Способ и устройство для получения мочевиновой консистентной смазки

Иллюстрации

Показать все

Изобретение относится к способу получения мочевиновой консистентной смазки, который осуществляют в устройстве, использующем экструдер и содержащем несколько реакционных зон, смонтированных в ряд и связанных по текучей среде. При этом устройство включает в себя: (а) первую зону подачи; (b) вторую зону подачи; (с) первую зону реакции-смешивания и (d) зону охлаждения-смешивания, причем указанные зоны расположены в устройстве в порядке (а), (b), (с), (d), и способ включает введение первого исходного компонента в первую зону подачи (а); введение второго исходного компонента во вторую зону подачи (b); реакцию первого и второго компонентов в первой зоне реакции-смешивания (с) и охлаждение и смешивание продукта первой зоны реакции-смешивания в зоне охлаждения-смешивания (d) с получением мочевиновой консистентной смазки. Также изобретение относится к устройству для осуществления данного способа. Настоящее изобретение обладает такими преимуществами, как технологическая стабильность, обладает трансформируемостью с возможностью применения ко многим типам мочевиновых консистентных смазок без существенных изменений используемого оборудования. 2 н. и 13 з.п. ф-лы, 14 табл., 4 ил.

Реферат

Область техники, к которой относится изобретение

Это изобретение относится к способу и устройству для получения мочевиновой консистентной смазки.

Уровень техники

Область мочевиновых консистентных смазок быстро развивается, поскольку такие консистентные смазки легко использовать в типичных областях применения консистентных смазок - смазочных материалов, включая широкий набор подшипников для автомобильных универсальных шарниров равных угловых скоростей, шаровые шарниры, колесные подшипники, генераторы переменного тока, охлаждающие вентиляторы, шариковые винты, линейные направляющие механических станков, широкий набор скользящих блоков строительного оборудования и подшипники и механизмы в стальных конструкциях и различном другом промышленном производственном оборудовании.

Использование мочевиновых консистентных смазок постоянно увеличивается в таких конкретных областях применения, как различные виды автомобильных деталей, в том числе универсальные шарниры равных угловых скоростей (CVJ), где существует потребность в долговечности, пониженном трении и износе скользящих блоков в связи с современной тенденцией к миниатюризации, уменьшению веса и неблагоприятными условиями окружающей среды, и в стальных конструкциях, где требуется высокая термостойкость и износостойкость смазывающей консистентной смазки.

Кроме индивидуальных компонентов, которые входят в состав мочевиновой консистентной смазки, другим фактором, определяющим конечные свойства и характеристики мочевиновой консистентной смазки, является конкретная технология и условия, в которых производится мочевиновая консистентная смазка. Условия обработки, например диспергирование и смешивание индивидуальных компонентов и изменения температуры, могут быть существенными факторами, которые влияют на структуру мочевиновой консистентной смазки, например характер образующихся волокон.

В патенте США №5314982 (выдан Christian Rasp и др.) раскрыт трехстадийный способ, который также может быть использован в крупном промышленном масштабе, для получения полимочевиновой смазывающей консистентной смазки, которая отличается тем, что (а) полимочевины, которые содержат олеофильные группы, получают путем реакции диизоцианатов с аминами или в отсутствие растворителя на реакционном шнеке при 80-120°С, предпочтительно при 85-95°С (вариант А), или в среде толуола при 20-80°С, предпочтительно при 30-60°С (вариант В), что (b) после завершения реакции полимочевины, полученные на стадии (а), измельчают в твердом сухом состоянии, чтобы получить порошок (по меньшей мере, 70% от массы порошка имеют размер частиц приблизительно 100-400 мкм), и что (с) этот измельченный неочищенный продукт после превращения его в "пасту" (смоченную) при повышенной температуре в используемом базовом масле (10-30 минут при 140-180°С) и повторном охлаждении до комнатной температуры перерабатывают в консистентную смазку путем полной гомогенизации (если целесообразно, в несколько стадий) в гомогенизаторе высокого давления под давлением 400-1500 бар (происходит самопроизвольный разогрев до 100°С), причем консистентные смазки обладают хорошей воспроизводимостью и имеют почти такие же характеристики, как и в случае получения обычным способом производства in situ.

В патенте США №4392967 (A.Gordon Alexander) раскрыт способ непрерывного производства смазывающей консистентной смазки с использованием шнековой технологической установки, которая включает в себя: (а) введение исходных материалов и смазывающего масла в выбранные места шнековой технологической установки, в которой содержится ряд смежных, соединенных в продольном направлении секций барабана для проведения различных технологических стадий, и отделений вращающегося шнекового устройства, пересекающих внутреннюю часть секций барабана и имеющих отдельные элементы по своей длине для осуществления желательных операций; (b) смешивание и конвейерную доставку указанных исходных материалов вдоль указанной технологической установки внутри смежных секций барабана под действием непрерывного вращения указанного шнека; (с) регулирование температуры указанного материала, в то время как он транспортируется внутри указанной технологической установки с использованием различных устройств теплообмена, которые расположены внутри или вблизи каждого барабана для того, чтобы способствовать проведению технологических операций диспергирования, реакции, дегидратации и/или гомогенизации; (d) отвод воды, образовавшейся при дегидратации исходной смеси в выбранных пунктах разгрузки барабана указанной технологической установки; (е) введение дополнительного смазывающего масла и/или присадок в последующих местах барабана после стадии дегидратации; (f) гомогенизацию указанной полного состава консистентной смазки под действием непрерывного вращения указанного шнекового устройства и (g) удаление полученной смазывающей консистентной смазки из последней секции барабана указанной шнековой технологической установки.

Несмотря на предысторию мочевиновых консистентных смазок и способов получения мочевиновых консистентных смазок еще существует потребность в непрерывном способе получения мочевиновой консистентной смазки, который мог бы обеспечить такие преимущества, относящиеся к способу, как технологическая стабильность, контроль качества и экономика. Кроме того, все еще существует потребность в способе получения мочевиновой консистентной смазки, который обладал бы трансформируемостью с возможностью применения ко многим типам мочевиновых консистентных смазок без существенных изменений используемого оборудования.

Сущность изобретения

В настоящем изобретении разработан способ получения мочевиновой консистентной смазки, который включает в себя: (а) введение первого исходного компонента в первую зону подачи; (b) введение второго исходного компонента во вторую зону подачи; (с) первую реакцию-смешивание в первой зоне реакции-смешивания и (d) охлаждение-смешивание в зоне охлаждения-смешивания.

Кроме того, в настоящем изобретении создан способ получения мочевиновой консистентной смазки, который включает в себя: (а) введение первого исходного компонента в первую зону подачи; (b) введение второго исходного компонента во вторую зону подачи; (с) первую реакцию-смешивание в первой зоне реакции-смешивания; (d) введение третьего исходного компонента в третью зону подачи; (е) вторую реакцию-смешивание во второй зоне реакции-смешивания и (f) охлаждение-смешивание в зоне охлаждения-смешивания.

В настоящем изобретении также создано устройство для получения мочевиновой консистентной смазки, которое включает в себя: (а) первую зону подачи; (b) вторую зону подачи; (с) первую зону реакции-смешивания и (d) зону охлаждения-смешивания. Кроме того, изобретение предлагает устройство для получения мочевиновой консистентной смазки, которое включает в себя: (а) первую зону подачи; (b) вторую зону подачи; (с) первую зону реакции-смешивания; (d) третью зону подачи; (е) вторую зону реакции-смешивания и (f) зону охлаждения-смешивания.

Краткое описание чертежей

Один или несколько вариантов осуществления изобретения подробно описаны с помощью примеров со ссылкой на сопровождающие чертежи.

На фиг.1 схематически изображен способ получения мочевиновой консистентной смазки, например тетрамочевиновой консистентной смазки, в соответствии со способом изобретения.

На фиг.2 схематически изображен способ получения мочевиновой консистентной смазки, например димочевиновой консистентной смазки или тримочевино-уретановой консистентной смазки, в соответствии со способом изобретения.

На фиг.3 схематически изображено устройство изобретения для получения тетрамочевиновой консистентной смазки.

На фиг.4 схематически изображено устройство изобретения для получения димочевиновой консистентной смазки.

Осуществление изобретения

В настоящем изобретении разработан способ получения мочевиновой консистентной смазки, включающий, например, консистентную смазку на основе мочевины, обработанную мочевиновую консистентную смазку или их комбинации. Предпочтительно изобретение предоставляет способ непрерывного получения мочевиновой консистентной смазки, который включает в себя, например, консистентную смазку на основе мочевины, обработанную мочевиновую консистентную смазку или их комбинации. Используемые в описании термины "непрерывный" и "непрерывно" относятся к способу согласно изобретению, который обычно проводят без промежутков во времени и последовательно по сравнению с традиционными технологиями, например периодическим способом.

Настоящее изобретение имеет одно или несколько следующих преимуществ.

Преимущество изобретения заключается в том, что мочевиновую консистентную смазку, например димочевиновую консистентную смазку, или тримочевино-уретановую консистентную смазку, или тетрамочевиновую консистентную смазку, или их комбинации, можно получать непрерывно с использованием способа изобретения.

Другое преимущество изобретения заключается в обеспечении приспособляемости способа изобретения с целью создания различных типов мочевиновой консистентной смазки, например димочевиновой консистентной смазки, или тримочевино-уретановой консистентной смазки, или тетрамочевиновой консистентной смазки, или их комбинации, без необходимости существенных изменений в оборудовании или направлениях материального потока.

Обычно мочевиновая консистентная смазка содержит загуститель мочевиновой консистентной смазки и базовое масло. Мочевиновая консистентная смазка, полученная или произведенная по способу изобретения, содержит весовую долю загустителя мочевиновой консистентной смазки в расчете на суммарную массу мочевиновой консистентной смазки, которая обычно находится в диапазоне от 2 до 25 процентов по массе, предпочтительно в диапазоне от 3 до 20 процентов по массе, более предпочтительно в диапазоне от 5 до 20 процентов по массе.

Примеры загустителя мочевиновой консистентной смазки включают загуститель димочевиновой консистентной смазки, загуститель тримочевино-уретановой консистентной смазки, тетрамочевиновой консистентной смазки и их комбинации. Кроме того, при получении загустителей мочевиновой консистентной смазки, например, может происходить образование поперечных связей.

Базовое масло, также называемое в уровне техники смазывающим маслом, подходящее для применения в способе изобретения, обычно может быть таким базовым маслом, которое выбирают в качестве смазывающего масла, например, при получении консистентной смазки в периодическом процессе. Кроме того, базовое масло, на которое обычно ссылаются в описании, может быть маслом минерального происхождения, синтетического происхождения или их комбинацией. Базовые масла минерального происхождения могут быть нефтяными маслами, например, такими, которые получаются в процессах очистки растворителем или гидроочистки. Базовые масла синтетического происхождения обычно могут содержать смеси углеводородных полимеров С1050, например полимеров альфа-олефинов, синтетических масел типа сложных эфиров, синтетических масел типа простых эфиров и их комбинации. Кроме того, базовые масла могут включать высокопарафиновые продукты синтеза Фишера-Тропша.

Подходящие примеры синтетических масел включают в себя полиолефины, например альфа-олефиновый олигомер и полибутен, полиалкиленгликоли, например полиэтиленгликоль и полипропиленгликоль, сложные диэфиры, например ди-2-этилгексилсебацинат и ди-2-этилгексиладипинат, сложные эфиры полиолов, например сложные эфиры триметилолпропана и пентаэритрита, простые перфторалкиловые эфиры, силиконовые масла, полифениловые эфиры или индивидуально, или в виде смешанных масел.

Подходящие примеры базовых масел включают минеральные масла средней вязкости, минеральные масла высокой вязкости и их комбинации. Минеральные масла средней вязкости обычно имеют значение вязкости в диапазоне от 5 мм2/с (сантистокс, сСт) при 100°С до 15 мм2/с (сСт) при 100°С, предпочтительно в диапазоне от 6 мм2/с (сСт) при 100°С до 12 мм2/с (сСт) при 100°С и более предпочтительно в диапазоне от 7 мм2/с (сСт) при 100°С до 12 мм2/с (сСт) при 100°С. Минеральные масла высокой вязкости обычно имеют значение вязкости в диапазоне от 15 мм2/с (сСт) при 100°С до 40 мм2/с (сСт) при 100°С и предпочтительно в диапазоне от 15 мм2/с (сСт) при 100°С до 30 мм2/с (сСт) при 100°С.

Подходящие примеры минеральных масел, которые могут быть использованы, включают те, которые продаются членами корпорации группы Shell под наименованиями "HVI", "MVIN", или "HMVIP". Кроме того, могут быть использованы поли-альфа-олефины и базовые масла типа полученных с использованием гидроизомеризации воска, например те, которые продаются членами корпорации группы Shell под наименованием "XHVI" (торговая марка).

Примеры подходящих мочевиновых консистентных смазок, которые могут быть получены с использованием способа настоящего изобретения, включают в себя димочевиновые консистентные смазки, тримочевино-уретановые консистентные смазки, тетрамочевиновые консистентные смазки и их сочетания.

Например, тетрамочевиновая консистентная смазка может быть получена с использованием способа изобретения путем контактирования первого исходного компонента (А), имеющего формулу OCN-R1-NCO, в которой R1 включает в себя углеводородную группу, содержащую от 2 до 30 атомов углерода, второго исходного компонента (В), включающего в себя моноамин, имеющий формулу NH2R2, в которой R2 включает углеводородную группу, содержащую от 2 до 30 атомов углерода, и другого второго исходного компонента (С), включающего в себя диамин, имеющий формулу NH2R3NH2, где R3 включает в себя углеводородную группу, содержащую от 2 до 12 атомов углерода, или полиоксиуглеводородную группу, содержащую от 2 до 12 атомов углерода, в присутствии базового масла. Весовые доли исходных компонентов, содержащих (А), (В) и (С), определяются стехиометрией химической структуры загустителя тетрамочевиновой консистентной смазки таким образом, чтобы исходные компоненты прореагировали полностью с получением загустителя тетрамочевиновой консистентной смазки.

Например, димочевиновая консистентная смазка может быть получена с использованием способа изобретения путем контактирования первого исходного компонента (А), имеющего формулу OCN-R1-NCO, в которой R1 включает в себя углеводородную группу, содержащую от 2 до 30 атомов углерода, и одного или нескольких исходных компонентов, например исходного компонента (D) и исходного компонента (Е), включающего в себя моноамин, имеющий формулу NH2R2, в которой R2 включает углеводородную группу, содержащую от 2 до 30 атомов углерода, в присутствии базового масла. Весовые доли исходных компонентов, содержащих (А) и моноамин, например исходные компоненты (A), (D) и (Е), определяются стехиометрией химической структуры загустителя димочевиновой консистентной смазки таким образом, чтобы исходные компоненты прореагировали полностью с получением загустителя димочевиновой консистентной смазки.

Тримочевино-уретановая консистентная смазка может быть получена способом, аналогичным получению димочевиновой консистентной смазки. Обычно тримочевино-уретановая консистентная смазка включает в себя тримочевино-моноуретановые молекулы, а также может содержать молекулы димочевины, мономочевино-моноуретановые молекулы, диуретановые молекулы или их комбинации. Например, тримочевино-уретановые консистентные смазки могут быть получены с использованием способа изобретения путем контактирования первого исходного компонента (А), имеющего формулу OCN-R1-NCO, в которой R1 включает в себя углеводородную группу, содержащую от 2 до 30 атомов углерода, исходного компонента (F), содержащего спирт, и исходного компонента, содержащего моноамин, имеющий формулу NH2R2, в которой R2 включает в себя углеводородную группу, содержащую от 2 до 30 атомов углерода, и исходного компонента, содержащего диамин, имеющий формулу NH2R3NH2, где R3 включает в себя углеводородную группу, содержащую от 2 до 12 атомов углерода, или полиоксиуглеводородную группу, содержащую от 2 до 12 атомов углерода, в присутствии базового масла. Обычно спирт реагирует с первым исходным компонентом (А) до контактирования с аминами. Исходный компонент, содержащий моноамин, и исходный компонент, содержащий диамин, могут включать в себя один исходный компонент, например исходный компонент (G). Весовые доли исходных компонентов, содержащих (А), спирт, моноамин и диамин, например исходные компоненты (А), (F) и (G), определяются стехиометрией химической структуры загустителя тримочевино-уретановой консистентной смазки таким образом, чтобы исходные компоненты прореагировали полностью с получением загустителя тримочевино-уретановой консистентной смазки.

Углеводородная группа, обозначенная в описании как R1, включает в себя двухвалентный углеводородный радикал, который может быть алифатическим, алициклическим, ароматическим или их комбинацией, например (но без ограничения) алкиларилен, аралкилен, алкилциклоалкилен, циклоалкиларилен или их комбинации, включая две свободные валентности при различных атомах углерода. Углеводородная группа, обозначенная в описании как R2, включает в себя моновалентный органический радикал, содержащий водород и углерод, и может быть алифатическим, ароматическим, алициклическим или их комбинацией, например (но без ограничения) аралкил, алкил, арил, циклоалкил, алкилциклоалкил или их комбинации, и может быть насыщенным или олефиновоненасыщенным (содержит один или несколько атомов углерода, связанных двойной связью, сопряженной или несопряженной).

Углеводородная группа, обозначенная в описании как R3, включает в себя двухвалентный углеводородный радикал, содержащий водород и углерод, и может быть алифатическим, ароматическим, алициклическим или их комбинацией, например (но без ограничения) аралкил, алкил, арил, циклоалкил, алкилциклоалкил или их комбинации, и может быть насыщенным или олефиновоненасыщенным (содержит один или несколько атомов углерода, связанных двойной связью, сопряженной или несопряженной). Полиоксиуглеводородная группа, обозначенная в описании как R3, включает в себя двухвалентный углеводородный радикал, который может быть алифатическим, алициклическим, ароматическим или их комбинацией, например (но без ограничения) алкиларилен, аралкилен, алкилциклоалкилен, циклоалкиларилен или их комбинации, включая две свободные валентности при различных атомах углерода, с повторяющимися блоками от 2 до 5.

Примеры подходящих диизоцианатов, которые могут быть использованы при получении мочевиновой консистентной смазки с использованием способа изобретения, включают в себя дифенилметандиизоцианат, фенилендиизоцианат, дифенилдиизоцианат, фенилдиизоцианат, толуолдиизоцианат (TDI), нафтилендиизоцианат, толуолортодиизоцианат (TODI) и их комбинации. Примеры подходящих моноаминов, которые могут быть использованы для получения мочевиновой консистентной смазки с использованием способа изобретения, включают в себя октиламин, додециламин (лауриламин), тетрадециламин (миристиламин), гексадециламин, октадециламин (талловый амин, также называется стеариламином), олеиламин, анилин, бензиламин, пара-толуидин, пара-хлоранилин, мета-ксилидин и их комбинации. Примеры подходящих диаминов, которые могут быть использованы для получения мочевиновой консистентной смазки с использованием способа изобретения, включают в себя этилендиамин (EDA), пропилендиамин, бутилендиамин, пентилендиамин, гексаметилендиамин (HMDA), полиоксиметилендиамин, полиоксиэтилендиамин, полиоксипропилендиамин, полиоксиизопропилендиамин, полиэфирамин, триэтиленгликольдиамин и их комбинации. Примеры подходящих спиртов, которые могут быть использованы для получения мочевиновой консистентной смазки, например тримочевино-уретановой консистентной смазки, с использованием способа изобретения, включают в себя 1-додеканол (лауриловый спирт), 1-тетрадеканол (миристиловый спирт), 1-гексадеканол (цетиловый или пальмитиловый спирт), 1-октадеканол (стеариловый спирт), цис-9-октадецен-1-ол (олеиловый спирт), 9-октадекадиен-1-ол (ненасыщенный пальмитолеиловый спирт), 12-октадекадиен-1-ол (линолеиловый спирт) и их комбинации.

Например, тетрамочевиновые консистентные смазки могут быть получены с использованием способа изобретения путем контактирования первого исходного компонента (А), содержащего, например, толуолдиизоцианат (TDI) (например, смесь 20 процентов по массе толуол-2,6-диизоцианата и 80 процентов по массе толуол-2,4-диизоцианата), второго исходного компонента (В), содержащего, например, 1-октадециламин (также называется талловым амином), и другого второго исходного компонента (С), содержащего, например, гексаметилендиамин (HMDA), в присутствии базового масла.

Весовое отношение второго исходного компонента (В) к другому второму исходному компоненту (С) может быть любым весовым отношением, которое обеспечивает получение тетрамочевиновой консистентной смазки. Например, весовое отношение 1-октадециламина к гексаметилендиамину (HMDA) может находиться в диапазоне от 4,2:1 до верхнего предела, который ограничивается минимальным количеством гексаметилендиамина (HMDA), которое необходимо для получения тетрамочевиновой консистентной смазки. Например, верхний предел может составлять 100:1, обеспечивая, например, весовое отношение в диапазоне от 4,2:1 до 100:1. Например, 100 процентов по массе 1-октадециламина и 0 процентов по массе гексаметилендиамина (HMDA) дают димочевиновую консистентную смазку, которая не содержит тетрамочевиновую консистентную смазку. Кроме весового отношения исходных компонентов (В) относительно (С), остальные соотношения исходных компонентов, содержащих (А), (В) и (С), определяются стехиометрией химической структуры загустителя тетрамочевиновой консистентной смазки таким образом, чтобы исходные компоненты прореагировали полностью с получением загустителя тетрамочевиновой консистентной смазки.

Например, тетрамочевиновая консистентная смазка также может быть получена с использованием способа согласно изобретению путем контактирования первого исходного компонента (А), например толуолдиизоцианата (TDI) (например, смесь 20 процентов по массе толуол-2,6-диизоцианата и 80 процентов по массе толуол-2,4-диизоцианата), второго исходного компонента (В), содержащего, например, 1-октадециламин (также называется талловым амином), и другого второго исходного компонента (С), содержащего, например, этилендиамин (EDA), в присутствии базового масла.

Весовое отношение второго исходного компонента (В) к другому второму исходному компоненту (С) может быть любым весовым отношением, которое обеспечивает получение тетрамочевиновой консистентной смазки. Например, весовое отношение 1-октадециламина к этилендиамину (EDA) может находиться в диапазоне от 8,1:1 до верхнего предела, который ограничивается минимальным количеством этилендиамина (EDA), которое необходимо для получения тетрамочевиновой консистентной смазки. Например, верхний предел может составлять 100:1, обеспечивая, например, весовое соотношение в диапазоне от 8,1:1 до 100:1. Например, 100 процентов по массе 1-октадециламина и 0 процентов по массе этилендиамина (EDA) дают димочевиновую консистентную смазку, которая не содержит тетрамочевиновую консистентную смазку. Кроме весового отношения исходных компонентов (В) относительно (С), остальные соотношения исходных компонентов, содержащих (А), (В) и (С), определяются стехиометрией химической структуры загустителя тетрамочевиновой консистентной смазки таким образом, чтобы исходные компоненты прореагировали полностью с получением загустителя тетрамочевиновой консистентной смазки.

Например, тетрамочевиновая консистентная смазка может быть получена с использованием способа согласно изобретению путем контактирования первого исходного компонента (А), содержащего, например, 4,4'-дифенилметандиизоцианат (также называется метилендиизоцианатом или MDI), второго исходного компонента (В), содержащего, например, 1-октадециламин (также называется талловым амином), и другого второго исходного компонента (С), содержащего, например, полиоксипропилен-диамин (POD), в присутствии базового масла.

Весовое отношение второго исходного компонента (В) к другому второму исходному компоненту (С) может быть любым весовым соотношением, которое обеспечивает получение тетрамочевиновой консистентной смазки. Например, весовое отношение 1-октадециламина к полиоксипропилендиамину (POD) может находиться в диапазоне от 2,3:1 до верхнего предела, который ограничивается минимальным количеством полиоксипропилендиамина (POD), которое необходимо для получения тетрамочевиновой консистентной смазки. Например, верхний предел может составлять 100:1, обеспечивая, например, весовое соотношение в диапазоне от 2,3:1 до 100:1. Например, 100 процентов по массе 1-октадециламина и 0 процентов по массе полиоксипропилендиамина (POD) дает димочевиновую консистентную смазку, которая не содержит тетрамочевиновую консистентную смазку. Кроме весового отношения исходных компонентов (В) относительно (С), остальные соотношения исходных компонентов, содержащих (А), (В) и (С) определяются стехиометрией химической структуры загустителя тетрамочевиновой консистентной смазки таким образом, чтобы исходные компоненты прореагировали полностью с получением загустителя тетрамочевиновой консистентной смазки.

Например, димочевиновая консистентная смазка может быть получена с использованием способа согласно изобретению путем контактирования первого исходного компонента (А), содержащего, например, 4,4'-дифенилметандиизоцианат (также называется метилендиизоцианатом или MDI), второго исходного компонента (D), содержащего, например, октиламин, и третьего исходного компонента (Е), содержащего, например, додециламин, в присутствии базового масла.

Весовое отношение второго исходного компонента (D) к третьему исходному компоненту (Е) может быть любым весовым соотношением, которое обеспечивает получение димочевиновой консистентной смазки. Например, количество октиламина и додециламина может находиться в диапазоне от 100 процентов по массе октиламина и 0 процентов по массе додециламина до 0 процентов по массе октиламина и 100 процентов по массе додециламина. Кроме количества компонентов (D) и (Е), остальные соотношения исходных компонентов, содержащих (А), (D) и (Е) определяются стехиометрией химической структуры загустителя димочевиновой консистентной смазки таким образом, чтобы исходные компоненты прореагировали полностью с получением загустителя димочевиновой консистентной смазки.

Например, тримочевино-уретановая консистентная смазка также может быть получена с использованием способа согласно изобретению путем контактирования первого исходного компонента (А), содержащего, например, толуолдиизоцианат (также называется TDI) (например, смесь 20 процентов по массе толуол-2,6-диизоцианата и 80 процентов по массе толуол-2,4-диизоцианата), второго исходного компонента (F), содержащего, например, 1-октадеканол (стеариловый спирт), и третьего исходного компонента (G), содержащего, например, 1-октадециламин (также называется талловым амином) и этилендиамин (EDA), в присутствии базового масла.

Например, третий исходный компонент (G) также может быть разделен на два исходных компонента, причем один исходный компонент содержит 1-октадециламин, а другой исходный компонент содержит этилендиамин. Обычно амины можно добавлять в любой последовательности. Например, для получения максимальной доли тримочевино-моноуретановых или тетрамочевиновых молекул обычно диамин может быть добавлен до моноамина. Кроме того, например, при получении тримочевино-уретановой консистентной смазки обычно весь этилендиамин (EDA) и часть моноамина могут быть добавлены в присутствии базового масла в качестве третьего исходного компонента и остальной моноамин может быть добавлен в присутствии базового масла в качестве четвертого исходного компонента. Кроме того, например, порядок добавления третьего исходного компонента с последующим четвертым исходным компонентом может быть изменен на обратный с целью получения другой структуры волокнистого загустителя, которая может быть выгодной для применения мочевиновой консистентной смазки в подшипниках качения, зубчатых механизмах и их сочетаниях.

Весовое отношение компонентов исходного компонента (G) может быть любым весовым отношением, которое обеспечивает получение тримочевино-уретановой консистентной смазки. Например, весовое отношение 1-октадециламина к этилендиамину (EDA) может находиться в диапазоне от 4,0:1 до 7,0:1 при сохранении стехиометрии. Весовое отношение исходного компонента (F) к исходному компоненту (G) может быть любым весовым отношением, которое обеспечивает получение тримочевино-уретановой консистентной смазки. Например, весовое отношение 1-октадеканола (стеарилового спирта) к этилендиамину (EDA) может находиться в диапазоне от 4,5:1 до 6,0:1 при сохранении стехиометрии. Кроме того, например, когда количество этилендиамина (EDA) меньше необходимого по стехиометрии, могут быть получены двойные компоненты с индивидуальными диизоцианатными молекулами независимо от тримочевино-моноуретановых молекул. Например, если две молекулы моноамина реагируют с молекулой диизоцианата, тогда образуется молекула димочевины. Кроме того, например, если молекула моноамина и молекула спирта реагируют с молекулой диизоцианата, тогда образуется мономочевино-моноуретановая молекула. Кроме того, например, если две молекулы спирта реагируют с молекулой диизоцианата, тогда образуется диуретановая молекула. Таким образом, могут быть получены мочевиновые консистентные смазки, содержащие тримочевино-моноуретановые молекулы и димочевиновые молекулы, мономочевино-моноуретановые молекулы, диуретановые молекулы или их комбинации. Кроме весового отношения моноамина к диамину и весового отношения спирта к диамину, остальные соотношения исходных компонентов определяются стехиометрией химической структуры загустителя тримочевино-уретановой консистентной смазки таким образом, чтобы исходные компоненты прореагировали полностью с получением загустителя тримочевино-уретановой консистентной смазки.

Мочевиновая консистентная смазка, полученная по способу согласно изобретению, может содержать одну или несколько присадок в количестве, которое обычно используется в соответствующей области применения с целью придания определенных желательных характеристик мочевиновой консистентной смазке в том числе, например стойкости к окислению, клейкости, противозадирных свойств, замедления коррозии, пониженного трения и износа и их комбинаций.

Примеры подходящих присадок включают в себя антиокислительные, антикоррозийные, противоизносные присадки, противозадирные присадки, присадки, понижающие температуру застывания, дезактиваторы металла, агенты клейкости, присадки, улучшающие индекс вязкости, и их сочетания.

Примеры подходящих присадок включают в себя противозадирные/противоизносные агенты, например соли цинка, например диалкил- или диарилдитиофосфаты цинка, бораты, дитиофосфат молибдена, замещенные тиадиазолы, полимерные азот- и фосфорсодержащие соединения, полученные, например, путем реакции диалкоксиамина с замещенным органическим фосфатом, аминофосфатами, сульфурированное спермацетовое масло природного или синтетического происхождения, сульфурированный лярд, сульфурированные сложные эфиры, сульфурированные эфиры жирных кислот, сульфурированные материалы, органические фосфаты, например, соответствующие формуле (OR)3P=O, где R представляет собой алкильную, арильную или аралкильную группу, и трифенилфосфоротионат; одну или несколько металлсодержащих моющих присадок с щелочной реакцией, например алкилсалицилаты кальция или магния, алкиларилсульфонаты или алкилсульфонаты; беззольные диспергирующие присадки, например продукты реакции полиизобутенилянтарного ангидрида и амина или сложного эфира; антиокислители, например блокированные фенолы или амины, например фенил-альфа-нафтиламин; антикоррозийные присадки, например нафтенат цинка; присадки - модификаторы трения; присадки, улучшающие индекс вязкости; присадки, понижающие температуру застывания; агенты клейкости и их комбинации. Кроме того, могут быть добавлены твердые материалы, например графит, тонко диспергированный дисульфид молибдена, тальк, металлические порошки и различные полимеры, например полиэтиленовый воск с целью улучшения специальных характеристик. Примером арильной группы является фенильная группа. Примером аралкильной группы является бензильная группа.

Мочевиновые консистентные смазки, полученные по способу согласно изобретению, могут содержать один дитиофосфат цинка или комбинацию из двух или нескольких дитиофосфатов цинка. Примеры подходящих дитиофосфатов цинка включают диалкилдитиофосфаты цинка, диарилдитиофосфаты цинка, алкиларилдитиофосфаты цинка и их сочетания. Предпочтительным дитиофосфатом цинка является диалкилдитиофосфат цинка. Алкильные группы в диалкилдитиофосфате цинка могут иметь прямую цепочку или разветвленную цепочку и обычно содержат от 1 до 20 атомов углерода, предпочтительно от 8 атомов углерода до 20 атомов углерода и более предпочтительно от 8 атомов углерода до 12 атомов углерода.

Мочевиновые консистентные смазки, полученные по способу согласно изобретению, могут включать в себя присадку, содержащую единственный беззольный дитиокарбамат или комбинацию из двух или нескольких беззольных дитиокарбаматов. Примеры подходящих беззольных дитиокарбаматов включают в себя беззольные диалкилдитиокарбаматы, диарилдитиокарбаматы, алкиларилдитиокарбаматы и их комбинации. Предпочтительным беззольным дитиокарбаматом является беззольный диалкилдитиокарбамат, более предпочтительно метилен-бис-диалкилдитиокарбамат. Алкильные группы беззольного диалкилдитиокарбамата могут иметь прямую или разветвленную цепочку и предпочтительно содержат от 1 до 12 атомов углерода, более предпочтительно от 2 атомов углерода до 6 атомов углерода. Примером предпочтительного беззольного дитиокарбамата является метилен-бис-дибутилдитиокарбамат.

Мочевиновые консистентные смазки, полученные по способу согласно изобретению, могут содержать от 0,1 процента по массе до 15 процентов по массе, предпочтительно от 0,1 до 5 процентов по массе, более предпочтительно от 0,1 до 2 процентов по массе и еще более предпочтительно от 0,2 процента по массе до 1 процента по массе одной или нескольких присадок, в расчете на суммарный вес мочевиновой консистентной смазки. Например, может потребоваться комбинация присадок для достижения большей массовой доли присадок, например 15 процентов по массе.

Обычно вариант осуществления изобретения включает в себя одну или несколько зон. Эти зоны могут обеспечивать транспорт исходных компонентов, мочевиновой консистентной смазки или их комбинаций из одной зоны в другую зону, расположенную ниже по потоку. Транспорт может быть осуществлен с использованием любых средств, которые можно использовать в способе изобретения. Примеры подходящих средств транспорта включают в себя шнековый элемент и комбинацию шнековых элементов.

Обычно при получении тетрамочевиновой консистентной смазки зоны включают в себя первую зону подачи, вторую зону подачи, первую зону реакции-смешивания и зону охлаждения-смешивания. Кроме того, при получении тетрамочевиновой консистентной смазки зоны могут включать вентиляционную зону. При получении тетрамочевиновой консистентной смазки зоны могут дополнительно включать зону подачи масла. При получении тетрамочевиновой консистентной смазки зоны могут дополнительно включать зону смешивания.

Обычно при получении тетрамочевиновой консистентной смазки зоны расположены по порядку, как описано в изобретении, и могут включать комбинации зон, описанных в изобретении. Зоны тетрамочевиновой консистентной смазки могут включать дополнительные зоны, например дополнительные зоны подачи, зоны реак