Способ и устройство для передачи восходящего сигнала, содержащего данные и управляющую информацию, по восходящему каналу
Иллюстрации
Показать всеИзобретение относится к системам беспроводной связи и предназначено для компенсации ухудшения характеристик при повторном использовании исходных управляющих данных за счет их представления в новой форме. Изобретение раскрывает способ и устройство для передачи первого и второго восходящего сигнала, причем каждый из них содержит данные и управляющую информацию. Способ включает в себя канальное кодирование управляющей информации второго восходящего сигнала на основе числа символов управляющей информации для генерации. Канальное кодирование включает в себя определение числа символов в соответствии с размером полезной нагрузки данных первого восходящего сигнала и полного числа передаваемых символов физического восходящего общего канала (PUSCH) первого восходящего сигнала. 4 н. и 20 з.п. ф-лы, 17 ил., 3 табл.
Реферат
Техническая область
Настоящее изобретение относится к способу для передачи восходящего сигнала, содержащего управляющую информацию и данные, по восходящему каналу.
Известный уровень техники
Структура канала и отображение LTE
Структура канала линии связи и отображение согласно долгосрочному развитию (LTE) (long term evolution) Партнерского проекта по системам 3-го поколения (3rd generation partnership project, 3GPP) будут рассмотрены. Нисходящий физический канал включает в себя общий нисходящий физический канал (physical downlink shared channel, PDSCH), физический вещательный канал (physical broadcast channel, PBCH), физический многоадресный канал (physical multicast channel, PMCH), физический индикаторный канал управляющего формата (physical control format indicator channel, PCFICH), физический нисходящий канал управления (physical downlink control channel, PDCCH) и физический индикаторный канал гибридного ARQ (physical hybrid ARQ indicator channel, PHICH). Восходящий физический канал включает в себя общий восходящий физический канал (physical uplink shared channel, PUSCH), физический восходящий канал управления (physical uplink control channel, PUCCH) и физический канал случайного доступа (physical random access channel, PRACH).
Нисходящий транспортный канал включает в себя вещательный канал (broadcast channel, BCH), нисходящий общий канал (downlink shared channel, DL-SCH), пейджинговый канал (paging channel, PCH) и многоадресный канал (multicast channel, MCH). Восходящий транспортный канал включает в себя восходящий общий канал (uplink shared channel, UL-SCH) и канал случайного доступа (random access channel, RACH).
Фиг.1 иллюстрирует взаимосвязь отображения между нисходящим физическим каналом и нисходящим транспортным каналом. Фиг.2 иллюстрирует взаимосвязь отображения между восходящим физическим каналом и восходящим транспортным каналом. Рассмотренные выше физические каналы и транспортные каналы отображаются друг на друга, как показано на фиг.1 и 2.
При этом логический канал, классифицируемый как канал управления, включает в себя вещательный канал управления (broadcast control channel, BCCH), пейджинговый канал управления (paging control channel, PCCH), общий канал управления (common control channel, CCCH), многоадресный канал управления (multicast control channel, MCCH) и выделенный канал управления (dedicated control channel, (DCCH). Логический канал, классифицируемый как канал трафика, включает в себя выделенный канал трафика (dedicated traffic channel, DTCH) и многоадресный канал трафика (multicast traffic channel, MTCH).
Фиг.3 иллюстрирует взаимосвязь отображения между нисходящим транспортным каналом и нисходящим логическим каналом. Фиг.4 иллюстрирует взаимосвязь отображения между восходящим транспортным каналом и восходящим логическим каналом.
Структура слота LTE
В сотовой системе пакетной радиосвязи с ортогональным частотным мультиплексированием (orthogonal frequency division multiplexing, OFDM) восходящий/нисходящий пакет данных передается в единицах субкадров. Один субкадр определяется как имеющий заранее заданную длительность, включая множество OFDM-символов.
Система 3GPP поддерживает тип 1 структуры радиокадра, применимый для дуплекса с частотным разделением (frequency division duplex, FDD), и тип 2 структуры радиокадра, применимый для дуплекса с временным разделением (time division duplex, TDD). Фиг.5 иллюстрирует тип 1 структуры радиокадра. Структуры радиокадра типа 1 состоит из 10 субкадров. Один субкадр состоит из 2 слотов.
Фиг.6 иллюстрирует тип 2 структуры радиокадра. Структуры радиокадра типа 2 состоят из 2 полукадров. Каждый полукадр состоит из 5 субкадров, нисходящего пилотного временного слота (downlink pilot time slot, DwPTS), защитного интервала (guard period, GP) и восходящего пилотного временного слота (uplink pilot time slot, UpPTS). Один субкадр состоит из двух слотов. Слот DwPTS используется для начального поиска соты, для синхронизации или для оценивания параметров канала. Слот UpPTS используется для оценивания параметров канала в усовершенствованной базовой станции (evolved Node B, eNB), синхронизации восходящей передачи абонентского оборудования (User Equipment, UE). Интервал GP является интервалом для устранения помех, вызываемых задержкой из-за многолучевости нисходящего сигнала между восходящей линией и нисходящей линией. То есть независимо от типа радиокадра один субкадр состоит из двух слотов.
Фиг.7 иллюстрирует структуру нисходящего слота LTE. Как показано на фиг.7, сигнал, передаваемый в каждом слоте, может быть представлен ресурсной сеткой, состоящей из поднесущих и OFDM-символов. В это время обозначим число ресурсных блоков (resource blocks, RB) на нисходящей линии, обозначим число поднесущих, составляющих один RB, и обозначим число OFDM-символов в одном нисходящем слоте.
Фиг.8 иллюстрирует структуру восходящего слота LTE. Как показано на фиг.8, сигнал, передаваемый в каждом слоте, может быть представлен ресурсной сеткой, состоящей из поднесущих и OFDM-символов. В это время обозначим число ресурсных блоков (resource blocks, RB) на восходящей линии, обозначим число поднесущих, составляющих один RB, и обозначим число OFDM-символов в одном восходящем слоте. Ресурсный элемент относится к одной поднесущей и одному OFDM-символу как ресурсная единица, определяемая индексами (a, b) (где a является индексом в частотной области и b является индексом во временной области) в восходящем слоте и нисходящем слоте.
При этом eNB передает управляющую информацию по нисходящей линии для управления каналом UL-SCH, который является восходящим транспортным каналом. Управляющая информация, передаваемая по линии вниз, информирует UE о числе блоков RB, передаваемых по каналу UL-SCH, и порядке модуляции. Кроме того, когда данные передаются по восходящей линии, управляющая информация информирует UE о размере полезной нагрузки данных. Размер полезной нагрузки может определяться как сумма размера информации (например, размера данных или размера управляющей информации), передаваемой от уровня управления доступом к среде (medium access control, MAC), и размера циклического контроля по избыточности (cyclic redundancy check, CRC), присоединяемого произвольно к информации на физическом уровне (physical layer). Полезная нагрузка управляющей информации может не включать в себя размер CRC, поскольку CRC может не присоединяться к управляющей информации в соответствии с размером управляющей информации перед присоединением CRC к управляющей информации. В особенности, если размер управляющей информации, к которой не присоединен CRC, меньше или равен 11 битам, то CRC не присоединяется к управляющей информации. Кроме того, если размер управляющей информации, к которой не присоединен CRC, больше или равен 12 битам, то CRC присоединяется к управляющей информации.
Данные и управляющая информация (например, информация о качестве канала (Channel Quality Information, CQI)/индикатор матрицы предварительного кодирования (Precoding Matrix Indicator, PMI) или индикатор ранга (Rank Indication, RI)) могут мультиплексироваться вместе и передаваться по каналу UL-SCH. В традиционной системе схема для кодирования данных отличается от схемы для кодирования управляющей информации. Кроме того, в традиционной системе частота блоков с ошибками (block error rate, BLER) данных и BLER управляющей информации, требуемые eNB, могут отличаться друг от друга.
Кроме того, в традиционной системе, хотя скорость кодирования данных известна, используя порядок модуляции, число блоков RB и размер полезной нагрузки данных, скорость кодирования управляющей информации не может быть известна. Кроме того, поскольку данные и управляющая информация мультиплексируются вместе и затем передаются по каналу UL-SCH, число переданных символов данных не может быть известно.
Для решения таких проблем традиционная система была усовершенствована так, что скорость кодирования управляющей информации компенсируется смещением, которое может изменяться eNB по сравнению со скоростью кодирования данных.
Даже если система управляется, как рассмотрено выше, скорость кодирования данных может изменяться информацией, мультиплексируемой с данными. Кроме того, если данные не передаются, то UE не может оценить скорость кодирования индикации ранга или CQI/PMI, например. Соответственно требуется способ для вычисления скорости кодирования передаваемой информации (например, индикации ранга или CQI/PMI) в соответствии с сочетанием информации, передаваемой по каналу UL-SCH.
Также в традиционной системе связи, если ошибка появляется в пакете данных из-за неудачного приема после передачи пакета данных, соответствующий пакет данных передается повторно. Также в случае повторной передачи, если декодирование выполняется с использованием начально принятого пакета данных и пакета данных, принятого после повторной передачи, вероятность успешного приема пакета данных возрастает, хотя не все ресурсы, занятые при начальной передаче пакета данных, используются.
Например, когда система связи работает таким образом, что начальный пакет данных передается без ошибок с вероятностью 90%, система не встречает какую-либо проблему, даже когда пакет данных повторно передается на скорости кодирования выше скорости кодирования начального пакета данных. Передача пакета данных с высокой скоростью кодирования означает, что меньше физических ресурсов для передачи используется, чем во время начальной передачи пакета данных. Если скорость кодирования индикации ранга или CQI/PMI вычисляется с использованием полного числа символов данных при повторной передаче пакета данных, скорость кодирования для стабильной передачи индикации ранга или CQI/PMI может не быть установлена. Поэтому когда данные повторно передаются, требуется способ установки скорости кодирования для стабильной передачи индикации ранга или CQI/PMI.
В результате при попытке сохранить полосу при повторной передаче, традиционная мобильная станция управляется базовой станцией для уменьшения полного количества информационных битов (т.е. данных и управляющих битов), которые повторно передаются. Это не приводит к увеличению частоты ошибок для битов данных, поскольку повторно передаваемые данные полезной нагрузки программно объединяются с исходными данными полезной нагрузки. Однако соответствующие управляющие данные двух сигналов не объединяются для декодирования/демодуляции. То есть в традиционной системе усеченные управляющие биты повторно переданного сигнала используются для установки скорости кодирования, приводя к ухудшению характеристик. Таким образом, настоящее изобретение компенсирует это ухудшение характеристик за счет повторного использования исходных управляющих данных в новой форме.
Раскрытие
Техническая проблема
Если скорость кодирования индикации ранга или CQI/PMI вычисляется с использованием полного числа символов данных при повторной передаче пакета данных, то скорость кодирования для стабильной передачи индикации ранга или CQI/PMI может не быть установлена. Поэтому когда данные повторно передаются, требуется способ установки скорости кодирования для стабильной передачи индикации ранга или CQI/PMI.
Таким образом, в попытке сохранить пропускную способность при повторной передаче традиционная мобильная станция управляется базовой станцией для уменьшения полного количества информационных битов (т.е. данных и управляющих битов), которые повторно передаются. Это не приводит к увеличению частоты ошибок для битов данных, поскольку повторно переданные данные полезной нагрузки программно объединяются с исходными данными полезной нагрузки. Однако соответствующие управляющие данные двух сигналов не объединяются для декодирования/демодуляции. То есть в традиционной системе усеченные управляющие биты повторно переданного сигнала используются для установки скорости кодирования, приводя к ухудшению характеристик. Таким образом, настоящее изобретение компенсирует это ухудшение характеристик за счет повторного использования исходных управляющих данных в новой форме.
Техническое решение
Соответственно настоящее изобретение направлено на способ и устройство для передачи первого и второго восходящего сигнала, каждый из которых имеет данные и управляющую информацию. Способ включает в себя управляющую информацию канального кодирования второго восходящего сигнала на основе нескольких символов управляющей информации для получения. Канальное кодирование включает в себя определение числа символов в соответствии с размером полезной нагрузки данных первого восходящего сигнала и полным числом передаваемых символом физического восходящего общего канала (Physical Uplink Shared Channel, PUSCH) первого восходящего сигнала.
Предпочтительно этап определения может включать в себя определение числа символов в соответствии с размером полезной нагрузки управляющей информации второго восходящего сигнала и значением смещения, применяемого к управляющей информации второго восходящего сигнала.
Предпочтительно способ может далее включать в себя канальное кодирование данных второго восходящего сигнала для получения вторых подвергнутых канальному кодированию данных, канальное перемежение первых и вторых подвергнутых канальному кодированию данных для генерации второго восходящего сигнала и передачу второго восходящего сигнала.
Предпочтительно число символов управляющей информации может удовлетворять выражению:
,
где является числом символов управляющей информации,
является размером полезной нагрузки управляющей информации,
является значением смещения,
является размером данных первого восходящего сигнала,
является полным числом передаваемых символов физического восходящего общего канала (Physical Uplink Shared Channel, PUSCH) первого восходящего сигнала, и “” обозначает функцию верхнего значения (ceiling function).
Предпочтительно управляющая информация может быть одной из управляющей информации качества канала и индикации ранга и управляющая информация качества канала может включать в себя по меньшей мере один из информации качества канала (Channel Quality Information, CQI) и индикатора матрицы предварительного кодирования (Precoding Matrix Indicator, PMI). Предпочтительно управляющая информация может быть одной из управляющей информации качества канала и индикации ранга, и размер полезной нагрузки управляющей информации качества канала включает в себя размер циклического контроля по избыточности (Cyclic Redundancy Check, CRC), присоединяемого к управляющей информации качества канала.
Предпочтительно способ может далее включать в себя извлечение размера полезной нагрузки данных первого восходящего сигнала и полного числа передаваемых символов физического восходящего общего канала (Physical Uplink Shared Channel, PUSCH) первого восходящего сигнала из памяти или кэша.
Предпочтительно число символов управляющей информации может удовлетворять выражению:
где является числом символов управляющей информации второго восходящего сигнала,
является размером полезной нагрузки управляющей информации второго восходящего сигнала,
является числом символов SC-FDMA на субкадр для передачи физического восходящего общего канала (Physical Uplink Shared Channel, PUSCH) первого восходящего сигнала, является передачей запланированной полосы PUSCH для передачи физического восходящего общего канала (Physical Uplink Shared Channel, PUSCH) первого восходящего сигнала,
является значением смещения,
является размером полезной нагрузки данных первого восходящего сигнала, r является номером кодового блока данных первого восходящего сигнала перед канальным кодированием данных первого восходящего сигнала, Kr является числом битов в номере r кодового блока и C является полным числом кодовых блоков.
Также существует способ и устройство для обработки принятого первого и второго восходящего сигнала, каждый из которых имеет данные и управляющую информацию. Способ включает в себя канальное декодирование канально кодированных данных с размером полезной нагрузки данных первого восходящего сигнала и полным числом передаваемых символов канала PUSCH первого восходящего сигнала для получения управляющей информации второго восходящего сигнала.
Предпочтительно этап канального декодирования может включать в себя канальное декодирование канально кодированных данных с размером полезной нагрузки управляющей информации второго восходящего сигнала и значением смещения, применяемым к управляющей информации второго восходящего сигнала.
Предпочтительно число символов управляющей информации, декодируемых на этапе декодирования, удовлетворяет выражению:
где является числом символов управляющей информации второго восходящего сигнала,
O является размером полезной нагрузки управляющей информации второго восходящего сигнала,
является числом символов SC-FDMA на субкадр для передачи физического восходящего общего канала (Physical Uplink Shared Channel, PUSCH) первого восходящего сигнала, является передачей запланированной полосы PUSCH для передачи физического восходящего общего канала (Physical Uplink Shared Channel, PUSCH) первого восходящего сигнала,
является значением смещения,
является размером полезной нагрузки данных первого восходящего сигнала, r является номером кодового блока данных первого восходящего сигнала перед канальным кодированием данных первого восходящего сигнала, Kr является числом битов в номере r кодового блока и C является полным числом кодовых блоков.
Благоприятные эффекты
Когда данные и управляющая информация передаются по восходящему каналу, восходящий сигнал, включающий в себя данные и управляющую информацию, может передаваться за счет точного вычисления скоростей кодирования данных и управляющей информации.
Краткое описание чертежей
Прилагаемые чертежи, которые включены для получения более глубокого понимания изобретения, включены в и составляют часть этой заявки, иллюстрируют варианты осуществления изобретения и вместе с описанием служат для пояснения принципа изобретения.
На чертежах:
фиг.1 иллюстрирует взаимосвязь отображения между нисходящим физическим каналом и нисходящим транспортным каналом.
Фиг.2 иллюстрирует взаимосвязь отображения между восходящим физическим каналом и восходящим транспортным каналом.
Фиг.3 иллюстрирует взаимосвязь отображения между нисходящим транспортным каналом и нисходящим логическим каналом.
Фиг.4 иллюстрирует взаимосвязь отображения между восходящим транспортным каналом и восходящим логическим каналом.
Фиг.5 представляет тип 1 структуры радиокадра.
Фиг.6 представляет тип 2 структуры радиокадра.
Фиг.7 представляет структуру нисходящего слота LTE.
Фиг.8 представляет структуру восходящего слота LTE.
Фиг.9 иллюстрирует обработку данных и управляющей информации, передаваемых по каналу UL-SCH, который является восходящим транспортным каналом.
Фиг.10 иллюстрирует альтернативную обработку данных и управляющей информации, передаваемых по каналу UL-SCH, который является восходящим транспортным каналом.
Фиг.11 иллюстрирует структуру субкадра после мультиплексирования данных и управляющей информации.
Фиг.12 иллюстрирует пример координат созвездия модуляции.
Фиг.13 иллюстрирует пример координат созвездия модуляции.
Фиг.14 описывает процесс HARQ (Hybrid Automatic Repeat request) для пояснения повторной передачи данных.
Фиг.15 представляет схему, поясняющую взаимную связь использования опорной MCS во время повторной передачи данных.
Фиг.16 представляет блок-схему абонентского оборудования (UE) в соответствии с примерным вариантом осуществления настоящего изобретения.
Фиг.17 представляет блок-схему, изображающую составные элементы устройства 50, которое может быть либо UE, или eNB.
Наилучший вариант осуществления изобретения
Теперь будет дана подробная справочная информация о примерных вариантах осуществления настоящего изобретения, примеры которых иллюстрируются на прилагаемых чертежах. Подробное описание, которое будет дано ниже со ссылкой на прилагаемые чертежи, предназначено больше для объяснения примерных вариантов осуществления настоящего изобретения, чем для представления только вариантов осуществления, которые могут быть осуществлены в соответствии с изобретением. Следующее подробное описание включает в себя конкретные подробности для предоставления глубокого понимания настоящего изобретения. Однако будет очевидно для специалистов в данной области техники, что настоящее изобретение может быть осуществлено на практике без таких конкретных подробностей. Например, следующее описание будет дано с концентрированием на конкретных терминах, но настоящее изобретение не ограничивается ими, и любые другие термины могут использоваться для представления тех же значений.
Фиг.9 иллюстрирует обработку данных и управляющей информации, передаваемых по каналу UL-SCH, который является восходящим транспортным каналом.
Циклический контроль по избыточности (CRC) транспортных блоков (transport block, TB) присоединяется к TB-данным, передаваемым в восходящем направлении на этапе S901. Данные предназначены для мультиплексирования с управляющей информацией (индикации ранга или CQI/PMI). Данные с присоединенным CRC сегментируются на многие кодовые блоки (code blocks, CB) в соответствии с размером TB на этапе S902, и CB CRC присоединяется к CB на этапе S903. Канальное кодирование выполняется над CB с присоединенным CRC на этапе S904. Данные после канального кодирования согласуются по скорости на этапе S905 и CB объединяются на этапе S906. Объединенные CB мультиплексируются с управляющей информацией на этапе S907.
При этом CRC присоединяется к CQI/PMI на этапе S908, и канальное кодирование выполняется над CQI/PMI с присоединенным CRC на этапе S909. Индикация CQI/PMI после канального кодирования согласуется по скорости на этапе S910 и мультиплексируется с данными на этапе S907. Хотя процесс канального кодирования и процесс согласования скорости рассматриваются как отдельные процессы, процесс канального кодирования может включать в себя процесс согласования скорости в некоторых случаях.
Индикация ранга подвергается канальному кодированию на этапе S911 отдельно от данных. После канального кодирования индикация ранга согласуется по скорости на этапе S912. Хотя процесс канального кодирования и процесс согласования скорости рассматриваются как отдельные процессы, процесс канального кодирования может включать в себя процесс согласования скорости в некоторых случаях.
Процесс канального перемежения выполняется над мультиплексированными данными, CQI/PMI и индикацией ранга на этапе S913. Канальное кодирование выполняется над информацией подтверждения (acknowledgement, ACK)/негативного подтверждения (negative acknowledgement, NACK) на этапе S914 отдельно от данных, CQI/PMI и индикации ранга.
Информация ACK/NACK добавляется через прокалывание части сигнала после канального перемежения. Подвергнутый перемежению сигнал, в который добавляется информация ACK/NACK, передается в восходящем направлении после отображения физических ресурсов на этапе S915.
Данные после канального кодирования, CQI/PMI и индикация ранга конкретных размеров конвертируются в данные, CQI/PMI и индикацию ранга, с заданными номерами символов или битов, передаваемых на физическом уровне посредством согласования скорости.
В этом случае число символов или битов, передаваемых на физическом уровне, должно быть представлено по отношению к каждым данным, CQI/PMI и индикации ранга.
Фиг.10 иллюстрирует альтернативную обработку данных и управляющей информации, передаваемых по каналу UL-SCH, который является восходящим транспортным каналом.
Обнаружение ошибок обеспечивается на транспортных блоках канала UL-SCH посредством циклической проверки по избыточности (Cyclic Redundancy Check, CRC) на этапе S100.
Весь транспортный блок используется для вычисления битов четности CRC. Биты в транспортном блоке, доставляемые на уровень 1, обозначаются . Биты четности обозначаются . A является размером транспортного блока и L является числом битов четности.
Сегментация кодовых блоков и присоединение CRC кодовым блокам выполняются после присоединения CRC транспортным блокам на этапе 110. Биты, которые поступают для сегментации кодовых блоков, обозначаются , где B является числом битов в транспортном блоке (включая CRC). Биты после сегментации кодовых блоков обозначаются , где r является номером кодового блока и Kr является числом битов для номера r кодового блока.
Канальное кодирование выполняется после сегментации кодовых блоков и CRC кодовых блоков на этапе 120. После кодирования биты обозначаются , с i=0, 1 и 2, и где Dr является числом битов на i-м кодированном потоке для номера r кодового блока.
Согласование скорости выполняется над турбо кодированными блоками после канального кодирования на этапе 130. После согласования скорости биты обозначаются , где r является номером кодового блока, и где Er является числом согласованных по скорости битов для номера r кодового блока.
Объединение кодовых блоков выполняется после согласования скорости на этапе 140. Биты после объединения кодовых блоков обозначаются , где G является полным числом кодированнных битов для передачи, исключая биты, используемые для управления передачей, когда управляющая информация мультиплексируется с передачей канала UL-SCH.
Канальное кодирование информации качества канала выполняется с входной последовательностью на этапе 150. Выходная последовательность для канального кодирования информации качества канала обозначается как .
Канальное кодирование RI выполняется с входной последовательностью или на этапе 160. и обозначают 1-битовый RI и 2-битовый RI, соответственно.
Канальное кодирование HARQ-ACK выполняется с входной последовательностью , или на этапе 170. Каждое положительное подтверждение (acknowledgement, ACK) кодируется как двоичная '1' и каждое негативное подтверждение (negative acknowledgement, NAK) кодируется как двоичный '0'. HARQ-ACK может состоять из 1 бита информации, т.е. , или 2 битов информации, т.е. , с , соответствующим биту ACK/NACK для кодового слова 0 и , соответствующим ACK/NACK для кодового слова 1. Кроме того, HARQ-ACK может состоять более чем из двух битов информации, т.е. с . Последовательность битов получается путем объединения многих кодированных блоков HARQ-ACK, где является полным числом кодированнных битов для всех кодированных блоков HARQ-ACK.
Входными данными для мультиплексирования данных и управляющей информации являются кодированные биты управляющей информации, обозначаемые как , и кодированные биты канала UL-SCH, обозначаемые как , на этапе 180. Выходные данные операции мультиплексирования данных управляющей информации обозначаются как , где и и где с являются векторами-столбцами длины Qm. H является полным числом кодированнных битов, выделенных для информации CQI/PMI и данных канала UL-SCH.
Канальное перемежение выполняется с выходными данными операции мультиплексирования данных и управляющей информации, обозначаемыми как , кодированной индикацией ранга, обозначаемой как , и кодированными данными HARQ-ACK, обозначаемыми как .
Биты после канального перемежения обозначаются как . Число символов модуляции в субкадре задается как .
Фиг.11 иллюстрирует структуру субкадра после того, как данные и управляющая информация мультиплексируются. Субкадр после того, как данные, CQI/PMI, индикация ранга и информация ACK/NACK соответствующим образом мультиплексируются на физический уровень, показан на фиг.11.
Далее способ будет описан для вычисления скоростей кодирования данных и управляющей информации, когда данные передаются по каналу UL-SCH.
Когда данные одновременно передаются вместе с другой информацией (например, по меньшей мере одной из CQI/PMI информации и индикации ранга), поскольку такая управляющая информация, передаваемая вместе с данными, мультиплексируется вместе с данными после согласования скорости, число переданных символов данных и число переданных символов управляющей информации, передаваемой вместе с данными, необходимо после передачи данных. Здесь "число переданных символов" означает число символов на выходе через согласование скорости. Поэтому в настоящем изобретении "числом переданных символов" называется число символов на выходе через согласование скорости.
Кроме того, в настоящем изобретении размер полезной нагрузки может определяться как сумма размера информации (например, размера данных или размера управляющей информации), передаваемых от уровня управления доступом к среде (medium access control, MAC), и размера циклического контроля по избыточности (cyclic redundancy check, CRC), присоединяемого произвольно к информации на физическом уровне. Полезная нагрузка управляющей информации может не включать в себя размера CRC, поскольку CRC может не присоединяться к управляющей информации в соответствии с размером управляющей информации перед тем, как CRC присоединяется к управляющей информации. В особенности, если размер управляющей информации, к которой CRC не присоединяется, меньше или равен 11 битам, то CRC не присоединяется к управляющей информации. Кроме того, если размер управляющей информации, к которой CRC не присоединяется, больше или равен 12 битам, то CRC присоединяется к управляющей информации.
Если скорость кодирования и порядок модуляции передаваемых данных точно известны, то опорная схема модуляции и кодирования (modulation and coding scheme, MCS) может определяться с использованием скорости кодирования и порядка модуляции данных. Схема MCS управляющей информации, передаваемой вместе с данными, может оцениваться с использованием опорной схемы MCS и с использованием информации смещения управляющей информации.
Предполагая, что величина, обратная спектральной эффективности, получаемая посредством скорости кодирования и порядка модуляции данных, равна , величина может быть вычислена с использованием следующего Уравнения 1.
[Уравнение 1]
.
Если опорной схемой MCS является , размер полезной нагрузки CQI/PMI равен NCQI, и параметр, выражающий в дБ значение смещения для компенсации разницы между частотой появления ошибочных блоков данных и частотой появления ошибочных блоков CQI/PMI и разницы между схемой кодирования данных и схемой кодирования CQI/PMI, равен ∆CQI, то число переданных символов CQI/PMI может быть вычислено с использованием следующего Уравнения 2.
[Уравнение 2]
.
В Уравнении 2 символ “” обозначают функцию верхнего значения. Функция верхнего значения представляет функцию, значением которой является наименьшее целое число, не меньше чем значение в символе. Например, указывает 3, поскольку наименьшее целое число, не меньше чем 2,3, равно 3.
Кроме того, если опорной схемой MCS является , размер полезной нагрузки индикации ранга равен , и параметр, выражающий в дБ значение смещения для компенсации разницы между частотой появления ошибочных блоков данных и частотой появления ошибочных блоков индикации ранга и разницы между схемой кодирования данных и схемой кодирования индикации ранга, равен , число переданных символов индикации ранга может быть выражено следующим Уравнением 3.
[Уравнение 3]
Если скорость кодирования и порядок модуляции данных, используемые при вычислении опорной схемы MCS, известны, то число переданных символов CQI/PMI и число переданных символов индикации ранга может быть вычислено.
Однако если eNB управляет передачей данных по каналу UL-SCH, то eNB информирует UE только о полном числе символов, которое может передаваться, когда данные и другая информация мультиплексируются, размере полезной нагрузки данных и порядке модуляции данных. Поэтому соглашение между eNB и UE требуется для вычисления опорной схемы MCS.
Вариант осуществления 1-A
Как показано на фиг.9, когда данные, CQI/PMI и индикация ранга передаются вместе, данные, CQI/PMI и индикация ранга согласовываются по скорости и затем мультиплексируются. Для вычисления числа переданных символов каждых данных, CQI/PMI и индикации ранга уравнения сложной замкнутой формы или итерационные уравнения должны использоваться.
Соответственно способ для краткого вычисления опорной схемы MCS предлагается. Однако если способ для вычисления опорной схемы MCS упрощается, то точная информация о скорости кодирования не может быть применена.
Способ для вычисления опорной схемы MCS использует скорость кодирования и порядок модуляции данных в предположении, что только данные передаются по каналу UL-SCH без передачи индикации ранга или CQI/PMI.
В особенности, опорная скорость кодирования может быть вычислена с использованием следующего Уравнения 4.
[Уравнение 4]
где обозначает опорную скорость кодирования, обозначает размер полезной нагрузки данных, обозначает порядок модуляции данных, который является опорным порядком модуляции и является полным числом