Силовое преобразовательное устройство
Иллюстрации
Показать всеУстройство управления вращением синхронной машины содержит средство (6) детектирования информации о вращении и вынуждает преобразователь (2) поднять напряжение Vc заряда конденсатора (3) таким образом, чтобы оно оказалось выше индуцированного напряжения Vm, генерируемого синхронной машиной (5) во время переключения в режим движения по инерции. Преобразователь поддерживает напряжение Vc заряда во время режима движения по инерции и выполняет управление ослаблением поля таким образом, чтобы индуцированное напряжение Vm, генерируемое синхронной машиной (5), стало ниже напряжения Vdc постоянного тока во время перехода из режима движения по инерции в двигательный режим или режим рекуперации. Технический результат заключается в повышении надежности устройства и уменьшении энергопотребления при работе. 6 з.п. ф-лы, 14 ил.
Реферат
Область техники
Настоящее изобретение относится к силовому преобразовательному устройству для приведения в действие синхронных машин, используемых для электрических транспортных средств, таких как железнодорожный подвижной состав и электротранспорт, и, в частности, относится к силовому преобразовательному устройству, которое может быть адаптировано к индуцированному напряжению синхронной машины при работе на высоких скоростях.
Предшествующий уровень техники
Обычно в силовом преобразовательном устройстве, используемом для электрических транспортных средств, мощность переменного тока, снимаемая с проводов воздушной линии через токосъемники, преобразуется преобразователем в мощность постоянного тока. В альтернативном варианте мощность постоянного тока снимается непосредственно с токосъемников. Мощность постоянного тока подается на вход инвертора через конденсатор, который используется для накопления энергии и который сглаживает пульсации напряжения источника питания. Мощность постоянного тока, поступающая на вход инвертора, преобразуется в мощность переменного тока с регулируемым напряжением и регулируемой частотой, и преобразованная мощность переменного тока подается на синхронную машину с постоянными магнитами.
Здесь, поскольку в синхронной машине вмонтирован постоянный магнит, в ней во время вращения постоянно индуцируется электродвижущая сила. Индуцированное напряжение увеличивается пропорционально скорости, и при работе электрического транспортного средства с высокой скоростью создается индуцированное напряжение, превышающее напряжение источника питания. Таким образом, во время работы в двигательном режиме вращающий момент синхронной машины управляется с использованием так называемого «управления ослаблением поля», то есть путем управления индуцированного напряжения, а также тока синхронной машины с помощью инвертора, а во время работы в режиме рекуперации управляется тормозной момент синхронной машины.
Между тем, в случае управления электрическими транспортными средствами с использованием синхронных машин с постоянными магнитами, инвертор во время движения по инерции обычно выключают. Однако при выключении инвертора синхронная машина работает как генератор, и энергия рекуперации поступает на сторону источника питания через диод, предусмотренный в инверторе, в результате чего электрическое транспортное средство вместо работы в режиме движения по инерции работает в режиме торможения.
Чтобы предотвратить указанное явление, в известных технических решениях используют нагрузочный контактор, который размещают между синхронной машиной и инвертором, и во время движения по инерции контакты нагрузочного контактора, расположенного между синхронной машиной и инвертором, разомкнуты (состояние ВЫКЛ), и шина источника питания блокируется таким образом, чтобы предотвратить поступление энергии рекуперации синхронной машины в инвертор. Кроме того, в момент повторной активации, то есть перехода из режима движения по инерции в двигательный режим для предотвращения ненужного поступления энергии рекуперации в инвертор с последующим выходом из строя переключающих элементов инвертора, управление преобразователем выполняется перед подключением нагрузочного контактора таким образом, чтобы поднять напряжение схемы инвертора на стороне постоянного тока до величины, большей или равной пиковому значению индуцированного напряжения между выводами синхронной машины, после чего включают нагрузочный контактор (см., например, патентный документ 1), публикация выложенной патентной заявки Японии № 2007-28852 (стр. 68, фиг. 63).
В известных силовых преобразовательных устройствах в момент перехода из двигательного режима или режима рекуперации в режим движения по инерции нагрузочный контактор, подключенный между синхронной машиной и инвертором, блокирует схему между ними. Кроме того, во время повторной активации, то есть перехода из режима движения по инерции в двигательный режим или режим рекуперации, нагрузочный контактор, подключенный между синхронной машиной и инвертором, включается. Таким образом, обычно, когда переход с одного режима на другой, то есть переход из двигательного режима или режима рекуперации в режим движения по инерции, и переключение из режима движения в двигательный режим или режим рекуперации происходит часто, соответственно возрастает количество операций размыкания/замыкания контактов нагрузочного контактора, что приводит к сокращению срока его службы.
Кроме того, нагрузочный контактор, расположенный между синхронной машиной и инвертором, имеет большие размеры, поскольку должен коммутировать большой ток. Это обстоятельство ограничивает возможности уменьшения размеров и массы устройства, а также его стоимость.
Кроме того, обычно в момент перехода из режима движения по инерции в двигательный режим для предотвращения протекания тока от синхронной машины к инвертору необходимо значительно повысить напряжение схемы инвертора на стороне постоянного тока перед активацией инвертора, что создает проблему увеличения временного интервала между моментом подачи инвертору команды на запуск и моментом действительной повторной активации инвертора.
Краткое изложение сущности изобретения
Настоящее изобретение предназначено для решения вышеуказанных проблем.
Задачей является обеспечение силового преобразовательного устройства, для которого не требуется нагрузочный контактор, обычно размещаемый между синхронной машиной и инвертором, что способствует уменьшению размеров, массы и стоимости даже при частом переходе с одного режима работы на другой.
Силовое преобразовательное устройство согласно настоящему изобретению включает в себя: первый силовой преобразователь, который получает напряжение постоянного тока от источника питания; конденсатор, который подключен к выходной стороне первого силового преобразователя; второй силовой преобразователь, который преобразует напряжение постоянного тока конденсатора в напряжение переменного тока и выводит напряжение переменного ток на синхронную машину; средство детектирования информации о вращении, которое детектирует информацию о вращении синхронной машины; и средство управления, которое управляет первым силовым преобразователем и вторым силовым преобразователем на основе информации о вращении, детектированной средством детектирования информации о вращении. На основе информации о вращении синхронной машины, детектированной средством детектирования информации о вращении, средство управления управляет вторым силовым преобразователем таким образом, чтобы напряжение сгенерированное синхронной машиной, было меньше или равно напряжению заряда конденсатора в момент активации второго силового преобразователя из режима движения по инерции, а также управляет первым силовым преобразователем таким образом, чтобы напряжение заряда конденсатора было больше или равно напряжению, сгенерированному синхронной машиной.
Силовое преобразовательное устройство согласно настоящему изобретению даже в случае частого перехода между режимами работы, например перехода из двигательного режима или режима рекуперации в режим движения по инерции и перехода из режима движения по инерции в двигательный режим или режим рекуперации, дает возможность заведомо предотвратить ненужное обратное поступление электрической мощности от синхронной машины на сторону источника питания, а также возможность предотвратить создание ненужного тормозного момента. Таким образом, нагрузочный контактор, который обычно размещали между синхронной машиной и вторым силовым преобразователем, можно исключить, а также можно обеспечить значительное уменьшение размеров, массы и стоимости силового преобразовательного устройства.
Краткое описание чертежей
В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопроводительные чертежи, на которых:
Фиг. 1 изображает блок-схему, иллюстрирующую силовое преобразовательное устройство согласно варианту 1 настоящего изобретения;
фиг. 2 изображает блок-схему, подробно иллюстрирующую средство вычисления команд напряжения силового преобразовательного устройства;
фиг. 3 изображает временную диаграмму, иллюстрирующую функционирование устройства согласно варианту 1 настоящего изобретения;
фиг. 4 изображает характеристическую схему, показывающую результаты имитационного моделирования с целью проверки функционирования силового преобразовательного устройства согласно варианту 1 настоящего изобретения;
фиг. 5 изображает блок-схему, иллюстрирующую силовое преобразовательное устройство согласно варианту 2 настоящего изобретения;
фиг. 6 изображает блок-схему, иллюстрирующую силовое преобразовательное устройство согласно варианту 3 настоящего изобретения;
фиг. 7 изображает диаграммы, показывающие взаимосвязь между командами трехфазного напряжения в синхронном трехимпульсном режиме, частотой несущей и линейным напряжением в варианте 3 настоящего изобретения;
фиг. 8 изображает блок-схему, иллюстрирующую силовое преобразовательное устройство, согласно варианту 4 настоящего изобретения;
фиг. 9 изображает блок-схему, иллюстрирующую силовое преобразовательное устройство согласно варианту 5 настоящего изобретения;
фиг. 10 изображает схему, показывающую взаимосвязь между координатной системой трехфазного переменного тока и координатной системой двухфазного переменного тока;
фиг. 11 изображает схему, подробно иллюстрирующую средство вычисления команд напряжения, согласно варианту 5 настоящего изобретения;
фиг. 12 изображает блок-схему, иллюстрирующую силовое преобразовательное устройство согласно варианту 6 настоящего изобретения;
фиг. 13 изображает временную диаграмму, иллюстрирующую функционирование устройства согласно варианту 6 настоящего изобретения;
фиг. 14 изображает временную диаграмму, иллюстрирующую функционирование устройства согласно варианту 6 настоящего изобретения.
Описание предпочтительных вариантов воплощения изобретения
Вариант 1
На фиг. 1 изображена блок-схема, иллюстрирующая силовое преобразовательное устройство согласно варианту 1 настоящего изобретения.
Силовое преобразовательное устройство согласно этому варианту включает в себя: преобразователь 2 напряжения постоянного тока в постоянный (DC/DC преобразователь), который является первым силовым преобразователем для получения заранее определенного значения напряжения постоянного тока (DC напряжения) от источника питания 1 постоянного тока; конденсатор 3, который подключен к преобразователю 2 на его выходной стороне и который используется для накопления энергии; инвертор 4, который представляет собой второй силовой преобразователь для преобразования DC напряжения конденсатора 3 в напряжение переменного тока (АС напряжение) для вывода AC напряжения на синхронную машину 5; средство 6 детектирования информации о вращении, которое детектирует информацию о вращении (в данном случае это скорость ω вращения) синхронной машины 5; средство 8 детектирования DC напряжения, которое детектирует DC напряжение (Vdc) источника 1 питания постоянного тока; и средство 7 управления, которое управляет преобразователем 2 и инвертором 4 на основе скорости ω вращения синхронной машины 5, детектированной средством 6 детектирования информации о вращении, и на основе напряжения Vdc питания постоянного тока, детектированного средством 8 детектирования DC напряжения.
Вышеописанный преобразователь 2 представляет собой схему вольтодобавочного прерывателя и включает в себя: первое переключающее средство 21, которое состоит из встречно параллельного соединения переключающего элемента Q1, такого как транзистор с изолированным затвором (IGBT), и диода D1; и второе переключающее средство 22, которое состоит из встречно-параллельного соединения переключающего элемента Q2, такого как транзистор IGBT, и диода D2; и реактор 23. Кроме того, синхронная машина 5 представляет собой синхронную машину с постоянными магнитами (называемую далее просто синхронной машиной), которая создает магнитное поле с помощью постоянного магнита, закрепленного на ее роторе.
Вышеописанное средство 7 управления состоит, например, из микрокомпьютера и снабжено (после установки программы заранее определенных вычислений) средством 71 вычисления команд напряжения, средством 72 управления напряжением, средством 73 вычисления команд тока по оси d, средством 74 вычисления команд напряжения, по осям d и q, средством 75 интегрирования, средством 76 вычисления команд трехфазного напряжения, и средством 77 вычисления отпирающих импульсов.
Входящее в средство 7 управления средство 71 вычисления команд напряжения, вычисляет и выдает команду Vc* напряжения заряда, для управления напряжением заряда конденсатора 3 и команду (Vm*/ω2) напряжения, для управления напряжением Vm (в данном случае это пиковое значение линейного напряжения), генерируемым синхронной машиной 5, на основе скорости ω вращения синхронной машины 5, детектированной средством 6 детектирования информации о вращении.
Средство 72 управления напряжением управляет преобразователем 2 на основе команды Vc* напряжения заряда, выдаваемой средством 71 вычисления команд напряжения и на основе напряжения Vdc источника питания постоянного тока, детектированного средством 8 детектирования DC напряжения. Средство 73 вычисления команды тока по оси d вычисляет и выдает команду id*, задающую ток по оси d на основе команды (Vm*/ω2) напряжения, выдаваемой средством 71 вычисления команд напряжения, и на основе скорости ω вращения синхронной машины 5. Средство 74 вычисления команд напряжения по осям d и q вычисляет и выдает команду vd* напряжения по оси d, и команду vq* напряжения по оси q, на основе команды id* тока по оси d, выдаваемой средством 73 вычисления команды тока по оси d, и на основе команды iq* тока по оси q, соответственно.
Средство 75 интегрирования вычисляет и выдает фазу θ путем интегрирования скорости ω вращения, детектированной средством 6 детектирования информации о вращении. Средство 76 вычисления команд трехфазного напряжения вычисляет и выдает команды Vu*, Vv* и Vw* на основе команды vd* напряжения по оси d, и команды vq* напряжения по оси q, выдаваемых средством 74 вычисления команд напряжения по осям d и q, и на основе фазы θ. Средство 77 вычисления отпирающих импульсов вычисляет и выдает сигналы Gu, Gv, Gw, Gx, Gy, Gz отпирающих импульсов для управления переключающими элементами инвертора 4 на основе команд Vu*, Vv* и Vw*, выдаваемых средством 76 вычисления команд трехфазного напряжения.
На фиг. 2 представлена конфигурационная схема, подробно иллюстрирующая средство 71 вычисления команд напряжения.
Средство 71 вычисления команд напряжения включает в себя таблицу 711 для вычисления приращений напряжения конденсатора, таблицу 712 вычисления команд пикового значения линейного напряжения, сумматор 713, ограничитель 714, умножитель 715, средство 716 предотвращения деления на нуль и делитель 717.
Заметим, что конфигурация и функционирование средства 7 управления, содержащего средство 71 вычисления команд напряжения, будет подробно описано ниже.
Далее описываются принципы управления ослаблением поля для синхронной машины 5 в варианте 1. Напряжения, представленные в координатах d и q, в синхронной машине 5 и крутящий момент T вычисляют из выражений (1) и (2), приведенных ниже.
[Выражение 1]
[Выражение 2]
Здесь id и iq соответственно представляют составляющие тока статора по оси d и оси q; vd и vq соответственно представляют составляющие напряжения статора по оси d и оси q; ϕa=√{(3/2)ϕf}; ϕf представляет максимальное значение потокосцепления статора, генерируемого постоянным магнитом; R представляет сопротивление статора; Ld и Lq соответственно представляют индуктивности по оси d и оси q; p=d/dtf; Pn представляет количество пар полюсов; и ω представляет скорость вращения (угловая скорость). При работе в области высоких скоростей, когда необходима повторная активация инвертора 4 для перехода из режима движения по инерции в двигательный режим, управление ослаблением поля необходимо осуществлять немедленно после повторной активации инвертора 4. То есть индуцированное напряжение синхронной машины 5 является функцией скорости ω вращения и оно растет пропорционально ω. Следовательно, во время работы с высокой скоростью создается индуцированное напряжение, превышающее напряжение питания. Таким образом, когда инвертор 4 должен повторно активироваться (особенно в случае работы в области высоких скоростей), необходимо запустить управление ослаблением поля, которое использует размагничивание, обусловленное реакцией статора по оси d таким образом, чтобы предотвратить обратный поток рекуперированной энергии от синхронной машины 5 в инвертор 4.
Напряжение |Vm| на зажимах, подаваемое на синхронную машину 5, выражается как |Vm|=√(vd2+vq2). В этом случае |Vm| соответствует пиковому значению линейного напряжения. Когда напряжение заряда конденсатора 3 на входной стороне инвертора 4 равно Vc, для предотвращения протекания тока от синхронной машины 5 в инвертор 4 в момент повторной активации инвертора 4 пиковое Vm значение линейного напряжения ограничивают таким образом, чтобы удовлетворялось выражение (3), приведенное ниже, где напряжение заряда конденсатора 3 составляет Vc.
[Выражение 3]
Соответственно, значение тока id по оси d для удовлетворения условия ограничения напряжения согласно выражению (3), описанному выше, вычисляют следующим образом. Во-первых, если упростить выражение (3), то можно получить выражение (4), представленное ниже.
[Выражение 4]
Здесь vd0 и vq0 - значения, которые не учитывают дифференциальные члены.
Далее, при выполнении управления ослаблением поля во время повторной активации инвертора 4 синхронная машина 5 работает в области высоких скоростей, и тогда можно считать, что величина ωL достаточно велика. Если пренебречь величиной потерь в сопротивлении статора, то выражение (1) можно упростить, получив выражение (5), представленное ниже
[Выражение 5]
Исходя из выражений (4) и (5), описанных выше, условие для тока id по оси d при управлении ослаблением поля может быть представлено выражением (6), приведенным ниже.
[Выражение 6]
Чтобы предотвратить возникновение крутящего момента, а значит, нежелательного ударного воздействия на транспортное средство или т.п. в момент повторной активации инвертора 4 (момент T = 0), необходимо, чтобы удовлетворялось выражение (2). В этом случае необходимо, чтобы iq = 0, и тогда в выражении (6) iq присваивают значение, равное 0. Полученное выражение (7) представлено ниже:
[выражение 7]
Если ток id по оси d для управления ослаблением поля определен таким образом, что удовлетворяется выражение (7), то можно обеспечить условие ограничения напряжения по пиковому значению Vm линейного напряжения, указанному в выражении (3), а также можно предотвратить возникновение крутящего момента (T=0) в момент повторной активации инвертора 4.
Как ясно следует из выражения (7), Ld представляет индуктивность по оси d, ϕf представляет максимальное значение потокосцепления якоря, обусловленного постоянным магнитом, причем обе эти величины являются константами, определяемыми в зависимости от характеристик синхронной машины. Таким образом, ток id по оси d в выражении (7) является функцией напряжения Vc заряда конденсатора 3 и скорости ω вращения синхронной машины 5. Соответственно, когда напряжение Vc заряда конденсатора 3 и скорость ω вращения синхронной машины 5 заданы выражением (7), можно получить ток id по оси d, который может управлять пиковым значением Vm линейного напряжения, установив его меньшим или равным напряжению Vc заряда конденсатора 3 (Vm≤Vc), что необходимо для предотвращения возникновения крутящего момента.
Между тем, в случае осуществления управления ослаблением поля синхронной машиной 5 в момент повторной активации инвертора 4 необходимо выполнение граничного условия, предотвращающего протекание тока от синхронной машины 5 в инвертор 4, заключающегося в том, что пиковое значение Vm линейного напряжения должно быть равно действующему значению напряжения заряда (Vc/√2) конденсатора 3. Таким образом, в выражении (7), если вместо действующего значения напряжения (Vc/√2) заряда конденсатора 3 использовать команду Vm* пикового значения линейного напряжения (здесь и далее добавление символа «*» указывает на то, что это команда), и если задана информация о скорости ω вращения, то можно вычислить команду id* тока по оси d, которая сможет предотвратить протекание тока от синхронной машины 5 в инвертор 4, и которая удовлетворяет условию, необходимому для предотвращения возникновения крутящего момента (T=0). Соответственно, когда команда Vc* напряжения заряда для конденсатора 3, установлена со значением, превышающем на постоянное приращение ΔVс* команду Vm* пикового значения линейного напряжения в критическом состоянии, удовлетворяющем выражению (7) (Vc*=Vm*+ΔV*), то постоянно удовлетворяется неравенство Vm*≤Vc*, и, следовательно, можно надежно предотвратить протекание тока от синхронной машины 5 в инвертор 4 во время повторной активации инвертора 4.
Таким образом, в рассматриваемом варианте 1 скорость ω вращения, команду Vm* пикового значения линейного напряжения, и команду Vc* напряжения заряда, получают следующим образом.
Сначала находят скорость ω вращения синхронной машины 5 с помощью средства 6 детектирования информации о вращении. Детектированную скорость ω вращения вводят в средство 71 вычисления команд напряжения, и средство 75 интегрирования в средстве 7 управления.
Как показано на фиг. 2, в таблице 711 вычисления приращения напряжения конденсатора, содержащейся в средстве 71 вычисления команд напряжения, представлена взаимосвязь между приращением ΔVc* напряжения (по вертикальной оси) и скоростью ω вращения (по горизонтальной оси). В этом случае, когда скорость ω вращения детектируется в диапазоне от нуля до ω1, приращение напряжения устанавливают равным нулю, а когда скорость ω вращения равна ω1, то приращение напряжения устанавливают равным ΔV1. Приращение ΔV1 устанавливают с учетом напряжения включения на основе сопротивления включения каждого из переключающих элементов, входящих в состав инвертора 4, таким образом, чтобы напряжение Vc заряда конденсатор 3 было всегда выше пикового значения Vm линейного напряжения синхронной машины 6 для предотвращения обратного поступления рекуперированной энергии.
То есть обычно каждый переключающий элемент, входящий в инвертор 4, выбирают и рассчитывают на основе напряжения Vdc источника питания постоянного тока, причем авторы настоящего изобретения обнаружили, что напряжение включения, основанное на сопротивлении включения каждого переключающего элемента инвертора 4, составляет от 1% до 5% от напряжения Vdc источника питания постоянного тока. Следовательно, величину ΔV1 устанавливают равной от 1% до 5% от напряжения Vdc источника питания постоянного тока. Кроме того, ΔV2 устанавливают таким образом, чтобы градиент между значениями ω1 и ω2 был таким же, как градиент между значениями ω1 и ω2 в таблице 712 вычисления команд, задающих пиковое значение линейного напряжения. Если скорость ω больше или равна ω2, то ΔV2 устанавливают равным постоянному значению, поскольку для скорости, превышающей ω2, настройка на основе рабочих характеристик синхронной машины 5 не понадобится.
Кроме того, в таблице 712 вычисления команд пикового значения линейного напряжения, представлена взаимосвязь между командой Vm* пикового значения линейного напряжения (по вертикальной оси) для синхронной машины 5 и скоростью ω вращения (по горизонтальной оси). В этом случае, когда скорость ω вращения детектируется в диапазоне от нуля до ω1, команду пикового значения линейного напряжения устанавливают равной Vm1. Здесь Vm1 имеет то же значение, что и напряжение Vdc источника питания постоянного тока. Кроме того, когда скорость ω вращения больше или равна ω2, команду пикового значения линейного напряжения устанавливают равной Vm2. Значение Vm2 устанавливают равным значению индуцированного напряжения в момент, когда синхронная машина 5 вращается с максимальной скоростью. Градиент между значениями ω1 и ω2 устанавливают таким образом, чтобы изменение от ΔVm1 до ΔVm2 подчинялось линейному закону. Следовательно, когда скорость вращения больше или равна ω1, индуцированное напряжение, генерируемое синхронной машиной 5, будет больше или равно напряжению Vdc источника питания постоянного тока. Если скорость вращения больше или равна ω2, то Vm2 устанавливают равным постоянному значению, поскольку нет необходимости в настройке на основе рабочих характеристик синхронной машины 5.
Сумматор 713 складывает приращение ΔVc* напряжения, извлекаемое из таблицы 711 вычисления приращения напряжения конденсатора, и пиковое значение Vm* линейного напряжения, извлекаемое из таблицы 712 вычисления команд для пикового значения линейного напряжения, которые основаны на скорости вращения ω синхронной машины 5, детектированной средством 6 детектирования информации о вращении, и выдает суммарное значение Vc1*. То есть Vc1*=Vm*+ΔVc*.
Далее ограничитель 714 выполняет функцию предотвращения неожиданного уменьшения или увеличения значения Vc1*, вычисленного сумматором 713. То есть ограничитель 714 обрабатывает сигнал Vc1* и выдает команду Vc* напряжения заряда.
[Уравнение 8]
Заметим, что значение Vmin устанавливают равным минимальному значению напряжения постоянного тока, которое позволяет приводить в действие инвертор 4, а значение Vmax устанавливают равным значению, установленному в целях защиты инвертора 4 от перенапряжения. Таким путем ограничитель 714 выдает на конденсатор 3 команду Vc* напряжения заряда.
Кроме того, скорость ω вращения синхронной машины 5, детектированная средством 6 детектирования информации о вращении, возводится в квадрат умножителем 715, и выводится ω2. Делитель 717 делит на ω2 команду Vm* пикового значения линейного напряжения, извлеченного из таблицы 712 вычисления команд, задающих пиковое значение линейного напряжения. В это время средство 716 предотвращения деления на нуль на этапе, предшествующем активации делителя 717, с целью предотвращения деления на нуль, выполняет следующую обработку. А именно, когда ω2 равно нулю, средство 716 предотвращения деления на нуль выдает вместо нуля небольшое значение, например, 0,0001. Соответственно, так можно предотвратить деление на нуль. Делитель 717 выдает значение (Vm*/ω2), которое на следующем этапе поступает в средство 73 вычисления команды тока по оси d. Значение (Vm*/ω2) используют для вычисления команды id* тока по оси d на основе выражения (9), приведенного ниже.
Средство 72 управления напряжением получает команду Vс* напряжения заряда от средства 71 вычисления команд напряжения, и также получает напряжение Vdc источника питания постоянного тока, детектированное средством 8 детектирования напряжения постоянного тока. Средство 72 управления напряжением сравнивает значения Vc* и Vdc и на основе результата сравнения выдает переключающие сигналы S1 и S2 соответственно на первое и второе переключающие средства 21 и 22 преобразователя 2, обеспечивая тем самым управление операцией переключения. Эта операция для данного случая будет подробно описана ниже со ссылками на временную диаграмму, показанную на фиг. 3.
Между тем, средство 73 вычисления команды тока по оси d получает от средства 71 вычисления команд напряжения значение (Vm*/ω2) и вычисляет команду id* тока по оси d, используя выражение (9), приведенное ниже.
[Выражение 9]
Здесь Ld представляет индуктивность по оси d, ϕa=√{(3/2) ϕf}, а ϕf представляет максимальное значение потокосцепления якоря, обусловленного постоянным магнитом.
Как было описано со ссылками на выражение (7), в выражении (9) вместо действующего значения (Vc/√2) напряжения заряда конденсатора 3 используется команда Vm* пикового значения линейного напряжения, и в результате вычисляется команда id* тока по оси d, которая предотвращает протекание тока от синхронной машины 5 в инвертор 4, и которая удовлетворяет условию, необходимому для предотвращения возникновения крутящего момента (T = 0).
Далее средство 74 вычисления команд напряжения по оси d и q вычисляет команду vd* напряжения по оси d, и команду vq* напряжения по оси q, на основе выражения (10), приведенного ниже, с использованием команды id* тока по оси d, которая вычислена средством 73 вычисления команды тока по оси d, и команды iq*=0 тока по оси q.
[Выражение 10]
В указанном выражении (10), поскольку команда iq* тока по оси q, установлена в нуль, как это ясно следует из выражения (2), описанного выше, можно предотвратить появление нежелательного крутящего момента во время повторной активации инвертора 4. Команда vd* напряжения по оси d, и команда vq* напряжения по оси q, которые вычисляются средством 74 вычисления команд напряжения по осям d и q, поступают на следующем этапе в средство 76 вычисления команд трехфазного напряжения.
Как хорошо известно специалистам в данной области техники, когда необходимо преобразовать трехфазные напряжения и трехфазные токи во вращающуюся систему координат с двумя ортогональными осями, потребуется фаза θ для координатных осей управления. Таким образом, средство 75 интегрирования вычисляет фазу θ координатных осей управления по координатам вращающихся двух осей на основе скорости ω вращения с использованием выражения (11), приведенного ниже.
[Выражение 11]
Далее средство 76 вычисления команд трехфазного напряжения вычисляет фазу θv команд, задающих трехфазное напряжение, на основе команды vd* напряжения по оси d, и команды vq* напряжения по оси q, которые выдаются средством 74 вычисления команд, задающих напряжение по осям d и q, и на основе фазы θ, выданной средством 75 интегрирования с использованием выражения (12), приведенного ниже.
[Выражение 12]
Кроме того, средство 76 вычисления команд трехфазного напряжения вычисляет коэффициент модуляции, используя приведенное ниже выражение (13).
[Выражение 13]
Далее средство 76 вычисления команд трехфазного напряжения вычисляет команды Vu*, Vv* и Vw*, используя описанные выше выражения (11), (12) и (13), а также выражение (14), приведенное ниже.
[Выражение 14]
Команды Vu*, Vv* и Vw* трехфазного напряжения, вычисленные средством 76 вычисления команд трехфазного напряжения, вводятся в средство 77 вычисления отпирающих импульсов. Средство 77 вычисления отпирающих импульсов создает отпирающие импульсы Gu-Gz на основе команд Vu*, Vv* и Vw* трехфазного напряжения, для управления переключающими элементами инвертора 4 на основе широтно-импульсной модуляции (PWM).
Далее, что касается общего процесса управления силовым преобразовательным устройством с вышеописанной конфигурацией, то случай переключения из двигательного режима в режим движения по инерции с последующим переключением из режима движения по инерции в двигательный режим будет описан со ссылками на временную диаграмму, показанную на фиг.3.
Во время работы в двигательном режиме, например в ходе ускорения транспортного средства, средство 7 управления устанавливает команду Vc* напряжения заряда для конденсатора 3, по существу равную напряжению Vdc источника питания постоянного тока. Таким образом, переключающий сигнал S1 с выхода средства 72 управления не поступает на преобразователь 2, и первое переключающее средство 21 переключается в состояние ВЫКЛ. С другой стороны, выводится переключающий сигнал S2, и второе переключающее средство 22 переключается в состояние ВКЛ. Соответственно, от источника 1 питания постоянного тока на инвертор 4 через преобразователь 2 подается мощность постоянного тока, и инвертор 4 преобразует мощность постоянного тока в мощность переменного тока с заранее определенной частотой для подачи мощности переменного тока на синхронную машину 5.
В это время, поскольку первое переключающее средство 21 не выполняет операцию переключения, напряжение Vc заряда
конденсатора фактически совпадает с напряжением Vdc источника питания постоянного тока. Кроме того, благодаря управлению ослаблением поля на основе вышеописанного выражения (10), выполняемого средством 7 управления, пиковое значение Vm линейного напряжения синхронной машины 5 оказывается меньше напряжения Vc заряда конденсатора 3.
Затем, когда в момент времени t1 происходит переход из двигательного режима в режим движения по инерции, команда приведения в действие отключается. В это время команда Vc* напряжения заряда для конденсатора 3, поступающая из схемы 7 управления, выше, чем напряжение Vdc источника питания постоянного тока. В этом случае напряжение Vc заряда конденсатора 3 необходимо увеличить. Тогда средство 72 управления напряжением прекращает выдачу переключающего сигнала S2 на преобразователь 2, и второе переключающее средство 22 выключается. С другой стороны, средство 72 управления напряжением выдает переключающий сигнал S1, и выполняется операция переключения первым переключающим средством 21. Благодаря операции переключения первого переключающего средства 21 конденсатор 3 заряжается, и в момент времени t2 напряжение конденсатора 3 возрастает до заранее определенного значения, соответствующего команде Vc* напряжения заряда. В течение периода Та между моментом tl и моментом t2 обеспечивается непрерывное управление ослаблением поля синхронной машины 5 со стороны средства 7 управления на основе выражения (10), и, следовательно, пиковое значение Vm линейного напряжения не изменяется и сохраняет то же самое значение, как и во время работы в двигательном режиме.
В момент времени t2 напряжение заряда конденсатора 3 повышается до значения, соответствующего команде Vc* напряжения заряда, и поэтому работа инвентора 4 прекращается. Соответственно, больше не поддерживается управление ослаблением поля синхронной машины 5, и пиковое значение Vm линейного напряжения оказывается равным индуцированному напряжению, определяемому в зависимости от скорости ω вращения синхронной машины 5. Кроме того, в течение периода Тv между моментами времени t2 и t3 средство 72 управления напряжением прекращает вывод переключающего сигнала S2 на преобразователь 2, но выводит переключающий сигнал S1. Соответственно, в преобразователе 2 первое переключающее средство 21 продолжает выполнять операцию переключения, в то время как второе переключающее средство 22 находится в выключенном состоянии. Таким образом, в течение периода Тb напряжение Vc заряда конденсатора 3 поддерживается на уровне, большем или равном индуцированному напряжению Vm, сгенерированному синхронной машиной 5. То есть напряжение Vc заряда конденсатора 3 установлено на уровне, превышающем индуцированное напряжение Vm, генерируемое синхронной машиной 5, на величину, соответствующую приращению ΔVc* напряжения, вычисленному средством 71 вычисления команд, задающих напряжение, которое детектируется в средстве 7 управления. Соответственно, появляется возможность предотвратить протекание тока от синхронной машины 5 в инвертор 4 во время движения по инерции, и в результате можно предотвратить появление нежелательного тормозного момента в режиме движения по инерции.
При переходе в момент времени t3 из режима движения по инерции в двигательный режим средство 7 управления вновь активирует инвертор