штампе, для формирования структуры в слое резиста; и помещают штамп, на котором выполнена структура в слое резиста, на электрод и выполняют травление штампа для формирования неровной формы на поверхности штампа, для получения элемента, полученного с помощью микрообработки. На поверхности электрода сформирована неровная форма так, что на этапе травления выполняют анизотропное травление в наклонном направлении относительно поверхности штампа. Устройство травления содержит резервуар для реакции травления и первый и второй электроды, расположенные с противоположных сторон в резервуаре. Первый электрод имеет поверхность размещения для размещения подложки, имеющую неровную форму поверхности, так что анизотропное травление осуществляется в наклонном направлении относительно поверхности подложки. Технический результат - обеспечение изготовления элемента, имеющего неровные структуры, наклоненные относительно нормали к поверхности подложки, по меньшей мере, в двух разных направлениях, или имеющего множество областей, в которых направления наклона структур могут быть разными. 2 н. и 7 з.п. ф-лы, 59 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к элементу, полученному с помощью микрообработки, к способу его изготовления и к устройству травления, используемому для его изготовления. В частности, настоящее изобретение относится к элементу, полученному с помощью микрообработки, имеющему изогнутую поверхность.

Уровень техники

В последние годы были проведены различные исследования технологий изготовления элементов с помощью микрообработки. Например, с целью предотвращения поверхностного отражения света была предложена технология формирования мелких и плотных неравномерных структур (структура типа "глаз мотылька") на поверхности оптического элемента (см., например, "OPTICAL AND ELECTRO-OPTICAL ENGINEERING CONTACT", Vol.43, №11 (2005), 630-637).

Обычно в случае, когда периодическая неровная форма выполнена на поверхности оптического элемента, возникает дифракция, когда свет проникает через нее, при этом прямой компонент переданного света существенно уменьшается. Однако в случае, когда шаг неровной формы меньше, чем длина волны передаваемого света, дифракция не возникает. Например, когда неровная форма является прямоугольной, может быть получен хороший противоотражающий эффект в отношении света с одной длиной волны, которая соответствует этому шагу, глубине и т.п.

Авторы настоящего изобретения предложили способ на основе процесса формирования штампа оптического диска и процесса травления в качестве способа изготовления такого элемента, полученного с помощью микрообработки (см., например, публикацию №2008-176076, находящейся на экспертизе заявки на японский патент). Этот способ позволяет формировать структуру с формой купола или в виде эллиптического усеченного конуса.

В обычном процессе изготовления штампа оптического диска получают неровную структуру, как описано ниже. Первоначально раствор, в котором резист, используемый как фоторезистивный материал, разбавлен с растворителем, наносят на плоскую и гладкую стеклянную подложку, используя способ нанесения покрытия путем центрифугирования таким образом, что плоская и гладкая пленка резиста, имеющая однородную толщину пленки, формируется на подложке. После этого различные структуры экспонирования записывают на пленке резиста на этой подложке, используя устройство оптической записи, и выполняют проявление. После этого образуется неровная структура, имеющая однородную глубину и ширину.

Раскрытие изобретения

Техническая задача

В последние годы с целью предотвращения отражения и т.п. возникла потребность в разработке описанной выше неровной структуры (структура типа "глаз мотылька") для различных оптических компонентов. Для соответствия этим потребностям требуется разработать технологию формирования мелкой неровной структуры на штампе, имеющем изогнутую поверхность, например, на сферической поверхности или на круглой цилиндрической поверхности.

В соответствии с этим цель настоящего изобретения состоит в том, чтобы обеспечить элемент, полученный с помощью микрообработки, имеющий тонкую неровную структуру на изогнутой поверхности, например сферической поверхности или круглой цилиндрической поверхности, и способ для его изготовления, а также устройство травления, используемое для его изготовления.

Техническое решение

Для решения описанных выше задач первое изобретение направлено на способ изготовления элемента, полученного с помощью микрообработки, способ включает в себя следующие этапы:

формируют слой неорганического резиста на штампе, имеющем изогнутую поверхность,

экспонируют и проявляют слой неорганического резиста, сформированного на штампе, для формирования структуры в слое неорганического резиста, и

помещают штамп, на котором выполнена структура в слое неорганического резиста, на электрод, имеющий изогнутую поверхность, приблизительно идентичную или аналогичную изогнутой поверхности штампа, и выполняют травление штампа для формирования неровной формы на поверхности штампа, для получения элемента, полученного с помощью микрообработки.

Второе изобретение направлено на

элемент, полученный способом микрообработки, содержащий:

подложку, имеющую изогнутую поверхность, и

структуры, представляющие собой выпуклые или вогнутые участки, сформированные на изогнутой поверхности подложки,

при этом структуры расположены с шагом, равным или меньше длины волны света в среде использования.

Третье изобретение направлено на

устройство травления, содержащее:

резервуар для реакции травления и

первый электрод и второй электрод, которые расположены напротив друг друга в резервуаре для реакции травления,

при этом первый электрод имеет поверхность для размещения подложки, причем

поверхность размещения имеет изогнутую форму или неровную форму.

Четвертое изобретение направлено на

оптический элемент, содержащий:

подложку и

большое количество структур, выполненных на поверхности подложки,

при этом структуры расположены с шагом, равным или меньше длины волны света в среде использования, и

структуры выполнены с наклоном, по меньшей мере, в двух разных направлениях, под заданными углами относительно направления, нормального к поверхности подложки.

В настоящем изобретении четырехугольная решетка относится к решетке в форме квадрата. Квазичетырехугольная решетка относится к решетке в форме искаженного квадрата, отличающегося от решетки в форме квадрата. В частности, в случае когда структуры расположены на прямой линии, квазичетырехугольная решетка относится к четырехугольной решетке, полученной в результате вытягивания решетки в форме квадрата в направления размещения в форме прямой линии так, что она искажается. В случае когда структуры расположены по дуге, квазичетырехугольная решетка относится к четырехугольной решетке, полученной в результате искажения решетки в форме квадрата в форму дуги, или к четырехугольной решетке, полученной в результате искажения решетки в форме квадрата в форму дуги и, кроме того, вытягивания в направлении размещения, по дуге, для искажения.

В настоящем изобретении шестиугольная решетка относится к решетке в форме правильного шестиугольника. Квазишестиугольная решетка относится к решетке в форме искаженного правильного шестиугольника, отличающегося от решетки в форме правильного шестиугольника. В частности, в случае когда структуры расположены по прямой линии, квазишестиугольная решетка относится к шестиугольной решетке, полученной в результате вытягивания решетки в форме правильного шестиугольника в направлении размещения, по прямой линии, так, что форма решетки искажается. В случае когда структуры расположены по дуге, квазишестиугольная решетка относится к шестиугольной решетке, полученной в результате искажения решетки в форме правильного шестиугольника в форму дуги, или к шестиугольной решетке, полученной в результате искажения решетки в форме правильного шестиугольника в форму дуги и с дополнительным растяжением в направлении размещения, по дуге, так, что форма решетки искажается.

В настоящем изобретении штамп, на котором выполнена структура неорганического резиста, помещают на электрод, имеющий изогнутую поверхность, приблизительно идентичную или аналогичную изогнутой поверхности штампа, и этот штамп травят таким образом, что травление может быть выполнено в направлении, перпендикулярном изогнутой поверхности штампа. Следовательно, неровная структура, имеющая однородную глубину и ширину, может быть сформирована на штампе, имеющем изогнутую поверхность, например, в форме круглого цилиндра, форме сферы и т.п.

Технический результат

Как описано выше, в соответствии с настоящим изобретением может быть реализован элемент, полученный с помощью микрообработки, имеющий мелкую неровную структуру на изогнутой поверхности, например сферической поверхности или круглой цилиндрической поверхности, и способ изготовления элемента, полученного с помощью микрообработки.

Краткое описание чертежей

На фиг.1А схематично показан вид в плане, представляющий пример конфигурации оптического элемента, в соответствии с первым вариантом выполнения настоящего изобретения. На фиг.1В показан вид в плане с увеличением, иллюстрирующий часть оптического элемента, представленного на фиг.1А. На фиг.1C показан вид в разрезе вдоль дорожки Т1, Т3, …, показанной на фиг.1В. На фиг.1D показан вид в разрезе вдоль дорожки Т2, Т4, …, показанной на фиг.1В.

На фиг.2 показан вид в перспективе с увеличением, иллюстрирующий часть оптического элемента, показанного на фиг.1.

На фиг.3А показан вид в перспективе, представляющий пример конфигурации мастер-формы. На фиг.3В показан вид в плане с увеличением, иллюстрирующий часть мастер-формы, показанной на фиг.3А.

На фиг.4 показана схема, представляющая пример конфигурации устройства экспонирования для получения мастер-формы.

На фиг.5 показана схема, представляющая пример конфигурации устройства травления для получения мастер-формы.

На фиг.6А-С показаны схемы этапов для пояснения способа изготовления оптического элемента в соответствии с первым вариантом выполнения настоящего изобретения.

На фиг.7А-С показаны схемы этапов для пояснения способа изготовления оптического элемента в соответствии с первым вариантом выполнения настоящего изобретения.

На фиг.8 показана схема, представляющая пример конфигурации устройства экспонирования, используемого для изготовления оптического элемента, в соответствии со вторым вариантом выполнения настоящего изобретения.

На фиг.9 показана схема, представляющая пример конфигурации устройства экспонирования, используемого для изготовления оптического элемента, в соответствии со вторым вариантом выполнения настоящего изобретения.

На фиг.10А схематично показан вид в плане, представляющий пример конфигурации оптического элемента, в соответствии с четвертым вариантом выполнения настоящего изобретения. На фиг.10В показан вид в плане с увеличением, иллюстрирующий часть оптического элемента, показанного на фиг.10А. На фиг.10С показан вид в разрезе вдоль дорожки Т1, Т3, …, показанной на фиг.10В. На фиг.10D представлен вид в разрезе вдоль дорожки Т2, Т4, …, показанной на фиг.10В.

На фиг.11А схематично показан вид в плане, представляющий пример конфигурации оптического элемента, в соответствии с пятым вариантом выполнения настоящего изобретения. На фиг.11В показан вид в плане с увеличением, иллюстрирующий часть оптического элемента, представленного на фиг.11А. На фиг.11С показан вид в разрезе вдоль дорожки Т1, Т3, …, показанной на фиг.11В. На фиг.11D представлен вид в разрезе вдоль дорожки Т2, Т4, …, показанной на фиг.11В.

На фиг.12А показан вид сбоку, представляющий пример конфигурации мастер-формы. На фиг.12В показан вид в плане с увеличением, иллюстрирующий часть мастер-формы, показанной на фиг.12А.

На фиг.13 показана схема, представляющая пример конфигурации устройства экспонирования для получения мастер-формы.

На фиг.14 показана схема, представляющая пример конфигурации устройства травления для получения мастер-формы.

На фиг.15А схематично показан вид в плане, представляющий пример конфигурации оптического элемента, в соответствии с шестым вариантом выполнения настоящего изобретения. На фиг.15В показан вид в плане с увеличением, иллюстрирующий часть оптического элемента, показанного на фиг.15А. На фиг.15С представлен вид в разрезе вдоль дорожки Т1, Т3, …, показанной на фиг.15В. На фиг.15D представлен вид в разрезе вдоль дорожки Т2, Т4, …, показанной на фиг.15В.

На фиг.16 показан вид в перспективе с увеличением, иллюстрирующий часть оптического элемента, показанного на фиг.15.

На фиг.17А показан вид в плане, представляющий пример конфигурации мастер-формы. На фиг.17В показан вид в плане с увеличением, иллюстрирующий часть мастер-формы, показанной на фиг.17А.

На фиг.18 показана схема, представляющая пример конфигурации устройства экспонирования для получения мастер-формы.

На фиг.19 показана схема, представляющая пример конфигурации устройства травления для получения мастер-формы.

На фиг.20А-С показаны схемы этапов для пояснения способа изготовления оптического элемента в соответствии с шестым вариантом выполнения настоящего изобретения.

На фиг.21А-C показаны схемы этапов для пояснения способа изготовления оптического элемента в соответствии с шестым вариантом выполнения настоящего изобретения.

На фиг.22А схематично показан вид в плане, представляющий пример конфигурации оптического элемента в соответствии с седьмым вариантом выполнения настоящего изобретения. На фиг.22В показан вид в плане с увеличением, иллюстрирующий часть оптического элемента, показанного на фиг.22А. На фиг.22С представлен вид в разрезе вдоль дорожки Т1, Т3, …, показанной на фиг.22В. На фиг.22D представлен вид в разрезе вдоль дорожки Т2, Т4, …, показанной на фиг.22В.

На фиг.23 показан вид в перспективе с увеличением, иллюстрирующий часть оптического элемента, показанного на фиг.22.

На фиг.24 показан вид в разрезе, представляющий пример конфигурации устройства жидкокристаллического дисплея в соответствии с девятым вариантом выполнения настоящего изобретения.

На фиг.25 показан вид в разрезе, представляющий пример конфигурации устройства жидкокристаллического дисплея в соответствии с десятым вариантом выполнения настоящего изобретения.

На фиг.26А показана фотография сканирующего электронного микроскопа оптического элемента в соответствии с примером 1. На фиг.26В показана фотография сканирующего электронного микроскопа оптического элемента в соответствии с примером 2. На фиг.26С показана фотография сканирующего электронного микроскопа оптического элемента в соответствии с примером 3.

На фиг.27 показан график, представляющий противоотражающие характеристики в примере 1.

На фиг.28А показан вид в перспективе, представляющий внешний вид пленки с линзами в виде "глаза мотылька" по примеру 4. На фиг.28В представлен вид в разрезе вдоль линии А-А, обозначенной на фиг.28А.

На фиг.29А и на фиг.29В показаны фотографии, представляющие внешний вид кварцевой линзы типа "глаза мотылька" по примеру 5.

Осуществление изобретения

Варианты выполнения в соответствии с настоящим изобретением будут описаны в следующем порядке со ссылкой на чертежи. На всех следующих чертежах вариантов выполнения одни и те же или соответствующие части обозначены одинаковыми номерами ссылочных позиций.

(1) Первый вариант выполнения (пример мастер-формы в форме кругового цилиндра)

(2) Второй вариант выполнения (пример экспонирования штампа в форме кругового цилиндра в горизонтальной ориентации)

(3) Третий вариант выполнения (пример размещения структур на поверхности внутреннего периметра штампа в форме кругового цилиндра)

(4) Четвертый вариант выполнения (пример размещения структур в форме четырехугольной решетки)

(5) Пятый вариант выполнения (пример производства мастер-формы в форме сферической поверхности)

(6) Шестой вариант выполнения (мастер-форма, имеющая наклонные структуры)

(7) Седьмой вариант выполнения (пример формирования вогнутых структур на поверхности подложки)

(8) Восьмой вариант выполнения (пример непосредственного переноса неровной структуры слоя резиста)

(9) Девятый вариант выполнения (первый пример применения в дисплее)

(10) Десятый вариант выполнения (второй пример применения в дисплее)

Первый вариант выполнения

Конфигурация оптического элемента

На фиг.1А схематично показан вид в плане, представляющий пример конфигурации оптического элемента в соответствии с первым вариантом выполнения настоящего изобретения. На фиг.1В показан вид в плане с увеличением, иллюстрирующий часть оптического элемента, показанного на фиг.1А. На фиг.1С показан вид в разрезе вдоль дорожки Т1, Т3, …, показанной на фиг.1В. На фиг.1D показан вид в разрезе вдоль дорожки Т2, Т4, … показанной на фиг.1В.

Такой оптический элемент 1 предпочтительно применяют в различных оптических компонентах, например дисплеях, оптоэлектронных устройствах, устройствах оптической передачи данных (оптоволоконной передачи данных), солнечных ячейках и в устройствах освещения. Конкретные примеры оптических компонентов могут включать в себя любой из одного типа поляризаторов, линз, пластин волноводов, материалов окон и элементов дисплея.

Оптический элемент 1 включает в себя подложку 2 и структуры 3, когда выпуклые участки расположены на поверхности этой подложки 2. Такой оптический элемент 1 имеет функцию предотвращения отражения света, падающего на поверхность подложки, на которой предусмотрены структуры 3. Ниже, как показано на фиг.1, две оси, ортогональные друг другу на основной поверхности подложки 2, обозначены как ось Х и ось Y, и ось, перпендикулярная основной поверхности подложки 2, обозначена как ось Z. Кроме того, в случае когда участки 2а зазора присутствуют между структурами 3, предпочтительно, чтобы тонкие неровные поверхности были расположены на участках 2а зазора. Причина этого состоит в том, что отражательная способность оптического элемента 1 может быть дополнительно уменьшена благодаря размещению описанных выше мелких неровных поверхностей.

Подложка 2 и структуры 3, которые составляют оптический элемент 1, будут последовательно описаны ниже.

(Подложка)

Подложка 2 представляет собой прозрачную подложку, обладающую свойством прозрачности. Примеры материалов, используемых в качестве подложки 2, включают в себя материалы, содержащие прозрачные синтетические полимерные смолы, например поликарбонат (PC) и полиэтилентерефталат (PET), стекло и т.п., в качестве основных компонентов, хотя не обязательно ограничиваются этими материалами.

Примеры видов подложки 2 могут включать в себя пленку, лист, пластину и блок, хотя не в обязательно ограничены этими видами. Предпочтительно выбирать и определять вид подложки 2 в соответствии с видом участков основной части различных оптических устройств, например дисплеев, оптоэлектронных устройств, устройств для оптической передачи данных, солнечных элементов и устройств освещения, для которых требуется обеспечение заданной противоотражающей функции, и компонентов с противоотражающей функцией, которые выполнены в виде листа, пленки или тому подобного и которые присоединены к этим оптическим устройствам.

(Структуры)

На фиг.2 показан вид в перспективе с увеличением, иллюстрирующий часть оптического элемента, показанного на фиг.1. Большое количество структур 3, которые выполнены как выпуклые участки, расположены на поверхности подложки 2. Эти структуры 3 периодически двумерно размещены с малым шагом, который равен или меньше длины волны света в среде использования, например, с такой же величиной шага, что и длина волны видимого света. Свет в среде использования представляет собой, например, ультрафиолетовый свет, видимый свет или инфракрасный свет. Здесь ультрафиолетовым светом называется свет, имеющий длину волны в пределах диапазона 10 нм или больше и меньше чем 360 нм, видимый свет обозначает свет в диапазоне 360 нм или больше и 830 нм или меньше и инфракрасный свет обозначает свет в пределах диапазона более чем 830 нм и 1 мм или меньше.

Структуры 3 оптического элемента 1 имеют форму компоновки, составляющую множество дорожек T1, T2, Т3, … (ниже в общем называется "дорожкой Т") на поверхности подложки 2. Здесь дорожка обозначает участок, на котором структуры 3 выровнены в линию, будучи размещены в соответствии с формой прямой линии. Нижние участки соседних структур 3 могут накладываться друг на друга, и нижние участки структур 3 могут быть взаимно соединены. Соединение структур 3 выполняют между всеми структурами 3 или частью их, которые находятся рядом друг с другом. Например, нижние участки структур 3, расположенные в направлении дорожки, взаимно накладываются друг на друга и соединяются. Характеристики отражения могут быть улучшены в результате взаимного соединения нижних участков структур 3.

Структуры 3 расположены таким образом, что положения в соседних двух дорожках Т смещены на полшага относительно друг друга. В частности, что касается этих двух дорожек Т, структуры 3 одной дорожки (например, T2) расположены в средних положениях (положения, смещенные на половину шага) структур 3, расположенных в другой дорожке (например, T1). В результате, как показано на фиг.1В, что касается соседних трех линий дорожек (Т1-Т3), структуры 3 расположены таким образом, что они формируют структуру шестиугольной решетки или структуру квазишестиугольной решетки, в которой центры структур 3 расположены в отдельных точках a1-а7. В настоящем первом варианте выполнения структура шестиугольной решетки относится к структуре решетки в форме правильного шестиугольника. Кроме того, структура квазишестиугольной решетки отличается от структуры решетки в форме правильного шестиугольника и называется структурой шестиугольной решетки, вытянутой в направлении вытягивания дорожки (направление оси X), с ее искажением.

В случае когда структуры 3 расположены таким образом и формируют структуру квазишестиугольной решетки, как показано на фиг.1В, предпочтительно, чтобы шаг Р1 размещения (расстояние между a1 и а2) структур 3 на одной дорожке (например, Т1) был больше, чем шаг размещения структур 3 в соседних двух дорожках (например, в дорожках Т1 и Т2), то есть шаг Р2 размещения (например, расстояние между a1 и а7, а2 и а7) структур 3 в направлениях ±θ относительно направления расширения дорожки. При этом становится возможным дополнительно улучшить плотность упаковки структур 3 благодаря размещению структур 3, как описано выше.

Высота структур 3 не ограничена специально и установлена соответствующим образом, в соответствии с областью длин волн передаваемого света. Высота структуры 3 представляет, например, от 236 нм до 450 нм и предпочтительно от 415 нм до 421 нм. Предпочтительно, чтобы отношение размеров (высота Н/шаг Р размещения) структуры 3 было установлено в пределах диапазона от 0,81 до 1,46. Причина этого состоит в том, что, если отношение размеров будет меньше чем 0,81, характеристика отражения и характеристика пропускания будут проявлять тенденцию уменьшения, и, если будет превышено значение 1,46, характеристика отслаивания при производстве оптического элемента 1 будет проявлять тенденцию ухудшения, и при этом проявляется тенденция трудного отделения дубликата копии.

В этом отношении соотношение размеров в настоящем изобретении определено следующей формулой (1):

где Н: высота структуры 3, Р: средний шаг размещения (средний период).

Здесь средний шаг Р размещения определен следующей формулой (2):

где Р1: шаг размещения в направлении протяженности дорожки (период в направлении протяженности дорожки),

Р2: шаг размещения в направлении ±θ (где θ=60° - Δ, здесь Δ, предпочтительно 0°<Δ ≤11° и более предпочтительно 3°≤Δ<6°) в отношении направления протяженности дорожки (период в направлении θ).

В этом отношении высота Н структур 3, как предполагается, составляет высоту Н2 в направлении линий структур 3 (см. фиг.2). Здесь направление линий относится к направлению (направление по оси Y), ортогональному к направлению протяженности дорожки (направлению оси X) на поверхности подложки. В случае когда оптический элемент 1 производят, используя способ производства, описанный ниже, предпочтительно, чтобы высота H1 структур 3 в направлении протяженности дорожки была меньше, чем высота Н2 в направлении линий. Если использовать такое соотношение высот в способе производства, описанном ниже, высоты структур 3 участков в других направлениях, кроме направления протяженности дорожки, становятся приблизительно равными высоте Н2 в направлении линий. Поэтому высота Н структур 3 представлена высотой Н2 в направлении линий.

На фиг.2 отдельные структуры 3 имеют одинаковую форму. Однако форма структур 3 не ограничивается этим. Структуры 3, имеющие, по меньшей мере, два типа формы, могут быть расположены на поверхности подложки. Кроме того, структуры 3 могут быть сформированы интегрально с подложкой 2.

В этом отношении соотношения размеров структур 3 не всегда являются во всех случаях одинаковыми. Структуры 3 могут быть сконфигурированы так, чтобы они имели определенное распределение высоты (например, соотношение размеров в диапазоне приблизительно от 0,83 до 1,46). Зависимость от длины волны отражающей характеристики может быть уменьшена путем размещения структур 3, имеющих распределение высот. Следовательно, может быть реализован оптический элемент 1, имеющий отличную противоотражающую характеристику.

Здесь распределение высоты относится к тому, что структуры 3, имеющие, по меньшей мере, два типа высоты (глубины), расположены на поверхности подложки 2. То есть это означает, что структуры 3, имеющие высоту, используемую как опорное значение, и структуры 3, имеющие высоту, отличающуюся от высоты описанных выше структур 3, расположены на поверхности подложки 2. Например, структуры 3, имеющие высоты, отличающиеся от опорного значения, периодически или апериодически (случайно), расположены на поверхности подложки 2. Примеры направлений периодичности включают в себя направление протяженности дорожки и направление линий.

Что касается материала для структур 3, например, материалы, содержащие полимерную смолу, отверждаемую под воздействием ионизирующего излучения, которую отверждают под действием ультрафиолетовых лучей или электронных лучей, или термореактивные смолы, которые отверждают под действием тепла, в качестве основного компонента, являются предпочтительными, и материалы, содержащие полимерные смолы, отверждаемые под действием ультрафиолетового излучения, которые можно отверждать под действием ультрафиолетовых лучей, в качестве первичного компонента, являются наиболее предпочтительными.

Предпочтительно, чтобы структуры 3 имели изогнутую поверхность, которая постепенно продолжается от верхнего участка в направлении нижнего участка этой структуры 3. Причина этого состоит в том, что степень пропускаемости может быть сделана хорошей при использовании такой формы.

Верхний участок структуры 3 выполнен, например, как плоская поверхность или выпуклая изогнутая поверхность и предпочтительно выпуклая изогнутая поверхность. Долговечность оптического элемента 1 может быть улучшена при использовании выпуклой изогнутой поверхности, как описано выше. В качестве альтернативы, слой с низким коэффициентом преломления, имеющий коэффициент преломления ниже, чем у структуры 3, может быть расположен на верхнем участке структуры 3. Степень отражения может быть уменьшена при размещении такого слоя с низким коэффициентом преломления.

Примеры всех форм структур 3 могут включать в себя форму конуса. Примеры формы конуса могут включать в себя форму кругового конуса, форму кругового усеченного конуса, форму эллиптического конуса, форму эллиптического усеченного конуса, форму кругового конуса, имеющего кривизну на верхнем участке, и форму эллиптического конуса, имеющего кривизну на верхнем участке. Здесь форма конуса представляет собой концепцию, включающую в себя форму эллиптического конуса, форму эллиптического усеченного конуса, форму кругового конуса, имеющего кривизну на верхнем участке, и форму эллиптического конуса, имеющего кривизну на верхнем участке, помимо формы кругового конуса и формы кругового усеченного конуса. В этом отношении форма кругового усеченного конуса относится к форме, в которой срезан верхний участок формы кругового конуса, и форма эллиптического усеченного конуса относится к форме, в которой срезан верхний участок формы эллиптического конуса. Кроме того, вся форма структуры 3 не ограничивается этими формами и может быть выбрана соответственно, в соответствии с требуемыми характеристиками.

Более конкретно, структура 3, имеющая форму эллиптического конуса, представляет собой структуру, имеющую структуру конуса, в которой нижняя часть имеет форму эллипса, овала или форму яйца, имеющую большую ось и малую ось, и верхний участок имеет изогнутую поверхность. Структура 3, имеющая форму эллиптического усеченного конуса, представляет собой структуру, имеющую структуру конуса, в которой нижняя часть выполнена в форме эллипса, овала или яйца, имеющего большую ось и малую ось, и верхний участок выполнен плоским. В случае когда структура 3 имеет форму эллиптического конуса или форму эллиптического усеченного конуса, предпочтительно формировать структуру 3 на поверхности подложки таким способом, чтобы направление большой оси нижней части структуры 3 представляло собой направление протяженности дорожки (направления оси X).

[Конфигурация мастер-формы]

На фиг.3 показан пример конфигурации мастер-формы для производства оптического элемента, имеющего описанную выше конфигурацию. Как показано на фиг.3, мастер-форма 11 представляет собой так называемую валковую мастер-форму и имеет конфигурацию, в которой большое количество структур 13, состоящих из выпуклых участков, расположены на поверхности штампа 12 в форме кругового цилиндра. Эти структуры 13 расположены периодически двумерно с шагом, меньшим чем или равным длине волны света в среде использования оптического элемента 1, например с такой же величиной шага, что и длина волны видимого света. Структуры 13 расположены в форме концентрических кругов или в форме спирали на поверхности штампа 12 в форме кругового цилиндра. Структуры 13 должны формировать структуры 3, которые представляют собой выпуклые участки на поверхности описанной выше подложки 2. Что касается материала для штампа 12, например, можно использовать стекло, хотя он не ограничен специально этим материалом.

[Конфигурация устройства экспонирования]

На фиг.4 показана схема, представляющая пример конфигурации устройства экспонирования для производства мастер-формы, имеющей описанную выше конфигурацию. Такое устройство экспонирования сформировано на основе устройства записи оптического диска.

Источник 21 света лазера представляет собой источник света для экспонирования резиста, нанесенного как пленка на поверхность штампа 12, используемого в качестве носителя записи, и предназначен для генерирования света 15 лазера записи с длиной волны, например, λ=266 нм. Свет 15 лазера, излучаемый источником 21 света лазера, перемещается по прямой линии и представлен в состоянии коллимированного луча и попадает в электрооптический модулятор (ЕОМ: электрооптический модулятор) 22. Свет 15 лазера, пропущенный через электрооптический модулятор 22, отражается на зеркале 23 и поступает в систему 25 оптической модуляции.

Зеркало 23 сформировано из поляризующего расщепителя луча и имеет функцию отражения одного поляризованного компонента и пропускания другого поляризованного компонента. Поляризованный компонент, прошедший через зеркало 23, попадает на фотодиод 24, и электрооптическим модулятором 22 управляют на основе принятого сигнала света таким образом, что выполняют модуляцию фазы света 15 лазера.

В оптической системе модуляции 25 свет 15 лазера конденсируют на акустооптическом модуляторе (АОМ: акустооптический модулятор) 27, который состоит из стекла (SiO2) или тому подобного с конденсорными линзами 26. Свет 15 лазера подвергают модуляции интенсивности, используя акустооптический модулятор 27 так, что он становится расходящимся, и после этого его преобразуют в коллимированный луч с помощью коллиматорных линз 28. Свет 15 лазера, излучаемый из оптической системы 25 модуляции, отражается на зеркале 31, и его подают на движущийся оптический стол 32 горизонтально и параллельно.

На движущемся оптическом столе 32 предусмотрен расширитель 33 луча и линзы 34 объектива. Свет 15 лазера, подаваемый на движущийся оптический стол 32, формируют с получением требуемой формы луча, используя расширитель 33 луча, и после этого его направляют на слой резиста на штампе 12 через линзы 34 объектива. Штамп 12 расположен на поворотном столе 36, который соединен с двигателем 35 шпинделя. Затем свет 15 лазера направляют на слой резиста с перерывами, в то время как штамп 12 вращают, и, кроме того, свет 15 лазера перемещают в направлении высоты штампа 12, так, что выполняют этап экспонирования слоя резиста. Сформированное латентное изображение принимает форму, например, приблизительно эллипса, имеющего большую ось в направлении окружности. Движение света 15 лазера выполняют путем перемещения движущегося оптического стола 32 в направлении, обозначенном стрелкой R.

В устройстве экспонирования предусмотрен механизм 37 управления для формирования в слое резиста латентного изображения, соответствующего двумерной структуре шестиугольной решетки или квазишестиугольной кристаллической решетки, показанной на фиг.1В. В механизме 37 управления предусмотрен блок 29 форматирования и блок 30 управления. В блоке 29 форматирования предусмотрен участок инверсии полярности. Такой участок инверсии полярности управляет моментами времени применения света 15 лазера к слою резиста. Блок 30 управления принимает выход из участка инверсии полярности и управляет акустооптическим модулятором 27.

В таком устройстве экспонирования сигнал форматирования инверсии полярности и контроллер вращения устройства записи синхронизированы для генерирования сигнала и модуляцию интенсивности луча выполняют с помощью акустооптического модулятора 27 на основе дорожки таким образом, что двумерные структуры соединены пространственно. Структура шестиугольной решетки или квазишестиугольной решетки могут быть записаны в слое резиста путем выполнения формирования структуры с постоянной угловой скоростью (CAV: постоянная угловая скорость) и при соответствующем количестве оборотов с соответствующей частотой модуляции, и при соответствующем шаге подачи.

[Конфигурация устройства травления]

На фиг.5 показана схема, представляющая пример конфигурации устройства травления для получения мастер-формы, имеющей описанную выше конфигурацию. Устройство травления представляет собой так называемое устройство RIE (реактивное ионное травление), и в нем предусмотрен резервуар 41 для проведения реакции травления, круговой цилиндрический электрод 42, используемый в качестве катода (отрицательный электрод), и противоположный электрод 43, используемый в качестве анода (положительный электрод), как показано на фиг.5. Круговой цилиндрический электрод 42 расположен в центре резервуара 41 реакции травления. Противоположный электрод 43 расположен на внутренней стороне резервуара 41 реакции травления. Круговой цилиндрический электрод 42 имеет конфигурацию, в которой штамп 12 в форме кругового цилиндра может быть съемно прикреплен к нему. Круговой цилиндрический электрод 42 имеет, например, круговую цилиндрическую поверхность, приблизительно идентичную или аналогичную круговой цилиндрической поверхности цилиндрического штампа 12, в частности круговую цилиндрическую поверхность, имеющую несколько меньший диаметр, чем диаметр поверхности внутреннего периметра штампа 12 в форме кругового цилиндра. Круговой цилиндрический электрод 43 соединен, например, с источником 45 питания с высокой частотой (RF) 13,56 МГц с разделительным конденсатором 44 между ними. Противоположный электрод 43 соединен с землей.

В устройстве травления, имеющем описанную выше конфигурацию, когда напряжение высокой частоты прикладывают между противоположным электродом 43 и круговым цилиндрическим электродом 42 с подключением источника 45 питания с высокой частотой, плазма генерируется между противоположным электродом 43 и круговым цилиндрическим электродом 42. Противоположный электрод 43 соединен с землей таким образом, что его потенциал не меняется, в то время как потенциал кругового цилиндрического электрода 42 становится отрицательным, поскольку цепь прервана разделительным конденсатором 44 и происходит падение напряжения. В связи с таким падением напряжения электрическое поле генерируется в направлении, перпендикулярном круговой цилиндрической поверхности кругового цилиндрического электрода 42, положительные ионы в