Способ питания резервных вспомогательных потребителей, вспомогательный преобразователь и железнодорожное транспортное средство для осуществления способа

Иллюстрации

Показать все

Способ питания резервных вспомогательных потребителей железнодорожного транспортного средства содержит следующие этапы: в каждом выключателе зарядного устройства устанавливают, по меньшей мере, один управляемый электронный элемент коммутации мощности, выполненный с возможностью коммутации тока, циркулирующего в плече, где он установлен; в нормальном режиме блок управления управляет коммутацией управляемых электронных элементов из пропускного состояния в непропускное состояние и наоборот в определенные моменты для выпрямления трехфазного напряжения, при этом частота коммутации транзисторов, по меньшей мере, в двадцать раз превышает основную частоту трехфазного напряжения; и в аварийном режиме блок управления управляет коммутацией электронных элементов для получения вспомогательного трехфазного напряжения, предназначенного для питания резервных вспомогательных потребителей. Технический результат состоит в упрощении и уменьшении массы и габаритов оборудования транспортного средства. 3 н. и 14 з.п. ф-лы, 15 ил.

Реферат

Изобретение относится к способу питания резервного вспомогательного оборудования, вспомогательному преобразователю и железнодорожному транспортному средству, в котором используется этот способ.

Известны способы питания резервного вспомогательного оборудования железнодорожного транспортного средства посредством аккумуляторного устройства накопления электрической энергии, установленного в транспортном средстве. Устройство накопления энергии выполнено с возможностью накопления количества энергии, достаточного для обеспечения работы резервного вспомогательного оборудования в аварийном режиме в течение более тридцати минут, как правило, от 30 минут до одного часа.

Известные способы содержат нормальный режим, в котором зарядное устройство питает низковольтные вспомогательные приборы и заряжает устройство накопления электрической энергии, причем это зарядное устройство выполнено с возможностью подачи постоянного напряжения, позволяющего заряжать устройство накопления электрической энергии, путем преобразования трехфазного напряжения.

Предложенное изобретение касается усовершенствования вспомогательного преобразователя:

- предназначенного для питания постоянным током от контактной сети постоянного напряжения или от однофазного моста принудительной коммутации (PMCF) в случае контактной сети переменного напряжения,

- имеющего общую схему DPI (Direct PWM Inverter - прямой преобразователь широтно-импульсной модуляции) с низкочастотным трансформатором на выходе (обычно 50 Гц или 60 Гц),

- содержащего зарядное устройство, питаемое низкочастотным трансформатором и, в случае необходимости, от стационарной сети 400 В переменного напряжения.

Трехфазное напряжение получают из постоянной электрической энергии, снимаемой на контактной линии через инвертор или промежуточную шину постоянного тока, питаемую при помощи однофазного выпрямительного моста принудительной коммутации (PMCF) в случае контактной линии переменного напряжения.

Зарядное устройство содержит:

- три входных контакта, каждый из которых соединен с одной из фаз трехфазного напряжения,

- по меньшей мере два выходных контакта, чаще всего три выходных контакта, два из которых соединены с устройством накопления электрической энергии, на которые подается выпрямленное постоянное напряжение.

Как правило, зарядные устройства имеют три выходных контакта: два с положительной полярностью и один с отрицательной полярностью, при этом первый контакт с положительной полярностью соединен напрямую с батареей. Второй контакт с положительной полярностью оборудован обратным диодом и подает питание на вспомогательные приборы, которые должны работать от постоянного напряжения, что позволяет создать на поезде вспомогательную сеть низкого напряжения, в случае необходимости, питаемую несколькими батареями и несколькими зарядными устройствами, причем с гарантией, что в случае короткого замыкания батареи или зарядного устройства подача питания на шину не прекратится.

Зарядное устройство также содержит:

- трехфазный выпрямитель, каждое из трех плеч которого соединено на входе с трехфазной сетью и в котором выход постоянного тока соединен с выходными контактами зарядного устройства, при этом выпрямитель является либо тиристорной мостовой схемой, либо смешанной диодно-тиристорной мостовой схемой,

- блок управления коммутацией тиристоров для выпрямления трехфазного напряжения.

Вспомогательным оборудованием железнодорожного транспортного средства являются все электрические потребители, находящиеся в железнодорожном транспортном средстве, за исключением тяговых двигателей. Это вспомогательное оборудование является потребителями двух типов:

- потребители переменного трехфазного напряжения, питаемые средним напряжением, и

- потребители, питаемые низким напряжением.

Потребители переменного трехфазного среднего напряжения из соображений избыточности питаются от нескольких вспомогательных преобразователей либо через разные сети (как правило, две), которые в случае неисправности вспомогательного преобразователя могут быть соединены между собой при помощи соединительного контактора, либо через единую сеть, при этом вспомогательные преобразователи синхронизированы между собой. Под средним напряжением следует понимать трехфазное напряжение, находящееся в пределах от 350 В до 500 В. Такими вспомогательными потребителями среднего напряжения являются, например, кондиционеры, радиаторы для обогрева внутреннего помещения вагонов, осветительное оборудование или увлажнители.

Потребители постоянного низкого напряжения питаются от сети низкого напряжения с буферной батареей, при этом стандартными значениями низкого напряжения батарей являются значения постоянного напряжения 24, 48, 72, 96 и 110 В. Такими вспомогательными потребителями низкого напряжения являются, например, бортовые приборы, электроника контроля, сеть оповещения пассажиров, осветительное оборудование все или его часть.

Вспомогательным преобразователем называют электрическое устройство, выполненное с возможностью подачи среднего трехфазного напряжения и низкого постоянного напряжения для питания вспомогательных потребителей от электрической энергии, снимаемой с контактной линии. Как правило, это устройство установлено внутри единого закрытого корпуса.

В дальнейшем под «низким напряжением» следует понимать постоянное напряжение ниже 150 В.

Термином «контактная линия» обозначают как воздушные провода, подвешенные над железнодорожными путями и обеспечивающие питание железнодорожного транспортного средства, так и третий рельс, который установлен на земле вдоль железнодорожного пути и по которому скользит башмак, обеспечивая питание железнодорожного транспортного средства электрической энергией.

Частоту коммутации управляемого электронного элемента коммутации мощности определяют как величину, обратно пропорциональную числу коммутаций этого элемента на единицу времени. Обычно эта частота коммутации равна частоте несущей широтно-импульсной модуляции, когда моменты коммутации определяют посредством такого способа. Выражение «широтно-импульсная модуляция» иногда известна под аббревиатурой ШИМ.

В известных способах управляемые выключатели содержат тиристоры, и между выходными контактами зарядного устройства установлен фильтр нижних частот для сглаживания выпрямленного постоянного напряжения. Обычно этот фильтр содержит последовательно соединенные конденсатор и катушку индуктивности, причем фильтр этого типа является необходимым, так как тиристоры действуют импульсами напряжения на выход выпрямителя.

В настоящее время этот индуктивно-емкостной фильтр является громоздким и тяжелым, и наличие гармоник выпрямления оказывает также влияние на трехфазный фильтр сети среднего напряжения.

Благодаря использованию известного регенеративного выпрямителя вместо тиристорного выпрямителя, можно исключить катушку индуктивности фильтра зарядного устройства, а также гармоники низкой частоты, связанные с выпрямлением.

Кроме того, некоторые вспомогательные потребители трехфазного переменного напряжения, в частности аварийная система вентиляции метропоездов, требуют установки соответствующих инверторов, соединяемых с батареей таким образом, чтобы обеспечить возможность питания в аварийном режиме, то есть в отсутствие напряжения от контактной линии, когда питание не подается на главный инвертор, который при нормальном режиме питается от контактной линии.

Это приводит к увеличению массы и габаритов оборудования и, следовательно, к дополнительным производственным затратам.

Задачей изобретения является уменьшение массы и габаритов оборудования, необходимого для работы на нормальном и аварийном режимах, при сохранении характеристик фильтрования гармоник, обеспечиваемых известным оборудованием.

Объектом настоящего изобретения является способ питания вспомогательных трехфазных потребителей, который содержит следующие этапы:

- в каждом плече выпрямителя устанавливают два управляемых электронных элемента коммутации мощности, выполненных с возможностью управляемого размыкания и замыкания и с возможностью коммутации в нормальном режима тока, циркулирующего в плече, где они установлены,

- в нормальном режиме блок управления управляет включением и выключением электронных элементов в определенные моменты для выпрямления трехфазного напряжения, при этом частота коммутации электронных элементов по меньшей мере в двадцать раз превышает основную частоту трехфазного напряжения, и

- в аварийном режиме, то есть в отсутствие напряжения в контактной линии, главный инвертор больше не управляется, и зарядное устройство используется как инвертор путем подачи команды от блока управления,

- блок управления управляет переключением электронных элементов из пропускного состояния в непропускное состояние и наоборот в определенные моменты для подачи трехфазного напряжения на вспомогательную сеть, обеспечивающую работу резервных вспомогательных потребителей, при этом указанное трехфазное напряжение получают за счет энергии, накопленной в устройстве накопления электрической энергии.

В вышеуказанном способе использование управляемых электронных элементов, в частности транзисторов, позволяет свободно определять не только момент включения, но и момент выключения. Таким образом, транзистор предоставляет больше возможностей управления, чем тиристор, в котором управляемым является только включение. В данном случае эту дополнительную возможность используют для отсечки выпрямляемого тока с частотой коммутации, намного превышающей частоту трехфазного напряжения. Отсечка с высокой частотой позволяет использовать паразитную индуктивность трансформатора для осуществления сглаживания тока и, следовательно, обходиться без выходной катушки индуктивности. Таким образом, выпрямитель превращается в источник тока. Создаваемые таким образом гармоники тока могут фильтроваться конденсатором, установленным на выходе зарядного устройства.

Кроме того, за счет того, что выпрямитель состоит из шести управляемых электронных элементов коммутации мощности, он является реверсивным, то есть может быть использован как инвертор в отсутствие напряжения контактной линии (аварийный режим). В этом случае он может питать определенные вспомогательные потребители переменного питания (аварийная вентиляция) без использования специального отдельного резервного инвертора.

Варианты осуществления этого способа могут содержать один или несколько следующих отличительных признаков:

- частота коммутации электронных элементов превышает также в двадцать раз основную частоту производимого трехфазного напряжения;

- в нормальном режиме трехфазный трансформатор выдает трехфазное среднее напряжение от 350 до 550 В на вспомогательную шину за счет энергии, снимаемой на контактной линии, для питания вспомогательных потребителей, которые соединены с этой вспомогательной шиной;

- контактная линия является линией постоянного напряжения, и в нормальном режиме инвертор производит трехфазное напряжение на входе трехфазного трансформатора за счет энергии, снимаемой с контактной линии;

- контактная линия является линией переменного напряжения, и в нормальном режиме однофазный выпрямительный мост производит выпрямленное постоянное напряжение на входе инвертора, соединенного на входе с трехфазным трансформатором;

- в нормальном режиме блок управления может синхронно управлять управляемыми выключателями трех плеч и инвертора;

- управляемые электронные элементы коммутации мощности являются транзисторами, предпочтительно типа IGBT или GTO;

- в нормальном режиме:

- блок управления устанавливает величину, характеризующую активную мощность на основании измерений трехфазного тока и трехфазного напряжения,

- блок управления считывает заданное значение активной мощности, которое определяет значение активной мощности, передаваемой зарядным устройством между входными и выходными контактами, а также направление передачи активной мощности между его контактами;

- блок управления определяет моменты коммутации управляемых электронных элементов коммутации мощности в зависимости от разности между заданным значением активной мощности и установленной величиной, характеризующей активную мощность;

- блок управления устанавливает величину, характеризующую реактивную мощность на основании измерений трехфазного тока и трехфазного напряжения;

- блок управления запрограммирован с заданным значением реактивной мощности, которое определяет значение реактивной мощности, передаваемой зарядным устройством между входными и выходными контактами, а также направление передачи реактивной мощности между его контактами;

- блок управления определяет моменты коммутации транзисторов в зависимости от разности между заданным значением реактивной мощности и установленной величиной, характеризующей реактивную мощность;

- в нормальном режиме заданное значение реактивной мощности является нулевым;

- в аварийном режиме блок управления регулирует напряжение и частоту сети по заранее определенным значениям, введенным в запоминающее устройство;

- перед переходом из нормального режима в аварийный режим блок управления определяет моменты коммутации транзисторов таким образом, чтобы аннулировать разность между фазой трехфазного напряжения, измеренного на вспомогательной шине, и фазой трехфазного напряжения между входными контактами зарядного устройства, причем эта последняя фаза зависит только от моментов коммутации транзисторов.

Эти варианты осуществления способа питания имеют также следующие преимущества:

- управление коммутацией транзисторов для получения трехфазного напряжения позволяет использовать одни и те же транзисторы для подзарядки устройства накопления энергии и для питания вспомогательных резервных потребителей, что снижает затраты и уменьшает габариты оборудования, необходимого для питания резервных вспомогательных потребителей,

- использование трехфазного трансформатора для получения среднего напряжения, которое питает вспомогательную шину, позволяет использовать одни и те же вспомогательные шины для питания резервных вспомогательных потребителей как в нормальном режиме, так и в аварийном режиме,

- определение моментов коммутации транзисторов в зависимости от разности между заданным значением реактивной мощности и измеряемой величиной, характеризующей реактивную мощность, позволяет регулировать реактивную мощность, которая проходит через входные контакты в направлении выходных контактов зарядного устройства,

- установление нулевой реактивной мощности в нормальном режиме позволяет ограничить потери энергии,

- определение моментов коммутации транзисторов в зависимости от разности между фазой трехфазного напряжения на вспомогательной шине и фазой напряжения между входными контактами зарядного устройства позволяет обеспечивать непрерывность фазы трехфазного напряжения на вспомогательной шине, когда происходит переход от нормального режима к аварийному режиму,

- поскольку аварийный режим отличается генерированием напряжения на входе главного инвертора путем пассивного выпрямления трехфазного напряжения на первичной обмотке трансформатора, это явление можно использовать с целью:

- предварительной зарядки конденсатора входного фильтра главного инвертора от батареи, используя зарядное устройство батареи в режиме инвертора (исключение контактора и резистора предварительной зарядки),

- воспроизведение напряжения контактной линии, что можно использовать как источник энергии для обеспечения движения поезда в отсутствие контактной линии.

Объектом настоящего изобретения является также вспомогательный преобразователь, содержащий:

- трехфазный инвертор, выполненный с возможностью генерирования трехфазного напряжения за счет электрической энергии, снимаемой на контактной линии,

- трехфазный трансформатор с тремя наборами обмоток - первичным, вторичным и третичным - соединенный с трехфазным выходом инвертора через первичный набор обмоток трансформатора, при этом узел инвертор/трансформатор выполнен с возможностью преобразования в нормальном режиме напряжения контактной линии в трехфазное среднее напряжение, находящееся в пределах от 350 В до 500 В, получаемое на вторичном наборе обмоток трансформатора и подаваемое на вспомогательную сеть питания вспомогательных потребителей,

- зарядное устройство, соединенное с третичным набором обмоток трансформатора и выполненное с возможностью генерирования в нормальном режиме выпрямленного постоянного напряжения из трехфазного напряжения, выдаваемого трехфазным инвертором, при этом зарядное устройство содержит:

- три входных контакта, каждый из которых соединен с обмоткой третичного элемента трансформатора,

- два выходных контакта, соединенные с устройством накопления электрической энергии, на которые подается выпрямленное постоянное напряжение,

- три плеча, параллельно соединенные между двумя выходными контактами, при этом каждое плечо содержит два управляемых выключателя, последовательно соединенные при помощи центральной точки, при этом каждая центральная точка соединена с соответствующим входным контактом,

- блок управления коммутацией выключателей для выпрямления трехфазного напряжения,

- каждый из выключателей содержит, по меньшей мере, один управляемый электронный элемент коммутации мощности, выполненный с возможностью управляемого размыкания в непропускном состоянии и замыкания в пропускном состоянии и с возможностью коммутации тока, циркулирующего в плече, в котором он находится, и

- блок управления выполнен с возможностью управления коммутацией электронных элементов зарядного устройства из пропускного состояния в непропускное состояние и из непропускного состояния в пропускное состояние в определенные моменты для выпрямления трехфазного напряжения, при этом частота коммутации электронных элементов, по меньшей мере, в двадцать раз превышает основную частоту трехфазного напряжения.

Варианты выполнения этого преобразователя могут содержать один или несколько следующих отличительных признаков:

- блок управления выполнен с возможностью управления в аварийном режиме коммутацией электронных элементов из пропускного состояния в непропускное состояние и наоборот в определенные моменты для получения трехфазного напряжения между входными контактами из постоянного напряжения, присутствующего между его выходными контактами, при этом частота коммутации транзисторов, по меньшей мере, в двадцать раз превышает частоту получаемого трехфазного напряжения;

- зарядное устройство электрически изолировано от трехфазного инвертора при помощи трехфазного трансформатора.

Объектом настоящего изобретения является также железнодорожное транспортное средство, содержащее:

- вспомогательную трехфазную сеть,

- по меньшей мере один резервный вспомогательный потребитель, питание которого сохраняется в течение более тридцати минут в аварийном режиме, при этом указанный потребитель соединен с вспомогательной сетью,

- аккумуляторное устройство накопления электрической энергии, соединяемое с каждым резервным вспомогательным потребителем, при этом указанное устройство выполнено с возможностью накапливания достаточного количества энергии для обеспечения работы в аварийном режиме всех резервных вспомогательных потребителей в течение более тридцати минут за счет этого единственного источника энергии,

- по меньшей мере, один описанный выше вспомогательный преобразователь.

Настоящее изобретение будет более понятно из нижеследующего описания, представленного в качестве неограничивающего примера, со ссылками на чертежи.

На фиг.1 показана схема железнодорожного транспортного средства, оборудованного зарядным устройством;

на фиг.2 - схема блока управления зарядного устройства, показанного на фиг.1;

на фиг.3 - блок-схема способа питания резервных вспомогательных потребителей в транспортном средстве, изображенном на фиг.1;

на фиг.4 показан векторный график в соответствии со способом, изображенным на фиг.3;

на фиг.5 - схема модели зарядного устройства железнодорожного транспортного средства, показанного на фиг.1, используемой для моделирования способа, показанного на фиг.3;

на фиг.6, 10 и 14 изображены временные диаграммы, показывающие форму волны фазы трехфазного тока, выдаваемой зарядным устройством;

на фиг.7 и 11 - графики, показывающие спектр тока, изображенного на фиг.6 и 10 соответственно;

на фиг.8, 12 и 15 - временные диаграммы, показывающие изменение постоянного напряжения, выпрямленного зарядным устройством, при разных частотах коммутации;

на фиг.9 и 13 - графики, показывающие спектр напряжений, изображенных на фиг.8 и 12 соответственно.

На фигурах одинаковые элементы обозначены одинаковыми позициями.

В дальнейшем подробное описание характеристик и функций, хорошо известных специалистам, опущено.

На фиг.1 показано железнодорожное транспортное средство 2, питаемое электричеством через пантограф 4, скользящий по контактной линии 6 питания. Контактная линия 6 питается высоким напряжением, то есть, как правило, постоянным напряжением с номинальным значением, превышающим или равным 600 В. Например, в данном случае напряжение питания контактной линии 6 равно 1500 В.

Транспортное средство 2 является, например, метропоездом, оборудованным аварийной вентиляцией, железнодорожным поездом или трамваем.

Транспортное средство 2 содержит вспомогательный преобразователь 10, выполненный с возможностью питания вспомогательной сети 12 трехфазным средним напряжением. Трехфазное напряжение на шине 12 равно 400 В.

Вспомогательная сеть 12 содержит три фазовых провода 14-16 и нулевой провод 18.

Как правило, вспомогательная сеть проходит через несколько вагонов транспортного средства 2.

В данном варианте транспортное средство 2 содержит по меньшей мере два вспомогательных преобразователя и, как правило, по меньшей мере две шины постоянного напряжения на 400 В.

Все вспомогательные потребители, находящиеся в этом транспортном средстве 2, соединены с шиной 12. Потребители низкого постоянного напряжения на этой схеме не показаны.

Вспомогательные потребители распределены на две группы: группу простых вспомогательных потребителей и группу резервных вспомогательных потребителей. Простыми вспомогательными потребителями являются потребители, которые должны питаться в нормальном режиме и не должны питаться в аварийном режиме. В данном случает нормальный режим определяется как режим работы, при котором простые вспомогательные потребители питаются за счет энергии, снимаемой пантографом 4. Резервные вспомогательные потребители в нормальном режиме тоже питаются через шину 12 за счет энергии, снимаемой пантографом 4.

Аварийный режим определяют как режим работы, в котором питание подается только на резервные вспомогательные потребители. В аварийном режиме эти потребители питаются только от устройства накопления электрической энергии, установленного на транспортном средстве 2.

Обычно аварийный режим соответствует режиму работы транспортного средства 2, наступающему в результате прекращения питания транспортного средства 2 от контактной сети 6. Такое прекращение питания может иметь случайный характер или может быть вынужденным.

Для упрощения на фиг.1 показаны только один простой вспомогательный потребитель 20 и один резервный вспомогательный потребитель 22.

Потребителем 20 является, например, система кондиционирования вагона. Потребитель 20 соединен с вспомогательной сетью 12 через управляемый контактор 24. Контактор 24 выполнен с возможностью электрического изолирования потребителя 20 от шины 12 в аварийном режиме.

Потребитель 22 соединяют, минуя контакторы, с сетью 12 таким образом, чтобы он мог питаться как в нормальном режиме, так и аварийном режиме. Потребителем 22 является, например, вентилятор, предназначенный для обеспечения циркуляции воздуха в одном из вагонов транспортного средства 2, питаемом средним напряжением.

В данном случае преобразователь 10 выполнен также с возможностью питания низким напряжением шины постоянного тока, образованной двумя проводами 28 и 30, электрически изолированными друг от друга. В данном случае низкое напряжение, как правило, равно 110 В.

Аккумуляторное устройство 32 накопления электрической энергии электрически подсоединено между проводами 28 и 30. Аккумуляторное устройство 32 накопления энергии содержит два выходных контакта.

Устройство 32 выполнено с возможностью накопления достаточной энергии для обеспечения независимого питания аварийных вспомогательных потребителей в течение более тридцати минут. Например, в данном случае устройство 32 является батареей.

Преобразователь 10 соединен при помощи проводов 36 и 38, электрически изолированных друг от друга.

Преобразователь 10 содержит установленные в одном и том же металлическом корпусе и соединенные последовательно один за другим в следующем порядке следующие элементы:

- цепь 40 изоляции и предварительной зарядки,

- фильтр 42,

- инвертор 44,

- выходной синусоидальный фильтр, образованный комплектом из трех трехфазных катушек индуктивности L1, L2, L3 и комплектом конденсаторов C1, C2, C3,

- трансформатор 48.

Цепь 40 содержит выключатель или контактор 50, последовательно соединенный с проводом 36 таким образом, чтобы обеспечивать изолирование преобразователя, когда выключатель 50 разомкнут, и соединение преобразователя с его источником питания, когда выключатель 50 замкнут.

В варианте выполнения контактной сети переменного напряжения преобразователь соединяют проводами 36 и 38 с однофазным мостом принудительной коммутации (PMCF), питаемым от контактной сети через трансформатор.

Цепь 40 содержит также соединенные параллельно с выключателем 50 управляемый выключатель или контактор 52, последовательно соединенный с резистором 54 предварительной зарядки. Цепи предварительной зарядки хорошо известны, поэтому подробное описание цепи 40 опущено.

Фильтр 42 является индуктивно-емкостным фильтром, содержащим катушку индуктивности L, последовательно соединенную с проводом 36, и конденсатор Cf, подсоединенный между проводом 36 и проводом 38.

Инвертор 44 выполнен с возможностью преобразования постоянного напряжения, фильтруемого фильтром 42, в трехфазное напряжение с частотой fT. Как правило, частота fT находится в пределах от 45 Гц до 65 Гц. В данном случае частота fT равна 50 Гц. Каждая из фаз получаемого трехфазного напряжения выдается через соответствующий контакт 58-60.

Выходной синусоидальный фильтр позволяет фильтровать трехфазное напряжение, выдаваемое инвертором 44 на контакты 58-60. Например, выходной синусоидальный фильтр содержит три катушки индуктивности L1, L2 и L3, соединенные одними концами, соответственно, с контактами 58-60, а другими концами с соответствующими выходными контактами 62-64 фильтра 46. Обычно катушки индуктивности L1, L2, L3 интегрированы в виде катушек паразитной индуктивности трансформатора.

Контакты 62, 63 и 64 соединены с соответствующими концами трех первичных обмоток 70-72 трансформатора 48. Первичные обмотки 70-72 соединены треугольником и образуют комплект первичных обмоток.

Эти первичные обмотки 70-72 соединены путем электромагнитной связи с тремя вторичными обмотками 74-76, образующими комплект вторичных обмоток, соединенных звездой. Концы обмоток 74-76, не соединенные с центральным мостом звезды, соединены, соответственно, с контактами 78 и 80 выхода трехфазного среднего напряжения. Центральный мост соединения звездой вторичных обмоток соединен с выходным контактом 82.

Конденсаторы C1, C2 и C3 соединены, соответственно, между контактами 78 и 79, 79 и 80 и 78 и 80.

Соотношение числа витков между первичными и вторичными обмотками выбирают таким образом, чтобы выдавать трехфазное среднее напряжение на контактах 78-80. Контакты 78-80 и контакт 82 соединены, соответственно, с проводами 14-16 и 18. Таким образом, трансформатор 48 позволяет подавать питание среднего напряжения на вспомогательную сеть 12.

Трансформатор 48 содержит также три третичных обмотки 84-86, соединенные электромагнитной связью с первичными обмотками 70-72 и с вторичными обмотками 74-76 и образующие комплект третичных обмоток. Конец третичных обмоток соединен с центральным мостом таким образом, чтобы образовать соединение звездой. Другой конец этих третичных обмоток соединен с выходными контактами, соответственно, 88-90.

Преобразователь 2 содержит также зарядное устройство 100. Это зарядное устройство 100 содержит три входных контакта 102-104, соединенные соответственно с контактами 88-90.

Зарядное устройство 100 содержит также два контакта 106 и 108, соединенные, соответственно, с контактами аккумуляторного устройства 32, электрически соединенными с проводами 28 и 30.

В данном варианте выполнения к выходу зарядного устройства могут быть также параллельно подсоединены не показанные вспомогательные потребители.

Зарядный ток батареи 32 измеряют при помощи датчика тока.

В данном случае зарядное устройство 100 является реверсивным, то есть оно может передавать электрическую энергию от входных контактов 102-104 к выходным контактам 106 и 108 для подзарядки устройства 32, а также в обратном направлении для питания резервных вспомогательных потребителей от устройства 32.

Для этого зарядное устройство 100 содержит реверсивный выпрямитель 110, содержащий три плеча 112-114, параллельно соединенные между контактами 106 и 108. Каждое плечо содержит два управляемых выключателя IH и IB, последовательно соединенных при помощи центрального моста. Центральные точки ветвей 112-114 обозначены, соответственно, позициями 116-118. Центральные точки 116-118 соединены, соответственно, с контактами 102-104.

Выключатели IH и IB являются двунаправленными выключателями по току, когда они замкнуты, и однонаправленными по току, когда они разомкнуты.

Каждый выключатель IB содержит:

- силовой транзистор 120, коллектор которого электрически соединен с контактом 106, а эмиттер - с центральной точкой, и

- диод 122, параллельно соединенный между коллектором и эмиттером, при этом его катод соединен с контактом 106, а анод - с той же центральной точкой.

Каждый транзистор IH содержит:

- силовой транзистор 124, коллектор которого соединен с центральной точкой и эмиттер которого соединен с контактом 108, и

- диод 126, соединенный параллельно между коллектором и эмиттером транзистора 124, при этом катод диода 126 соединен с той же центральной точкой, а анод - с контактом 108.

Для упрощения на фиг.1 позиции 120, 122, 124 и 126 указаны только один раз для выключателей IH и IB плеча 112.

Силовыми называют транзисторы, которые могут коммутировать токи более 50 А. Например, транзисторы 120 и 124 являются транзисторами IGBT (биполярный транзистор с изолированным затвором).

Каждый из этих транзисторов 120 и 124 выполнен с возможностью коммутации из непропускного состояния в пропускное состояние и наоборот в ответ на команду, поступающую на его затвор.

Для этого затворы каждого из этих транзисторов соединены с блоком 130 управления выпрямителем 110 через электрические соединения, схематично показанные двойной стрелкой 132.

Блок 130 управления или центральный блок выполнен с возможностью управления выпрямителем 110, а также синхронно инвертором 44. Блок 130 управления обеспечивает работу выпрямителя в качестве собственно выпрямителя в нормальном режиме и альтернативно в качестве инвертора в аварийном режиме. Для этого центральный блок 130 соединен с датчиками 134-136 тока, выполненными с возможностью измерения силы токов IR, IS, IT, проходящих, соответственно, через контакты 104-102. Блок 130 соединен также с двумя датчиками 138, 140 напряжений VRT и VRS соответственно. Напряжения VRT и VRS являются напряжениями, соответственно, между контактами 104 и 102, 104 и 103.

Блок 130 более подробно описан со ссылками на фиг.2.

Блок 130 соединен с запоминающим устройством 142, содержащим в нормальном режиме заданные значения Idcsg активной мощности и Iqcsg реактивной мощности. В нормальном режиме заданное значение Idcsg является отрицательным. Например, это же относится к заданному значению Iqcsg.

В аварийном режиме не происходит регулирования активной и реактивной мощности. В аварийном режиме блок 130 регулирует напряжение и частоту шины 12 по заранее определенным значениям, введенным в запоминающее устройство 142 (например: 250 В и 35 Гц). Более подробно роль этих заданных значений будет показана ниже.

Зарядное устройство 100 содержит также конденсатор 150, подсоединенный между контактами 106 и 108. Емкость этого конденсатора 512 ниже 50 мФ. В частности, емкость конденсатора 150 выбирают таким образом, чтобы колебание напряжения на его контактах было порядка 1%.

Как показано на фиг.2, блок 130 содержит демодулятор 160, выполненный с возможностью устанавливать силу активного тока Id и силу реактивного тока Iq на основании измерений токов IR, IS и IT, производимых датчиками 134-136, и измерений напряжений VRS и VRT, производимых датчиками 138 и 140 в случае работы в нормальном режиме.

Активная мощность РА определяется следующим отношением:

где:

I - эффективное значение трехфазного тока,

U - эффективное значение трехфазного напряжения,

φ - значение угла сдвига фаз между током и напряжением.

Аналогично определяют реактивную мощность при помощи следующего отношения:

Активный Id и реактивный Iq токи равны соответственно Icosφ Isinφ.

В транспортном средстве 2 эффективное значение U по существу является константой, поэтому значения силы токов Id и Iq можно считать самостоятельно характеризующими активную и реактивную мощности.

Демодулятор 160 направляет токи Id и Iq на отрицательные входы вычитателей 162 и 164 соответственно. Положительный вход вычитателя 162 выполнен с возможностью приема заданного значения Idcsg. Выход вычитателя 162 соединен с регулятором 166 для передачи на него разности между заданным значением Idcsg и измеренной силой тока Id. Регулятор 166 выполнен с возможностью вычисления на основании этой разности абсциссы Vd вектора Uαβcsg генерируемого напряжения.

Положительный вход вычитателя 164 выполнен с возможностью приема заданного значения Iqcsg, хранящегося в запоминающем устройстве 142. Выход вычитателя 164 направляет в регулятор 168 разность между заданным значением Iqcsg и измеренной силой тока Iq. На основании этой разности регулятор 168 может вычислить ординату Vq вектора Uαβcsg генерируемого напряжения.

Демодулятор 160 выполнен также с возможностью выдачи угла ρ, соответствующего углу между вектором Uαβm и осью α в системе координат αβ.

Блок 130 содержит конверсионное устройство 170, выполненное с возможностью вычисления модуля M и угла α вектора Uαβcsg на основании абсцисс и ординат Vd и Vq.

Вычитатель 172 позволяет вычислить разность ε между углом ρ и углом γ, выдаваемым модулятором 174 ширины импульсов.

Вычитатель 172 выполнен с возможностью направления в контур 176 синхронизации фаз (более известный под аббревиатурой PLL (ФАПЧ - система фазовой автоматической подстройки частоты)) разности ε, к которой добавляется значение угла α. На основании суммы угла α и разности ε контур 176 может генерировать заданное значение fs частоты.

На основании модуля M и частоты fs модулятор 174 может определять моменты, в которые необходимо коммутировать разл