Целлюлозные белки слияния и их применение

Иллюстрации

Показать все

Изобретение относится к области биотехнологии и касается целлюлазных слитых белков. Представленные слитые белки содержат аминокислотную последовательность эндоглюканазного ядра, имеющую, по крайней мере, 95%-ную идентичность с SEQ ID NO:2, слитую с аминокислотной последовательностью, содержащей линкер и целлюлозосвязывающий домен (CBD), имеющую, по крайней мере 95%-ную идентичность с SEQ ID NO:15. Такие слитые белки могут быть получены с помощью рекомбинантной технологии при использовании подходящих полинуклеотидов, экспрессирующих векторов и клеток-хозяев. Представленное изобретение обеспечивает целлюлазу, обладающую низкой активностью в отношении восстановления окраски, и может быть использовано для обработки целлюлозного материала, например, текстильного материала и для биологической абразивной обработки денима. Кроме того, представленные слитые белки и ферментные препараты на их основе могут использоваться для приготовления детергентных композиций или для улучшения качества кормов для животных. 12 н. и 14 з.п. ф-лы, 8 ил., 10 табл., 10 пр.

Реферат

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Изобретение относится к ферментной технологии и, более точно, к целлюлазным белкам слияния, содержащим каталитический домен и целлюлозосвязывающий домен. Белки слияния могут быть получены с помощью рекомбинантной технологии при использовании полинуклеотидов, экспрессирующих векторов и клеток-хозяев, которые также входят в объем изобретения. Белки слияния и ферментные препараты на их основе полезны для обработки целлюлозного материала, например текстильного материала. Кроме того, белки слияния могут использоваться для получения целлюлозной массы и в бумажной промышленности, для экстрагирования масел из растений, приготовления детергентных композиций или для улучшения качества кормов для животных. Изобретение также относится к способу обработки целлюлозного материала белками слияния, в частности, к способу биологической абразивной обработки (биостоунингу) или окончательной биологической отделки (биофинишингу) тканей или одежды, в особенности денима. Изобретение также относится к детергентным композициям и кормам для животных, содержащим белки слияния,

УРОВЕНЬ ТЕХНИКИ

Целлюлоза представляет собой основной структурный компонент высших растений и существует в природе в практически очищенной форме только в волокнах хлопка. Она придает растительным клеткам высокую прочность при растяжении, обеспечивая их устойчивость к механическим стрессам и осмотическому давлению. Целлюлоза представляет собой линейный полисахарид из остатков глюкозы, соединенных β-1,4-связями. В природе целлюлоза обычно ассоциирована с лигнином и гемицеллюлозой. Целлюлозный материал разлагается в природе под действием различных организмов, включая бактерии и грибы. Биологическая конверсия целлюлозы в глюкозу обычно осуществляется тремя основными группами ферментов: целлобиогидралазами (СВН), эндоглюканазами (EG) и бета-глюкозидазами (BG).

Целлюлазы имеют широкое промышленное применение. В текстильной промышленности целлюлазы используются для окончательной отделки денима с целью придания одежде из денима модного потертого вида, который обычно обеспечивается при стирке денима с камнями пемзы. Кроме того, целлюлазы используются, например, для ликвидации мшистости тканей и предотвращения образования узелков на поверхности одежды из хлопка. В качестве детергентов целлюлазы используются для осветления цветов и предотвращения посерения и скатывания одежды. Целлюлазы также применяются в пищевой промышленности и в производстве кормов для животных и имеют большой потенциал в производстве целлюлозной массы и в бумажной промышленности, например, в удалении чернил с волокнистых поверхностей и улучшении дренажа целлюлозной массы.

Промышленно используемые целлюлазы часто представляют собой смеси ферментов с различной активностью и субстратной специфичностью. Коммерческие ферментные препараты часто обладают активностью всех трех целлюлаз: СВН, EG и BG. Кроме того, уникальные свойства каждой целлюлазы более подходят для одних целей, нежели других, и поэтому предпринимались определенные попытки создания и использования целлюлаз, имеющих только нужную активность. Наиболее широко используемые целлюлазы получают из грибов Trichoderma reesei. Однако, для получения целлюлаз могут использоваться и другие грибы (см., например, US 5457046).

Целлюлазы, используемые для обработки денима, обычно делятся на две основные группы: кислые и нейтральные. Кислые целлюлазы обычно действуют при рН от 4, 0 до 5, 5, а нейтральные целлюлазы действуют при рН от 6 до 8. Целлюлазы, имеющие свойства как кислых, так и нейтральных целлюлаз, можно назвать гибридными целлюлазами. Кислые целлюлазы, применяемые главным образом для биостоунинга, получают из Trichoderma reesei (половая форма Hypocrea jecorina), а нейтральные целлюлазы получают из различных грибов, включая Melanocarpus, Myceliophthora, Fusarium, Acremonium и Chrysosporium (Haakana et al. 2004). Ферменты, получаемые из Т. reesei, включают, например, целлюлазы семейства гликозилгидролаз 5 (эндоклюканазу II, EG II), семейства 7 (целлобиогидролазу I, CBHI) и семейства 12 (эндоклюканазу III, EGIII; Ward et al. 1992), и нейтральные целлюлазы, большей частью эндоглюканазы семейства 45 и семейства 7 (Henrissat, 1991; Henrissat и Bairoch, 1993, 1996).

В патенте US 5874293 раскрываются улучшенная целлюлазная композиция, содержащая повышенные количества эндоклюканазы EG II из Т. reesei, для обработки содержащих целлюлозу тканей. Композиция улучшает цветовые свойства тканей, увеличивает их легкость и внешний вид, а также снижает образование узелков на поверхности тканей. В заявке WO 97/14804 описаны целлюлазы с мол. массой 20 кДа и 50 кДа с эндоглюканазной активностью, полученные из Melanocarpus sp., которые особенно эффективны в текстильной промышленности и в производстве детергентов. Предполагается, что для создания новых ферментных свойств, будут использоваться белки слияния, содержащие целлюлазы с мол. массой 20 кДа и 50 кДа, соединенные с целлюлозосвязывающим доменом, полученные из Trichoderma reesi. Однако в WO 97/14804 не приведено никаких специальных примеров получения таких белков и не описаны их свойства.

Все еще существует необходимость получения целлюлаз с улучшенными свойствами, включая эндоглюканазы, которые наиболее эффективны для обработки тканей и для применения в тех областях, где обычно используются целлюлазы. В частности, существует постоянная потребность в более эффективных целлюлазах для улучшения экономических процессов. Настоящее изобретение служит для удовлетворения этих потребностей.

В текстильной промышленности в последние годы большой интерес со стороны производителей денима вызывает технология создания внешнего вида ткани, называемая «стиркой с камнями пемзы» (stone washing) или «вывариванием» ткани. Традиционная стирка с камнями пемзы уменьшает прочность ткани и повышает нагрузку на стиральные машины. В окончательной обработке денима все больше используются ферменты, и целлюлазы заменяют камни пемзы или используются вместе с ними для придания тканям желаемого «потертого» вида. Контролируемая обработка ферментами приводит к меньшему повреждению одежды и машинного оборудования и устраняет необходимость использования камней.

Основная проблема, связанная с применением ферментной абразивной стирки, заключается в восстановлении окраски ткани за счет перераспределения удаленного красителя Индиго во время или после биостоунинга. Перераспределение красителя Индиго снижает нужный контраст между белыми и окрашенными нитями, что может быть более легко замечено на обратной стороне денима и внутренней поверхности карманов (как увеличение голубизны). На лицевой стороне это может выглядеть как уменьшенный контраст между окрашенными участками и участками, из которых краситель был удален в процессе биостоунинга. Восстановление окраски может быть снижено использованием агентов, препятствующих такому восстановлению, например, неионных этоксилированных спиртов во время обработки ткани или добавлением отбеливающих агентов на стадиях отполаскивания. Природа фермента оказывает влияние на восстановление окраски. В целом, нейтральные целлюлазы способствуют восстановлению окраски в меньшей степени, чем кислые целлюлазы.

В заявке WO 97/09410 указано, что добавление определенного типа целлюлазы к другим целлюлазам, способствующим «истиранию» ткани, снижает восстановление окраски. Дополнительная целлюлаза относится к семейству 5 или 7, но сама по себе не имеет значительной «истирающей» активности. Предпочтительно, указанная дополнительная целлюлаза происходит из Bacillus или Clostridium.

В патенте US 5916799 описана целлюлазная композиция, содержащая целлобиогидролазы и эндоглюканазы, которые используются для ограничения протеолиза за счет разделения ядра и связывающих доменов ферментов. Полученные ферментные композиции, как обнаружено, уменьшают восстановление окраски. В заявке WO 94/07983 отмечается, что перераспределение красителя в ткани во время процесса биостоунинга может быть уменьшено при использовании композиции целлюлаз из грибов, которая по существу свободна от целлобиогидролазного компонента. В заявке WO 96/23928 описана обработка тканей, содержащих целлюлозу, усеченными целлюлазами. Такие усеченные ферменты, не имеющие целлюлозосвязывающего домена (CBD), как обнаружено, уменьшают перераспределение красителя и повышают «истирание».

Главный вывод, который можно сделать при анализе приведенного ссылочного материала, заключается в том, что целлюлозосвязывающий домен способствует восстановлению окраски. Таим образом, настоящее изобретение обеспечивает целлюлазу, обладающую низкой активностью в отношении восстановления окраски, несмотря на присутствие целлюлозосвязывающего домена.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение базируется на неожиданном обнаружении того факта, что эффект эндоглюканазы может быть значительно усилен при соединении ее с определенным целлюлозосвязывающим доменом без влияния на активность в отношении восстановления окраски.

Изобретение относится к новым белкам слияния эндоглюканазы, имеющим улучшенные гидролазные свойства, для применения в текстильной индустрии, особенно в производстве денима с помощью биостоунинга. Заявленные белки слияния имеют то преимущество, что активны как при кислых, так и при нейтральных значениях рН, и поэтому более эффективны при использовании в целях биошлифования. При обработке денима белки слияния обеспечивают низкий эффект восстановления окраски. Использование более эффективных эндоглюканаз в соответствии с изобретением является экономичным. Дополнительные преимущества заключаются в том, что облегчаются перевозка и хранение ферментных продуктов, поскольку они используются в меньших количествах. Белки слияния также полезны для применения в детергентных композициях и в других областях, например, в пищевой промышленности, экстрагировании масел из растений или в производстве целлюлозной массы и бумаги.

Объектом изобретения также являются полинуклеотиды, кодирующие новые белки слияния эндоглюканазы.

Объектом изобретения также является способ получения белков слияния.

Еще один объект изобретения относится к новым экспрессирующим векторам, содержащим указанные полинуклеотиды, полезным для получения белков слияния эндоглюканазы, и новым хозяевам, трансформированным такими экспрессирующими векторами.

Еще один объект изобретения относится к ферментным композициям, содержащим один или более белков слияния эндоглюканазы.

Объектом изобретения являются также способы обработки целлюлозного материала белком слияния, например, для использования в текстильной промышленности, для приготовления детергентных композиций, кормов для животных, для экстрагирования масел из растений, для производства целлюлозной массы и бумаги и, в частности, для окончательной обработки тканей, в особенности, для биостоунинга и биофинишинга денима.

Еще один объект изобретения относится к корму для животных и детергентным композициям, содержащим белки слияния.

Изобретение также относится к целлюлазному белку слияния, содержащему первую аминокислотную последовательность эндоглюканазного ядра и вторую аминокислотную последовательность, содержащую линкер и целлюлозосвязывающий домен (CBD), имеющую по крайней мере 75%-ную идентичность с SEQ ID NO:15, или варианту, или фрагменту указанного белка, имеющему целлюлозосвязывающую активность.

Изобретение также относится к выделенному полинуклеотиду, выбранному из группы, включающей:

а) нуклеотидную последовательность SEQ ID NO:3 или 5, или последовательность, кодирующую белок слияния целлюлазы по п.1;

б) последовательность, комплементарную, указанной в а);

в) последовательность, полученную в соответствии с вырожденностью генетического кода, на основе последовательностей а) и б).

Изобретение также относится к экспрессирующему вектору, содержащему указанную нуклеотидную последовательность, и клетке-хозяину, содержащей экспрессирующий вектор, и к ферментным препаратам, содержащим белок слияния.

Изобретение также относится к способу получения белка слияния, включающему трансформацию клетки-хозяина экспрессирующим вектором, кодирующим указанный белок слияния, и культивирование указанной клетки-хозяина в условиях, обеспечивающих экспрессию указанного белка слияния, и, при необходимости, выделение и очистку белка слияния.

Изобретение также относится к способам обработки целлюлозного материала, предусматривающим обеспечение контактирования целлюлозного материала с белком слияния.

Изобретение также относится к способам биологической абразивной обработки тканей, включающим стадию обеспечения контактирования целлюлазного белка слияния или ферментного препарата с тканью денима или одеждой из денима, и к способам окончательной биологической обработки тканей, включающим стадию обеспечения контактирования целлюлазного белка слияния или ферментного препарата с текстильными материалами такими, как ткань, или одежда, или нити.

Изобретение также относится к детергентным композициям, содержащим белок слияния и детергентные добавки, корму для животных, содержащему белок слияния, и штамму Escherichia coli, депонированному под номером Е.coli DSM 18159.

Специфические воплощения изобретения нашли свое отражение в формуле изобретения.

Другие объекты, детали и преимущества изобретения станут ясными из представленных иллюстраций, подробного описания изобретения и примеров.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фиг.1 приведена схема экспрессионной кассеты, используемой для трансформации протопластов Trichoderma reesi для получения целлюлазы EG28 или EG28+CtCBD Thermoascus aurantiacus. Ген cel5A или cel5A_Ctcel7A линкер CBD находится под контролем промотора cbhI Trichoderma reesi (cbhI prom) и терминация транскрипции обеспечивается добавлением терминатора (cbhI term). В кассету встроен ген amdS (amdS) для селекции трансформантов. Экспрессионную кассету для получения EG28 и EG28+CICBD выделяют в виде фрагмента NotI размером 8,6 kb из pALK1930 или в виде фрагмента NotI размером 8,9 kb из pALK1948, соответственно.

На Фиг.2 показана зависимость активности гетерологично продуцируемой целлюлазы EG28 T. aurantiacus, выделенной из культурального супернатанта, от величины рН при использовании CMC в качестве субстрата в течение 10 мин при 150°C (A). Температурный оптимум целлюлазы EG28 определяют при оптимальном рН (6,0). Реакционную смесь, содержащую CMC в качестве субстрата, тестируют в течение 10 мин (B). Температурный оптимум и оптимум рН слитого белка EG28+CtCBD совпадают с таковыми целлюлазы EG28 дикого типа.

На Фиг.3 показан эффект абразивной обработки целлюлазой EG28, определяемый путем измерения интенсивности цвета, при различных температурах и рН 6.

На Фиг.4 показан эффект абразивной обработки целлюлазой EG28+CtCBD, определяемый путем измерения интенсивности цвета, при различных рН и температуре 50°C.

На Фиг.5 показан эффект абразивной обработки целлюлазой EG28+CtCBD, определяемый путем измерения интенсивности цвета, при различных рН и температуре 60°C.

На Фиг.6 показан эффект абразивной обработки целлюлазой EG28+CtCBD, определяемый путем измерения интенсивности цвета, при различных температурах и рН 6.

На Фиг.7 показано влияние температуры гранулирования на бета-глюканазную активность, определяемую в корме, в который была добавлена целлюлаза EG28.

На Фиг.8 показано влияние температуры гранулирования на бета-глюканазную активность, определяемую в корме, в который была добавлена целлюлаза EG28+CtCBD.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Целлюлозы, содержащие каталитический домен/ядро (CD) обнаруживают целлюлазную активность. Кроме того, каталитический домен в молекуле целлюлазы может включать один или более «целлюлозосвязывающих доменов» (CBDs), также называемых «углеводосвязывающими доменами/модулями» (CBD/CBM), которые могут быть локализованы на N- или C-концевых участках каталитического домена CBDs имеют углеводосвязывающую активность и способны опосредовать связывание целлюлазы с кристаллической целлюлозой, но не обладают гидролитической активностью или имеют очень низкую гидролитическую активность на растворимых субстратах. Два указанные выше домена обычно соединены посредством гибкого и высоко гликозилированного линкерного участка, здесь называемого линкером. Такие конструкции описаны, например, Srisodsuk et al., 1993. Некоторые из природных эндоглюканаз и целлобиогидролаз имеют целлюлозосвязывающий домен (CBD), в то время как другие этого домена не имеют.

Эндоглюканазы (EGs) являются одним из трех типов целлюлаз, обычно необходимых для биологического разложения целлюлозы до глюкозы. Эндоглюканазы расщепляют внутренние бета-1,4-глюкозидные цепи, в то время как целлобиогидролазы отщепляют дисахарид целлобиозу от конца целлюлозной полимерной цепи, а бета-1,4-глюкозидазы гидролизуют целлобиозу и другие короткие целлоолигосахариды до глюкозы. Эндоглюканаза (EG) в соответствии с настоящим изобретением классифицируется как Е.С.3.2.1.4. Она представляет собой бета-D-глюкан-4-глюканогидролазу и катализирует эндогликолиз 1,4-бета-D-гликозидных связей в полимерах глюкозы таких, как целлюлоза. Некоторые эндоглюканазы способны гидролизовать, например, и 1,4-связи в бета-D-глюканах, также содержащих 1,3-связи. Они могут быть также классифицированы как эндо-1,3(4)-бета-глюканазы (Е.С.3.2.1.6). Таким образом, фермент может катализировать реакции на различных субстратах и принадлежать к различным классам.

Целлюлазы, включая эндоглюканазы, могут быть также классифицированы по принадлежности к различным семействам гликозилгидролаз в соответствии с первичной последовательностью, что подтверждается анализом трехмерной структуры некоторых членов семейства (Henrissat 1991, Henrissat и Bairoch, 1993, 1996). Например, семейство 45 (ранее celK) содержит эндоглюканазы (Е.С.3.2.1.4) и семейство 5 (ранее celA) содержит главным образом эндоглюканазы (Е.С.3.2.1.4). Семейство 7 (ранее семейство целлюлаз celC) содержит как эндоглюканазы, так и целлобиогидролазы. Некоторые гликозилгидролазы являются многофункциональными ферментами, содержащими каталитические домены, принадлежащие к различным семействам гликозилгидролаз. Для целей настоящего изобретения эндоглюканазная часть белка слияния, предпочтительно, принадлежит гликозилгидролазному семейству 45 или семейству 5 и, более предпочтительно, семейству 5.

В соответствии с настоящим изобретением эндоглюканазная часть белка слияния получена из грибов, предпочтительно, рода Thermoascus, и, более предпочтительно, Thermoascus aurantiacus. Такая эндоглюканаза описана, например, Hong et al., 2003. В заявке WO 03/062409 предполагается использование этого фермента в пищевых целях, поскольку помимо эндоглюканазной он также имеет бета-глюканазную активность. Более предпочтительно, эндоглюканаза происходит из штамма ALKO4242 Thermoascus aurantiacus, депонированного в CBS под номером 116239. Эндоглюканазный ген указанного штамма встроен в плазмиду pALK1926, которая депонирована в DSM под номером 17326. Белок, кодируемый данным геном, обозначен как «Та EG28» или просто «EG28».

Альтернативно, эндоглюканазная часть белка слияния может быть получена из Acremonium sp. предпочтительно, A. thermophilum, и, более предпочтительно, из штамма ALKO4245, депонированного в CBS под номером 116240. Эндоглюканаза, получаемая из этого штамма и кодируемая геном cel45A, обозначена как «At EG40» или просто «EG40».

Используемый здесь термин «эндоглюканазное ядро» означает каталитический домен/ядро (CD) фермента, обладающего по крайней мере эндоглюканазной активностью. Такой каталитический домен может быть представлен природной (интактной) формой или же может быть модифицирован.

В соответствии с одним вариантом воплощения изобретение относится к эндоглюканазному ядру, имеющему, по крайней мере, 75, 80, 85, 90, 95, 98 или 99% идентичности с SEQ ID NO:2 (Та EG28). Предпочтительно, ядро содержит, по крайней мере, зрелый белок, который соответствует аминокислотам от 19 до 334 SEQ ID NO:2. Сигнальная последовательность предсказана с помощью программы SignalP V3.0 (Nielsen et al., 1997; Bendtsen et al., 2004); значение NN получено при использовании нейральных сетей и значение НММ при использовании скрытых моделей Маркова. Альтернативно, эндоглюканазная часть белка слияния имеет, по крайней мере, 75, 80, 85, 90, 95, 98 или 99%-ную идентичность с эндоглюканазным ядром At EG40, кодируемым полинуклеотидом, содержащим SEQ ID NO:8. Предпочтительно, ядро содержит, по крайней мере, зрелый белок, который соответствует аминокислотам от 22 до 297 EG40.

Используемый здесь термин «целлобиогидролаза» или «СВН» относится к ферментам, которые отщепляют целлюлозу от конца глюкозной цепи и продуцируют целлобиозу. Их также называют 1,4-бета-D-глюкан целлюбиогидролазами или целлюлозе 1,4-бета-целлобиозидазами. Указанные ферменты гидролизуют 1,4-бета-D-глюкозидные связи на восстанавливающем или невосстанавливающем концах полимера, содержащего такие связи, например, целлюлозы, с образованием целлобиозы.

CBD, включая линкер, предпочтительно получают из Chaetomium thermophilum и, в особенности, из целлобиогидролазы (CBHI/Cel7A), кодируемой геном из штамма ALKO4265, депонированного в CBS под номером 730.95. Этот CBD, включая линкер, обозначают как «CtCBD». Согласно предпочтительному варианту осуществления изобретения линкер, соединенный с целлюлозосвязывающим доменом, имеет последовательность, по крайней мере, на 80, 85, 90, 95, 98 или 99% идентичную SEQ ID NO:15 (которая соответствует аминокислотам 335-415 SEQ ID NO:4). Согласно другому предпочтительному варианту осуществления изобретения вторая аминокислотная последовательность содержит аминокислоты 335-379 SEQ ID NO:4.

Термин «происходящий из» применительно к микроорганизму означает, что полипептид может естественным образом продуцироваться указанным специфическим микроорганизмом или же полинуклеотид, кодирующий полипептид, может быть выделен из данного микроорганизма. Данный термин также относится к клетке-хозяину, в которую встроен полинуклеотид из указанного микроорганизма, кодирующий полипептид. Однако, при этом не исключаются незначительные модификации последовательности, например, замещения, делении, вставки и/или инверсии нескольких аминокислот/кодонов так, что сохраняется биологическая активность кодируемого полипептида.

Ядро и линкер + CBD, соответственно, могут быть фрагментом или вариантом указанных последовательностей, причем указанный фрагмент или вариант имеют целлюлазную активность и/или целлюлозосвязывающую активность. Например, первая аминокислотная последовательность может содержать фрагмент или вариант аминокислотной последовательности, имеющей, по крайней мере, 75%-ную идентичность с SEQ ID NO:2 или 8, а вторая аминокислотная последовательность может содержать фрагмент или вариант аминокислотной последовательности, имеющей, по крайней мере, 75%-ную идентичность с SEQ ID NO:15.

Используемое здесь понятие «целлюлазная активность» означает каталитическую способность гидролизовать целлюлозу или ее производные, например, эндоглюконазную или бета-глюканазную активность. Кроме того, эндоглюканазная и/или бета-глюканазная активность некоторых целлюлаз может дополняться гемицеллюлазной и/или ксиланазной активностью.

Используемый здесь термин «идентичность» относится к глобальной идентичности между аминокислотными последовательностями при их сравнении друг с другом, начиная с первой аминокислоты, кодируемой соответствующим геном, и заканчивая последней аминокислотой. Идентичность полноразмерных последовательностей измеряют с использованием глобальной программы выравнивания Needleman-Wunsch при обеспечении EMBOSS (European Molecular Biology Open Software Suite; Rice et al., 2000), версия 3.0.0 со следующими параметрами: EMBLOSUM62, штрафной пробел 10.0, штраф протяженности 0.5. Алгоритм описан Needleman-Wunsch (1970). Специалисту ясно, что результаты, полученные при использовании алгоритма Needleman-Wunsch, являются сравнимыми только при выравнивании соответствующих доменов последовательности. Таким образом, сравнение, например, целлюлазных последовательностей, включающих CBD или сигнальные последовательности, с последовательностями, не содержащими указанных элементов, не является достоверным.

В соответствии с одним вариантом осуществления изобретения белок слияния содержит эндоглюканазное ядро, кодируемое геном, эквивалентным гену, встроенному в Е.Coli DSM 17326. Предпочтительно, белок слияния кодируется слитым геном, эквивалентным гену, встроенному в Е.Coli DSM 18159. «Эквивалентность» означает здесь практическое сходство или сходство. В соответствии со специфическим вариантом осуществления изобретения белок слияния содержит эндоглюканазное ядро, включающее последовательность SEQ ID NO:2 и линкер и CBD, включающие SEQ ID NO:15. В особенности, ядро и линкер + CBD включают последовательность SEQ ID NO:4 или 6 или вариант или фрагмент указанных последовательностей, обладающих целлюлазной и целлюлозосвязывающей активностью.

Используемый здесь термин «фрагмент» относится к части специфической аминокислотной последовательности, который имеет длину, достаточную для сохранения заданной биологической активности. Другими словами, фрагмент может быть, например, только зрелой частью аминокислотной последовательности или даже фрагментом зрелой части. Вариант специфической аминокислотной последовательности относится к аминокислотной последовательности, которая не идентична специфической аминокислотной последовательности, а содержит по крайней мере некоторые аминокислотные изменения, т.е. делеции, замещения, инверсии, вставки и т.д., которые не имеют существенного влияния на биологическую активность белка по сравнению с активностью специфической аминокислотной последовательности при использовании в нужных целях. Биологическая активность в контексте настоящего изобретения относится к целлюлазной активности, способности связывать целлюлозу или обеим указанным активностям.

Белок слияния, согласно заявленному изобретению, может быть получен путем прикрепления эндоглюканазного ядра к линкеру и участку CBD в подходящей кодирующей ДНК при использовании хорошо известной технологии рекомбинантных ДНК для продуцирования нужного рекомбинантного белка. Коротко говоря, полинуклеотиды, кодирующие участки слияния, амплифицируют и клонируют; нуклеотиды могут быть синтезированы. Слитый полинуклеотид встраивают в вектор экспрессии, вектором трансформируют клетку-хозяин и экспрессируют белок. Предпочтительно, линкер и CBD прикрепляют к C-концу эндоглюканазного ядра.

Вектор экспрессии представляет собой клонирующую плазмиду или вектор, способный экспрессировать ДНК, кодирующую эндоглюканазные белки слияния, после введения вектора в подходящую клетку-хозяин. При использовании грибов в качестве хозяев представляющий интерес ген предпочтительно вводят в грибную клетку-хозяин в составе клонирующего или экспрессирующего вектора, который интегрируется в грибную хромосому или обеспечивает интеграцию представляющего интерес гена в хромосому хозяина. Другие последовательности, которые являются частью клонирующего или экспрессирующего вектора, также могут быть интегрированы вместе с указанной ДНК в процессе интеграции. Кроме того, в клетках грибов экспрессирующий вектор или его части могут быть направлены в предопределенный локус. Альтернативно, нужный ген слияния может быть представлен в виде автономно реплицирующейся плазмиды.

ДНК, кодирующую эндоглюканазные белки слияния, предпочтительно помещают под контроль (т.е. функционально связывают) с определенными контролирующими последовательностями, такими как промоторные последовательности, в составе вектора. Во время трансформации указанные контролирующие последовательности интегрируют в геном хозяина вместе с представляющим интерес геном. Альтернативно, контролирующие последовательности могут быть встроены в сайт интеграции.

Контролирующие экспрессию последовательности в составе экспрессирующего вектора варьируют в зависимости от того, сконструирован ли вектор для экспрессии определенного гена в прокариотическом или эукариотическом хозяине (например, вектор-переносчик может содержать ген для селекции в бактериальном хозяине). Последовательности, контролирующие экспрессию, могут содержать регуляторные элементы транскрипции, такие как промоторы, энхансеры, и последовательности терминации транскрипции и/или регуляторные элементы трансляции, такие как сайты инициации трансляции и терминации.

Полинуклеотидная молекула, такая как ДНК, способна экспрессировать полипептид, если она содержит последовательности, контролирующие экспрессию, включающие информацию о регулировании транскрипции, и функционально связаны с нуклеотидной последовательностью, кодирующей полипептид.

Функциональная связь представляет собой связь, в которой последовательность соединена с регуляторной последовательностью (или последовательностями) таким образом, что экспрессирующая последовательность находится в таком участке, где подвергается влиянию или контролю со стороны регуляторной последовательности. Две ДНК-последовательности (такие, как последовательность промоторного участка, связанная с 5'-концом последовательности, кодирующей белок) считаются связанными функциональным образом, если промотор оказывает влияние на транскрипцию.

Векторы в соответствии с настоящим изобретением могут содержать и другие функционально связанные регуляторные элементы такие, как энхансерные последовательности.

В предпочтительном варианте осуществления изобретения конструируют генетически стабильные трансформанты таким образом, что ДНК, кодирующую белки слияния, встраивают в хромосому хозяина путем трансформации с помощью вектора, который может содержать последовательности, обеспечивающие интеграцию указанного вектора в хромосому.

Клетки, в хромосомы которых стабильно интегрирована ДНК, кодирующая эндоглюканазные белки слияния, могут быть отобраны, например, путем включения в них маркера (маркеров), гомологичного или гетерологичного, который обеспечивает селекцию клеток-хозяев, содержащих вектор экспрессии в составе хромосомы. Маркер может обеспечивать устойчивость к биоцидам, например, устойчивость к антибиотикам или тяжелым металлам, таким, как медь. Кроме того, маркеры могут комплементировать ауксотрофную мутацию в хромосоме хозяина и т.д. Селектируемый маркер может представлять собой, например, селектируемый ген, непосредственно связанный с последовательностью ДНК, которая является подлежащим экспрессии геном, или же он может быть введен в ту же самую клетку путем совместной трансформации. Могут использоваться и другие системы селекции.

После конструирования вектор экспрессии, содержащий ДНК, кодирующую белок слияния, его вводят в подходящую клетку-хозяин любым пригодным способом, включая трансформацию, известную из уровня техники. После трансформации реципиентные клетки выращивают в подходящей селективной среде, которая отбирает трансформированные клетки по их росту.

Подходящими хозяйскими системами для экспрессии и продукции белка являются, например, системы продукции на основе грибов Trichoderma (ЕР 244 234) или Aspergillus такие, как A. oryzae или A. niger (WO 97/08325, WO 95/33386, патент США 5843745, патент США 5770418), или системы продукции на основе грибов Fusarium такие, как F. oxysporum (Malardier et al., 1989). Подходящие системы продукции на основе бактерий включают системы, основанные на Bacillus, например, В. subtilis, В. licheniformis, В. amyloliquefaciens, или Е.coli, или Streptomyces.). Подходящие системы продукции на основе дрожжей включают системы, основанные на Saccharomyces, Shizosaccharomyces или Pichia pastoris. Могут использоваться и системы продукции на основе других микроорганизмов или клеток млекопитающих или растений.

Экспрессия клонированных генных последовательностей приводит к продукции нужного белка или фрагмента белка. Такая экспрессия может происходить постоянно в трансформированных клетках или контролируемым образом.

Для получения ферментных препаратов согласно заявленному изобретению хозяева, имеющие нужные свойства (хозяева, способные экспрессировать экономически значимые количества эндоглюканазных белков слияния), культивируют в подходящих условиях и нужные ферменты предпочтительно секретируются из организма-хозяина в культуральную среду. Затем белки при необходимости выделяют из указанной культуральной среды известными способами. Предпочтительно, хозяевами для такого продуцирования являются нитчатые грибы такие, как Trichoderma или Aspergillus и, в особенности, Т. reesei.

Используемое здесь понятие «ферментный препарат» относится к любому ферментному продукту, который содержит, по крайней мере, один из заявленных эндоглюканазных белков слияния. Таким образом, ферментный препарат может представлять собой истощенную культуральную среду или фильтрат. Истощенная культуральная среда означает среду, в которой выращивался хозяин, и которая содержит продуцируемые хозяином ферменты. Предпочтительно, клетки-хозяева отделяют от указанной культуральной среды после продуцирования ферментов. При необходимости ферментные препараты могут быть лиофилизированы или же ферментная активность может быть сконцентрирована и/или стабилизирована для сохранения. Если требуется, нужный фермент может быть в дальнейшем очищен в соответствии с известными подходящими методами такими, как экстракция, преципитация, хроматография, аффинная хроматография, электрофорез и другие подобные методы.

Однако, преимущество заявленного изобретения заключается в том, что культуральная среда, содержащая или не содержащая клеток-хозяев, может быть использована в качестве ферментного препарата как таковая без дальнейшей очистки, поскольку эндонуклеазные белки слияния могут секретироваться в культуральную среду и проявлять активность в этой культуральной среде. Ферментные препараты являются чрезвычайно экономичными с точки зрения их получения и использования, поскольку выделение специфического фермента из культуральной среды не является обязательным.

В дополнение к эндоглюканазному белку слияния, ферментные препараты могут содержать один или более других ферментов, которыми могут быть, например, другие целлюлазы, амилазы, липазы, протеазы, гемицеллюлазы, ксиланазы, пектиназы и/или оксидазы такие, как лакказы и пероксидазы. Альтернативно, до, в процессе или после обработки эндоглюканазным белком слияния может осуществляться обработка другим ферментом. Обработка ферментом может включать, например, обработку одной или более амилазой (например, для расшлихтовки денима), или одной или более целлюлазой, или одной или более пероксидазой, или одной или более лактазой. Это зависит от того, какие ферменты входят в ферментный препарат или используются для обработки.

В дополнение к белку слияния, ферментный препарат может содержать различные добавки такие, как стабилизаторы, буферы, консерванты, сурфактанты и/или компоненты культуральной среды. Предпочтительными добавками являются такие добавки, которые обычно используются в ферментных препаратах в определенных целях.

Ферментные препараты могут быть получены в жидкой или твердой форме, например, в форме сухого порошка или гранул, в особенности, в форме устойчивых гранул и стабилизированной жидкости. Следует иметь в виду, что ферментные препараты могут быть дополнительно обогащены, или частично или полностью лишены определенной специфической ферментной активности для того, чтобы отвечать требованиям специфического использования в различных случаях, например, в текстильной промышленности. Смесь ферментов с разной активностью, секретируемая хозяином, может иметь преимущество при определенных промышленных применениях, например, в биостоунинге и биофинишинге.

Эндоглюканазные белки слияния и препараты, содержащие такие белки, используются, например, в для производства текстиля, пищевых и кормовых продуктов, растительных масел, целлюлозосодержащей массы и в бумажной промышленности. Указанные белки могут применяться для обработки любого целлюлозосодержащего материала такого, как текстильный материал, растения, используемые в кормах для животных, растительный материал для экстракции масла, целлюлозосодержащая масса, полученная из древесины путем механической или химической обработки, или вторичные волокна. Они могут также использоваться в детергентах, которые в норме содержат дополнительные компон