Ячейка магнитного туннельного перехода, содержащая множество магнитных доменов

Иллюстрации

Показать все

Изобретение относится к вычислительной техники, а именно к ячейкам магнитного туннельного перехода. Техническим результатом является создание памяти с большой плотностью без увеличения контурной области каждой из ячеек MTJ. Магниторезистивная оперативная память с произвольным доступом (MRAM) содержит: матрицу ячеек магнитного туннельного перехода (MTJ), причем каждая из ячеек MTJ содержит множество боковых стенок, причем каждая из множества боковых стенок содержит свободный слой для проведения соответствующего независимого магнитного домена, выполненного с возможностью хранения цифрового значения; и нижнюю стенку, соединенную с каждой из множества боковых стенок, причем данная нижняя стенка проходит по существу параллельно к поверхности подложки, причем данная нижняя стенка содержит свободный слой. 3 н. и 21 з.п. ф-лы, 31 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

[0001] Настоящее раскрываемое изобретение в общем относится к ячейке магнитного туннельного перехода, содержащей множество магнитных доменов.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

[0002] В общем широко распространенное внедрение переносных вычислительных устройств и устройств беспроводной связи увеличило спрос на энергонезависимую память высокой плотности и малой мощности. По мере улучшения технологических процессов стало возможным формировать устройства магниторезистивной оперативной памяти с произвольным доступом (MRAM), основанные на принципе магнитного туннельного перехода (MTJ). Традиционные устройства туннельного перехода с переносом спинового момента (STT) обычно формируются как плоские стековые структуры. Такие устройства обычно обладают двухмерными ячейками магнитного туннельного перехода (MTJ) с одиночным магнитным доменом. Ячейка MTJ обычно содержит закрепленный магнитный слой, барьерный слой (то есть туннельный оксидный слой) и свободный магнитный слой, причем значение бита представлено посредством магнитного поля, наведенного в данном свободном магнитном слое и антиферромагнитном слое. Направление магнитного поля свободного слоя относительно направления закрепленного магнитного поля, проводимого закрепленным магнитным слоем, определяет битовое значение.

[0003] Обычно, для улучшения плотности данных посредством использования устройств MTJ, один метод содержит уменьшение размера устройств MTJ с целью помещения большего количества устройств MTJ в меньшей области. Однако размер устройств MTJ ограничен критическим (минимальным) размером (CD) согласно технологии формирования. Другой метод содержит формирование множества структур MTJ в одиночном устройстве MTJ. Например, в одном случае, формируется первая структура MTJ, содержащая первый закрепленный слой, первый туннельный барьер, и первый свободный слой. Слой диэлектрического материала формируется на первой структуре MTJ, а вторая структура MTJ формируется на верху слоя диэлектрического материала. Такие структуры увеличивают плотность памяти в направлении X-Y, одновременно увеличивая размер матрицы памяти в направлении Z. К сожалению, такие структуры хранят только один бит на ячейку, поэтому плотность данных в направлении X-Y увеличивается за счет области в направлении Z и увеличения производственных затрат. Дополнительно, такие структуры увеличивают сложность трассировки проводника. Следовательно, существует потребность в улучшенных устройствах памяти с большей плотностью памяти без увеличения контурной области каждой из ячеек MTJ, которые могут соответствовать уровню технологического процесса.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0004] В конкретном варианте осуществления раскрывается структура магнитного туннельного перехода (MTJ), содержащая ячейку MTJ, обладающую множеством боковых стенок, проходящих по существу под прямым углом к поверхности подложки. Каждая из множества боковых стенок содержит свободный слой для проведения уникального магнитного домена. Каждый из уникальных магнитных доменов выполнен с возможностью представления сохраненного цифрового значения.

[0005] В другом конкретном варианте осуществления раскрывается структура магнитного туннельного перехода (MTJ), содержащая ячейку MTJ, обладающую множеством боковых стенок. Данное множество боковых стенок содержит первую боковую стенку, обладающую первым свободным слоем для проведения первого магнитного домена с целью хранения первого бита данных, и содержит вторую боковую стенку, обладающую вторым свободным слоем для проведения второго магнитного домена с целью хранения второго бита данных.

[0006] Еще в одном конкретном варианте осуществления магниторезистивная оперативная память с произвольным доступом (MRAM) содержит матрицу ячеек магнитного туннельного перехода (MTJ). Каждая из ячеек MTJ содержит множество боковых стенок. Каждая из множества боковых стенок содержит свободный слой для проведения соответствующего независимого магнитного домена, выполненного с возможностью хранения цифрового значения.

[0007] Одно конкретное преимущество, обеспечиваемое вариантами осуществления устройства магнитного туннельного перехода (MTJ), обеспечивается тем, что множество битов данных может сохраняться в одной единственной ячейке MTJ. Например, одна единственная ячейка MTJ может быть сконфигурирована с возможностью сохранять до четырех битов данных, что может быть использовано для представления до шестнадцати логических состояний в каждой ячейке MTJ.

[0008] Другое конкретное преимущество обеспечивается тем, что многобитовая ячейка MTJ может соответствовать уровню технологического процесса, обеспечивающего возможность множества битов на ячейку MTJ даже по мере того, как размер ячейки MTJ уменьшается.

[0009] Еще одно другое преимущество обеспечивается тем, что ячейка MTJ может содержать множество независимых магнитных доменов для хранения битов данных. В конкретном варианте осуществления ячейка MTJ может содержать одну или более боковых стенок (проходящих вертикально от плоской поверхности подложки), причем каждая из одной или более боковых стенок проводит уникальный латеральный магнитный домен для хранения бита данных. Дополнительно, ячейка MTJ может содержать нижнюю стенку, содержащую горизонтальный магнитный домен для хранения еще одного другого бита данных. В общем ячейка MTJ может содержать одну, две или три боковых стенки. В конкретном примере ячейка MTJ может содержать четыре боковых стенки и одну нижнюю стенку. В примере с одной боковой стенкой данная боковая стенка может быть расположена на любой стороне без ограничения. В примере с двумя боковыми стенками данные боковые стенки могут быть расположены на противоположных или смежных сторонах.

[0010] Еще одно конкретное преимущество обеспечивается тем, что ячейка MTJ может содержать множество независимых магнитных доменов, которые могут быть записаны на и считаны с нее без изменения данных, сохраненных на других магнитных доменах внутри ячейки MTJ.

[0011] Другие аспекты, преимущества и признаки по настоящему изобретению станут очевидны после анализа всей заявки, содержащей разделы: «Краткое описание чертежей», «Подробное описание вариантов осуществления», и «Формула изобретения».

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0012] Фиг.1 представляет собой вид в перспективе конкретного иллюстративного варианта осуществления ячейки магнитного туннельного перехода (MTJ), которая может быть использована для хранения множества битов данных;

[0013] фиг.2 представляет собой вид в поперечном разрезе ячейки магнитного туннельного перехода, выполненной с возможностью хранения множества битов данных;

[0014] фиг.3 представляет собой вид сверху конкретного иллюстративного варианта осуществления устройства памяти, содержащего ячейку магнитного туннельного перехода (MTJ), выполненную с возможностью хранения множества битов данных;

[0015] фиг.4 представляет собой вид устройства памяти согласно фиг.3 в поперечном разрезе, взятом по линии 4-4 на фиг.3;

[0016] фиг.5 представляет собой вид устройства памяти согласно фиг.3 в поперечном разрезе, взятом по линии 5-5 на фиг.3

[0017] фиг.6 представляет собой вид сверху второго конкретного иллюстративного варианта осуществления устройства памяти, содержащего ячейку магнитного туннельного перехода (MTJ), выполненную с возможностью хранения множества битов данных;

[0018] фиг.7 представляет собой вид второго варианта осуществления устройства памяти согласно фиг.6 в поперечном разрезе, взятом по линии 7-7 на фиг.6;

[0019] фиг.8 представляет собой вид второго варианта осуществления устройства памяти согласно фиг.6 в поперечном разрезе, взятом по линии 8-8 на фиг.6;

[0020] фиг.9 представляет собой вид сверху третьего конкретного иллюстративного варианта осуществления устройства памяти, содержащего ячейку магнитного туннельного перехода (MTJ), выполненную с возможностью хранения множества битов данных;

[0021] фиг.10 представляет собой вид третьего варианта осуществления устройства памяти согласно фиг.9 в поперечном разрезе, взятом по линии 10-10 на фиг.9;

[0022] фиг.11 представляет собой вид третьего варианта осуществления устройства памяти согласно фиг.9 в поперечном разрезе, взятом по линии 11-11 на фиг.9;

[0023] фиг.12 представляет собой вид сверху четвертого конкретного иллюстративного варианта осуществления устройства памяти, содержащего ячейку магнитного туннельного перехода (MTJ), выполненную с возможностью хранения множества битов данных;

[0024] фиг.13 представляет собой вид четвертого варианта осуществления устройства памяти согласно фиг.12 в поперечном разрезе, взятом по линии 13-13 на фиг.12;

[0025] фиг.14 представляет собой вид четвертого варианта осуществления устройства памяти согласно фиг.12 в поперечном разрезе, взятом по линии 14-14 на фиг.12;

[0026] фиг.15 представляет собой вид сверху свободного слоя стека магнитного туннельного перехода (MTJ), выполненного с возможностью хранения множества битов данных, где ячейка MTJ находится в нулевом состоянии бита;

[0027] фиг.16 представляет собой диаграмму конкретного иллюстративного варианта осуществления слоев стека магнитного туннельного перехода (MTJ), иллюстрирующую направление течения нулевого тока записи;

[0028] фиг.17 представляет собой вид свободного слоя согласно фиг.15 в поперечном разрезе, взятом по линии 17-17 на фиг.15;

[0029] фиг.18 представляет собой вид свободного слоя согласно фиг.15 в поперечном разрезе, взятом по линии 18-18 на фиг.15;

[0030] фиг.19 представляет собой вид сверху свободного слоя стека магнитного туннельного перехода (MTJ), выполненного с возможностью хранения множества битов данных, где стек MTJ находится в единичном состоянии бита;

[0031] фиг.20 представляет собой диаграмму конкретного иллюстративного варианта осуществления слоев структуры магнитного туннельного перехода (MTJ), иллюстрирующую направление течения единичного тока записи;

[0032] фиг.21 представляет собой вид стека MTJ согласно фиг.19 в поперечном разрезе, взятом по линии 21-21 на фиг.19;

[0033] фиг.22 представляет собой вид стека MTJ согласно фиг.19 в поперечном разрезе, взятом по линии 22-22 на фиг.19;

[0034] фиг.23 представляет собой диаграмму, демонстрирующую вид в поперечном разрезе одного варианта осуществления ячейки MTJ, соединенной с двунаправленным переключателем для считывания данных с и записи данных в ячейку MTJ;

[0035] фиг.24 представляет собой диаграмму, иллюстрирующую вид в поперечном разрезе второго варианта осуществления ячейки MTJ, соединенной с двунаправленным переключателем для считывания данных с и записи данных в ячейку MTJ;

[0036] фиг.25 представляет собой диаграмму, демонстрирующую вид в поперечном разрезе третьего варианта осуществления ячейки MTJ, выполненной с возможностью хранения множества битов данных и соединенной с множеством переключателей для считывания данных с и записи данных в ячейку MTJ;

[0037] фиг.26 представляет собой диаграмму, демонстрирующую вид в поперечном разрезе четвертого варианта осуществления ячейки MTJ, выполненной с возможностью хранения множества битов данных и соединенной с множеством переключателей для считывания данных с и записи данных в ячейку MTJ;

[0038] фиг.27 представляет собой диаграмму, демонстрирующую вид в поперечном разрезе пятого варианта осуществления ячейки MTJ, выполненной с возможностью хранения множества битов данных и соединенной с множеством переключателей для считывания данных с и записи данных в ячейку MTJ;

[0039] фиг.28-29 иллюстрируют блок-схему последовательности операций конкретного варианта осуществления способа формирования устройства магнитного туннельного перехода (MTJ), выполненного с возможностью хранения множества битов данных;

[0040] фиг.30 представляет собой блок-схему последовательности операций конкретного иллюстративного варианта осуществления способа управления устройством MTJ, выполненным с возможностью хранения множества битов данных; и

[0041] фиг.31 представляет собой структурную диаграмму устройства беспроводной связи, содержащего устройство памяти, содержащее множество ячеек магнитного туннельного перехода (MTJ).

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

[0042] Фиг.1 представляет собой вид в перспективе конкретного иллюстративного варианта осуществления ячейки 100 магнитного туннельного перехода (MTJ), которая может быть использована для хранения множества битов данных. Данная ячейка 100 MTJ содержит стек магнитного туннельного перехода (MTJ), обладающий закрепленным магнитным слоем 102, слоем 104 туннельного перехода и свободным магнитным слоем 106, выполненный в по существу прямоугольной форме. Электродный слой, обладающий участком первой боковой стенки 110, участком второй боковой стенки 112, участком третьей боковой стенки 114 и участком нижней стенки 116, является электрически и физически соединенным с закрепленным магнитным слоем 102 через антиферромагнитный (AF) слой (не показан). Центральный электрод 108 является электрически и физически соединенным со свободным слоем 106. В конкретном варианте осуществления напряжение может быть приложено к центральному электроду 108, и электрический ток может протекать от центрального электрода 108 через свободный слой 106, через туннельный переход 104, и через закрепленный слой 102. Данный электрический ток может протекать, как обозначено стрелками 120, 130, 140 и 150.

[0043] В конкретном иллюстративном варианте осуществления свободный слой 106 может проводить множество независимых магнитных доменов, каждый из которых может быть независимо сконфигурирован посредством тока записи с целью ориентации направления магнитного поля внутри свободного слоя 106 относительно закрепленного магнитного поля, соединенного с закрепленным слоем 102, с целью представления значения данных, такого как битовое значение. А именно когда направление (ориентация) магнитного поля закрепленного слоя 102 и направление магнитного поля свободного слоя 106 являются выровненными в одном направлении, представляется битовое значение «0». В противоположность, когда направление (ориентация) магнитного поля свободного слоя 106 является противоположным направлению магнитного поля закрепленного слоя 102, представляется битовое значение «1». Битовое состояние «0» и битовое состояние «1» могут демонстрировать различные сопротивления, и битовое состояние может быть считано посредством обнаружения значения сопротивления или значения тока. В конкретном варианте осуществления битовое состояние «0» обладает более низким сопротивлением. Направление магнитного поля, соединенного со свободным слоем 106, смежным с боковой стенкой 110, может представлять первое битовое значение. Направление магнитного поля, соединенного со свободным слоем 106, смежным с боковой стенкой 112, может представлять второе битовое значение. Направление магнитного поля, соединенного со свободным слоем 106, смежным с боковой стенкой 114, может представлять третье битовое значение. Направление магнитного поля, соединенного со свободным слоем 106, смежным с нижней стенкой 116, может представлять четвертое битовое значение.

[0044] В конкретном варианте осуществления магнитный домен представляет собой физическую область магнитного материала, проводящую магнитное поле, обладающее однородной магнитной ориентацией. Интерфейс между двумя магнитными доменами может быть назван доменной стенкой. Закрепленный слой 102 может обладать множеством закрепленных магнитных доменов и соединенных доменных стенок. Магнитные домены закрепленного слоя 102 являются «связанными» посредством антиферромагнитного слоя после магнитного отжига (то есть магнитная ориентация закрепленного слоя закрепляется посредством AF слоя в течение формирования посредством приложения внешнего магнитного поля в течение процесса магнитного отжига). В конкретном варианте осуществления дополнительные слои между центральным электродом 108 и свободным слоем 106 могут увеличивать рабочие характеристики MTJ. В конкретном варианте осуществления стек MTJ может содержать дополнительные слои. Например, синтетический закрепленный слой или структура синтетического свободного (SyF) слоя могут содержать, соответственно, два закрепленных слоя и один разделительный слой или два свободных слоя и один разделительный слой. Структура двойного спинового фильтра (DSP) может содержать два антиферромагнитных слоя и связанных слоя. В альтернативном варианте осуществления последовательность слоев стека пленок MTJ может быть изменена на обратную.

[0045] Фиг.2 представляет собой вид в поперечном разрезе ячейки 200 магнитного туннельного перехода MTJ, выполненной с возможностью хранения множества значений данных, таких как множество битов. Данная ячейка 200 MTJ содержит нижний электродный слой 202, стек 204 магнитного туннельного перехода (MTJ), и верхний электродный слой 206. Данный стек 204 MTJ содержит свободный магнитный слой 208, проводящий магнитное поле, которое может быть программированным посредством приложения тока записи между верхним электродом 206 и нижним электродом 202. Стек 204 MTJ также содержит барьерный слой 210 туннельного перехода и закрепленный магнитный слой 212. Антиферромагнитный (AF) слой (не показан) может быть размещен между нижним электродом 202 и закрепленным слоем 212. В конкретном варианте осуществления структура MTJ может содержать дополнительные слои. Например, синтетический закрепленный слой или структуры синтетического свободного (SyF) слоя могут содержать, соответственно, два закрепленных слоя и один разделительный слой или два свободных слоя и один разделительный слой. Структуры двойного спинового фильтра (DSP) могут содержать два антиферромагнитных слоя и связанных слоя. В дополнение, в альтернативном варианте осуществления, последовательность слоев стека пленок MTJ может быть изменена на обратную.

[0046] Закрепленный слой 212 обычно отжигается и может быть связан с антиферромагнитным (AF) слоем (не показан) с целью закрепления направления магнитного поля, проводимого закрепленным слоем 212. Туннельный барьер 210 может представлять собой оксидный слой (MgO, AL2O3, и так далее) или другой диамагнитный слой, выполненный с возможностью обеспечивать туннельное соединение или барьер между закрепленным слоем 212 и свободным слоем 208. Свободный слой 208 формируется из ферромагнитного материала, проводящего программируемый (записываемый) магнитный домен, который может быть преобразован с целью хранения битового значения (то есть значения бита «1» или «0»).

[0047] В конкретном варианте осуществления свободный слой стека 204 MTJ может быть выполнен с возможностью проведения множества независимых магнитных доменов. Например, свободный слой 208 на первой боковой стенке 214 может хранить первое битовое значение. Свободный слой 208 на второй боковой стенке 216 может хранить второе битовое значение. Свободный слой 208 на нижней стенке 218 может хранить третье битовое значение. Конкретная ориентация магнитного поля внутри свободного слоя на боковых стенках 214 и 216 и на нижней стенке 218 может быть управляемой, частично, посредством управления размерами длины, ширины и глубины ячейки 200 MTJ. В общем магнитное поле ориентируется в продольном направлении по длине стенки ячейки 200 MTJ.

[0048] Фиг.3 представляет собой вид сверху конкретного иллюстративного варианта осуществления устройства памяти, содержащего подложку 302, обладающую ячейкой 304 магнитного туннельного перехода (MTJ), выполненной с возможностью хранения множества битов данных. Данная подложка 302 содержит структуру 304 магнитного туннельного перехода (MTJ), обладающую нижним электродом 306, стеком 308 MTJ и центральным электродом 310. В конкретном варианте осуществления данный центральный электрод 310 может проходить между боковыми стенками 224, 336, и 338 стека 308 MTJ, так что толщина центрального электрода 310 представляет приблизительно половину от разницы между меньшим значением ширины (b) или длины (a) канавки минус ширина противоположных боковых стенок стека 308 MTJ, таких как вторая и третья боковые стенки 336 и 338. В конкретном варианте осуществления толщина слоя центрального электрода может быть больше, чем половина расстояния между меньшим показателем ширины и длины минус ширина противоположных боковых стенок. Выбор соответствующей толщины слоя центрального электрода может давать возможность верхней поверхности центрального электрода быть по существу плоской без зазора или шва.

[0049] Структура 304 MTJ обладает длиной (а) и шириной (b), причем длина (а) является большей, чем ширина (b). Подложка 302 содержит первое центральное переходное отверстие 312 и второе центральное переходное отверстие 314, соединенные с центральным электродом 310. Подложка 302 также содержит первое боковое переходное отверстие 316, второе боковое переходное отверстие 318, третье боковое переходное отверстие 320, четвертое боковое переходное отверстие 322 и пятое боковое переходное отверстие 324 для доступа к структуре 304 MTJ. Подложка 302 также содержит первый проводник 326, соединенный с первым боковым переходным отверстием 316, второй проводник 328, соединенный с первым и вторым центральными переходными отверстиями 312 и 314, третий проводник 330, соединенный со вторым и третьим боковыми переходными отверстиями 318 и 320, и четвертый проводник 332, соединенный с четвертым и пятым боковыми переходными отверстиями 322 и 324. Подложка 302 также содержит технологическое отверстие 335 для удаления одной боковой стенки.

[0050] Стек 308 MTJ содержит закрепленный магнитный слой, который может быть связан антиферромагнитным (AF) слоем (не показан), и который проводит закрепленный магнитный домен, обладающий закрепленной ориентацией, туннельный барьерный слой и свободный магнитный слой, обладающий магнитным доменом, который может изменяться или программироваться посредством тока записи. В конкретном варианте осуществления данный закрепленный магнитный слой стека 308 MTJ может содержать один или более слоев. Стек 308 MTJ содержит первую боковую стенку 334 для проведения первого магнитного домена 344 в первом участке свободного слоя, вторую боковую стенку 336 для проведения второго магнитного домена 346 во втором участке свободного слоя, и третью боковую стенку 338 для проведения третьего магнитного домена 348 в третьем участке свободного слоя. Первый, второй и третий магнитные домены 344, 346, и 348 являются независимыми и выполнены с возможностью представлять значения данных. В конкретном варианте осуществления первый магнитный домен 344 выполнен с возможностью представлять первое битовое значение, второй магнитный домен 346 выполнен с возможностью представлять второе битовое значение, и третий магнитный домен 348 выполнен с возможностью представлять третье битовое значение. В общем ориентация магнитных доменов 344, 346, и 348 определяется посредством сохраненного битового значения. Например, значение «0» является представленным посредством первой ориентации, в то время как значение «1» является представленным посредством второй ориентации. В конкретном варианте осуществления значение «0» и значение «1» могут быть представлены, соответственно, посредством параллельной или встречно-параллельной ориентации с закрепленным слоем.

[0051] Фиг.4 представляет собой вид устройства памяти согласно фиг.3 в поперечном разрезе, взятом по линии 4-4 на фиг.3. Диаграмма 400 иллюстрирует подложку 302, содержащую первый межслойный диэлектрический слой 452, первый покрывающий слой 454, второй межслойный диэлектрический слой 456, второй покрывающий слой 458, третий покрывающий слой 460, третий межслойный диэлектрический слой 462, и четвертый межслойный диэлектрический слой 464. Подложка 302 обладает первой поверхностью 480 и второй поверхностью 490. Подложка 302 также содержит структуру 304 MTJ, содержащую стек 308 MTJ. Нижний электрод 306 и стек 308 MTJ размещены в пределах канавки в подложке 302. Данная канавка обладает глубиной (d). Подложка 302 содержит первый и второй проводники 326 и 328, размещенные и структурированные на первой поверхности 480. Первый проводник 326 соединен с первым боковым переходным отверстием 316, проходящим от первого проводника 326 до участка нижнего электрода 306. Второй проводник 328 соединен с первым и вторым центральными переходными отверстиями 312 и 314, проходящими от второго проводника 328 до центрального электрода 310. Центральный электрод 310 соединен со стеком 308 MTJ. Подложка 302 также содержит технологическое отверстие 335, которое может быть сформировано посредством удаления участка структуры 304 MTJ и посредством размещения покрывающей пленки и межслойного диэлектрического материала в пределах технологического отверстия 335.

[0052] В конкретном варианте осуществления стек 308 MTJ содержит первую боковую стенку 334, проводящую первый магнитный домен 344 в первом участке свободного слоя. Данный первый магнитный домен 344 выполнен с возможностью представления первого битового значения. Стек 308 MTJ также содержит нижнюю стенку 470, обладающую нижним магнитным доменом 472 в нижнем участке свободного слоя, выполненным с возможностью представления четвертого битового значения. Битовое значение может быть считано со стека 308 MTJ посредством приложения напряжения ко второму проводнику 328 и посредством сравнения тока на первом проводнике 326 с опорным током. В альтернативе значение бита может быть записано на стек 308 MTJ посредством приложения тока записи между первым и вторым проводниками 326 и 328. В конкретном варианте осуществления длина (а) и ширина (b) стека 308 MTJ, проиллюстрированного на фиг.3, являются большими, чем глубина (d) канавки, и магнитный домен 344, проводимый первой боковой стенкой 334, проходит в направлении, по существу параллельном первой поверхности 480 подложки 302, и в направлении ширины (b), проиллюстрированной на фиг.3. На конкретном виде согласно фиг.4 магнитный домен 344 проходит под прямым углом к плоскости рисунка (в сторону смотрящего, как обозначено острым концом стрелки («•»), или от смотрящего, как обозначено тупым концом стрелки («*»)).

[0053] Фиг.5 представляет собой вид схемного устройства 300 согласно фиг.3 в поперечном разрезе, взятом по линии 5-5 на фиг.3. Диаграмма 500 содержит подложку 302, обладающую первым межслойным диэлектрическим слоем 452, первым покрывающим слоем 454, вторым межслойным диэлектрическим слоем 456, вторым покрывающим слоем 458, третьим покрывающим слоем 460, третьим межслойным диэлектрическим слоем 462, и четвертым межслойным диэлектрическим слоем 464. Подложка 302 содержит структуру 304 MTJ, обладающую нижним электродом 306, стеком 308 MTJ, и центральным электродом 310. Подложка 302 содержит третий проводник 330, соединенный со вторым боковым переходным отверстием 318, проходящим от третьего проводника 330 до первого участка нижнего электрода 306. Подложка 302 также содержит второй проводник 328, соединенный с центральным переходным отверстием 312, проходящим от второго проводника 328 до центрального электрода 310. Подложка 302 дополнительно содержит четвертый проводник 332, соединенный с четвертым боковым переходным отверстием 322, проходящим от четвертого проводника 332 до второго участка нижнего электрода 306. Стек 308 MTJ содержит вторую боковую стенку 336 для проведения второго магнитного домена 346 во втором участке свободного слоя, третью боковую стенку 338 для проведения третьего магнитного домена 348 в третьем участке свободного слоя, и нижнюю стенку 470 для проведения нижнего магнитного домена 472 в нижнем участке свободного слоя.

[0054] В конкретном варианте осуществления стек 308 MTJ выполнен с возможностью хранения до четырех уникальных значений данных, таких как четыре уникальных битовых значения. Первое битовое значение может быть представлено посредством первого магнитного домена 344, второе битовое значение может быть представлено посредством второго магнитного домена 346, третье битовое значение может быть представлено посредством третьего магнитного домена 348, и четвертое битовое значение может быть представлено посредством нижнего магнитного домена 472. В другом конкретном варианте осуществления может содержаться четвертая боковая стенка с целью проведения четвертого магнитного домена, который может представлять пятое битовое значение.

[0055] Фиг.6 представляет собой вид сверху второго конкретного иллюстративного варианта осуществления устройства памяти 600, содержащего подложку 602, обладающую ячейкой 604 магнитного туннельного перехода (MTJ), выполненной с возможностью хранения множества битов данных. Подложка 602 содержит структуру 604 магнитного туннельного перехода (MTJ), обладающую нижним электродом 606, стеком 608 MTJ, и центральным электродом 610. Структура 604 MTJ обладает длиной (а) и шириной (b), причем длина (а) является большей, чем ширина (b). Подложка 602 содержит первое центральное переходное отверстие 612 и второе центральное переходное отверстие 614, соединенные с центральным электродом 610. Подложка 602 также содержит первое боковое переходное отверстие 616, второе боковое переходное отверстие 618, третье боковое переходное отверстие 620, четвертое боковое переходное отверстие 622 и пятое боковое переходное отверстие 624 для доступа к структуре 604 MTJ. Подложка 602 также содержит первый проводник 626, соединенный с первым боковым переходным отверстием 616, второй проводник 628, соединенный с первым и вторым центральными переходными отверстиями 612 и 614, третий проводник 630, соединенный со вторым и третьим боковыми переходными отверстиями 618 и 620, и четвертый проводник 632, соединенный с четвертым и пятым боковыми переходными отверстиями 622 и 624. Подложка 602 также содержит технологическое отверстие 635 для удаления участка боковой стенки MTJ.

[0056] Стек 608 MTJ содержит закрепленный (связанный посредством AF слоя (не показан)) магнитный слой, который проводит закрепленный магнитный домен, обладающий закрепленной ориентацией, туннельный барьерный слой и свободный магнитный слой, обладающий магнитным доменом, который может изменяться или программироваться посредством тока записи. В конкретном варианте осуществления данный закрепленный магнитный слой стека 608 MTJ может содержать один или более слоев, чем изображено на фиг.1 и фиг.2. Стек 608 MTJ содержит первую боковую стенку 634 для проведения первого магнитного домена 644 в первом участке свободного слоя, вторую боковую стенку 636 для проведения второго магнитного домена 646 во втором участке свободного слоя, и третью боковую стенку 638 для проведения третьего магнитного домена 648 в третьем участке свободного слоя. Первый, второй и третий магнитные домены 644, 646, и 648 являются независимыми и выполнены с возможностью хранения значений данных. В конкретном варианте осуществления первый магнитный домен 644 выполнен с возможностью представлять первое битовое значение, второй магнитный домен 646 выполнен с возможностью представлять второе битовое значение, и третий магнитный домен 648 выполнен с возможностью представлять третье битовое значение. В общем ориентация магнитных доменов 644, 646, и 648 определяется посредством сохраненного битового значения. Например, значение «0» является представленным посредством первой ориентации, в то время как значение «1» является представленным посредством второй ориентации. В конкретном варианте осуществления значение «0» и значение «1» могут быть представлены, соответственно, посредством параллельной или встречно-параллельной ориентации с закрепленным слоем.

[0057] Фиг.7 представляет собой диаграмму 700 схемного устройства 600 согласно фиг.6 в поперечном разрезе, взятом по линии 7-7 на фиг.6. Диаграмма 700 содержит подложку 602, содержащую первый межслойный диэлектрический слой 750, второй межслойный диэлектрический слой 752, первый покрывающий слой 754, третий межслойный диэлектрический слой 756, второй покрывающий слой 758, третий покрывающий слой 760, четвертый межслойный диэлектрический слой 762, и пятый межслойный диэлектрический слой 764. Подложка 602 обладает первой поверхностью 780 и второй поверхностью 790. Подложка 602 также содержит структуру 604 MTJ, содержащую стек 608 MTJ. Нижний электрод 606 и стек 608 MTJ размещены в пределах канавки в подложке 602. Данная канавка обладает глубиной (d).

[0058] Подложка 602 содержит первый проводник 626, размещенный и структурированный на второй поверхности 790. Первый проводник 626 соединен с первым боковым переходным отверстием 616, проходящим от первого проводника 626 до участка нижнего электрода 606. Подложка 602 также содержит второй проводник 628, размещенный и структуриющийся на первой поверхности 780. Второй проводник 628 соединен с первым и вторым центральными переходными отверстиями 612 и 614, проходящими от второго проводника 628 до центрального электрода 610. Центральный электрод 610 соединен со стеком 608 MTJ. Подложка 602 также содержит технологическое отверстие 635, которое может быть сформировано посредством выборочного удаления участка структуры 604 MTJ и посредством размещения покрывающей пленки и межслойного диэлектрического материала в пределах технологического отверстия 635.

[0059] В конкретном варианте осуществления стек 608 MTJ содержит первую боковую стенку 634, проводящую первый магнитный домен 644 в первом участке свободного слоя. Первый магнитный домен 644 выполнен с возможностью представления первого битового значения. Стек 608 MTJ также содержит нижнюю стенку 770, обладающую нижним магнитным доменом 772 в нижнем участке свободного слоя, выполненным с возможностью представления четвертого битового значения. В конкретном примере битовое значение может быть считано со стека 608 MTJ посредством приложения напряжения ко второму проводнику 628 и посредством сравнения тока на первом проводнике 626 с опорным током. В альтернативе значение бита может быть записано на стек 608 MTJ посредством приложения тока записи между первым и вторым проводниками 626 и 628. В конкретном варианте осуществления длина (а) и ширина (b) стека 608 MTJ, проиллюстрированного на фиг.6, являются большими, чем глубина (d) канавки, и магнитный домен 644, проводимый первой боковой стенкой 634, проходит в направлении, по существу параллельном первой поверхности 780 подложки 602, и в направлении ширины (b), проиллюстрированной на фиг.6. На конкретном виде согласно фиг.7 магнитный домен 644 проходит под прямым углом к плоскости рисунка (в сторону смотрящего, как обозначено острым концом стрелки («•»), или от смотрящего, как обозначено тупым концом стрелки («*»)).

[0060] Фиг.8 представляет собой диаграмму 800 схемного устройства 600 согласно фиг.6 в поперечном разрезе, взятом по линии 8-8 на фиг.6. Данная диаграмма 800 содержит подложку 602, содержащую первый межслойный диэлектрический слой 750, второй межслойный диэлектрический слой 752, первый покрывающий слой 754, третий межслойный диэлектрический слой 756, второй покрывающий слой 758, третий покрывающий слой 760, четвертый межслойный диэлектрический слой 762, и пятый межслойный диэлектрический слой 764. Подложка 602 обладает первой поверхностью 780 и второй поверхностью 790. Подложка 602 содержит структуру 604 MTJ, содержащую нижний электрод 606, стек 608 MTJ, и центральный электрод 610. Подложка 602 содержит третий проводник 630, размещенный на второй поверхности 790. Третий проводник 630 соединен со вторым боковым переходным отверстием 618, проходящим от третьего проводника 630 до первого участка нижнего электрода 606. Подложка 602 также содержит второй проводник 628 на первой поверхности 780. Второй проводник 628 соединен с центральным переходным отверстием 612, проходящим от второго проводника 628 до центрального электрода 610. Подложка 602 дополнительно содержит четвертый проводник 632 на второй поверхности 790. Четвертый проводник соединен с четвертым боковым переходным отверстием 622, проходящим от четвертого проводника 632 до второго участка нижнего электрода 606. Стек 608 MTJ содержит вторую боковую стенку 636 для проведения второго магнитного домена 646 во втором участке свободного слоя, третью боковую стенку 638 для проведения третьего магнитного домена 648 в третьем участке свободного слоя, и нижнюю стенку 770 для проведения нижнего магнитного домена 772 в нижнем участке свободного слоя.

[0061] В конкретном варианте осуществления стек 608 MTJ выполнен с возможностью хранения до четырех уникальных значений данных. Первое битовое значение может быть представлено посредством первого магнитного домена 644 в первом участке свободного слоя, второе битовое значение может быть представлено посредством второго магнитного домена 646 во втором участке свободного слоя, третье битовое значение может быть представлено посредством третьего магнитн