Устройства мэмс, имеющие поддерживающие структуры, и способы их изготовления
Иллюстрации
Показать всеУстройства МЭМС изготавливают следующим образом. Берут подложку. Наносят на нее электродный слой. Наносят поверх электродного слоя временный слой. Формируют во временном слое рельеф с образованием отверстий. Наносят поверх временного слоя подвижный слой. Формируют поддерживающие структуры, расположенные над подвижным слоем и по меньшей мере частично в отверстиях в временном слое. Между по меньшей мере двумя поддерживающими структурами проходит участок подвижного слоя. Травят временный слой для его удаления, благодаря чему между подвижным слоем и электродным слоем образуется полость. Участок подвижного слоя выполнен с возможностью деформации и прижима к нижележащим слоям в ответ на образование электростатического потенциала между подвижным слоем и электродным слоем. 8 н. и 120 з.п. ф-лы, 101 ил.
Реферат
ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ
[0001] Согласно 35 своду законов США § 119(е) данной заявкой заявлен приоритет, устанавливаемый по предварительным заявкам на патенты США №№60/701655 от 22 июля 2005 г. и 60/710019 от 19 августа 2005 г., ссылка на которые означает включение их в настоящую заявку.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0002] Микроэлектромеханические системы (МЭМС) содержат микромеханические элементы, исполнительные механизмы-микроактюаторы и электронные схемы. Микромеханические элементы могут быть получены с использованием осаждения, травления и/или других процессов с микрообработкой, посредством которых части подложек и/или слои осажденного материала удаляют травлением или добавляют слои для формирования электрических или электромеханических устройств. Один тип устройства МЭМС представлен интерферометрическим модулятором. В настоящем описании терминами «интерферометрический модулятор» или «интерферометрический светомодулятор» обозначено устройство, которое выборочно поглощает и/или отражает свет, используя принципы оптической интерференции. В некоторых вариантах реализации изобретения интерферометрический модулятор может содержать две проводящие пластины, по меньшей мере одна из которых может быть прозрачной и/или отражающей полностью или частично и может совершать относительное перемещение при подаче соответствующего электрического сигнала. В одном конкретном варианте реализации изобретения одна пластина может содержать зафиксированный слой, который осажден на подложку, а другая пластина может содержать металлическую мембрану, которая отделена от зафиксированного слоя воздушным зазором. Как более подробно описано далее, положение одной пластины относительно другой может влиять на оптическую интерференцию света, падающего на интерферометрический модулятор. Такие устройства имеют широкое применение, и использование и/или изменение характеристик устройств таких типов может быть полезным как в известных решениях, так и для усовершенствования существующих изделий и для создания новых изделий, еще не разработанных.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0003] В одном варианте осуществления изобретения предложен способ изготовления устройства МЭМС, согласно которому берут подложку; наносят поверх нее электродный слой; наносят поверх электродного слоя временный слой; формируют рельеф временного слоя для образования отверстий; наносят поверх временного слоя подвижный слой; формируют поддерживающие структуры, расположенные над подвижным слоем и по меньшей мере частично в отверстиях временного слоя и удаляют временный слой травлением с образованием полости между подвижным слоем и электродным слоем.
[0004] В другом варианте реализации изобретения предложено устройство МЭМС, содержащее подложку; электродный слой, расположенный поверх подложки; подвижный слой, расположенный поверх электродного слоя, в целом отделенный от электродного слоя воздушным зазором и содержащий углубления в поддерживающих областях; и жесткие поддерживающие структуры, сформированные поверх подвижного слоя и по меньшей мере частично в указанных углублениях в подвижном слое.
[0005] В другом варианте реализации изобретения предложено устройство МЭМС, содержащее первые средства, проводящие электричество; вторые средства, проводящие электричество; и средства поддержки указанных вторых проводящих средств над указанными первыми проводящими средствами, причем указанные поддерживающие средства расположены выше участков вторых средств, проводящих электричество и выполненных с возможностью перемещения относительно указанных первых проводящих средств в ответ на образование электростатического потенциала между указанными первыми и вторыми проводящими средствами.
[0006] В другом варианте реализации изобретения предложен способ изготовления устройства МЭМС, согласно которому берут подложку; наносят поверх нее электродный слой; наносят поверх электродного слоя временный слой; формируют рельеф временного слоя с образованием отверстий; поверх временного слоя формируют поддерживающие структуры, которые оказываются сформированными по меньшей мере частично в отверстиях материала временного слоя и содержат по существу горизонтально выступающий участок, проходящий поверх по существу плоского участка материала временного слоя; и поверх временного слоя и поддерживающих структур наносят подвижный слой.
[0007] В другом варианте реализации изобретения предложено устройство МЭМС, содержащее подложку; электродный слой, расположенный поверх подложки; подвижный слой, расположенный поверх электродного слоя, в целом отделенный от электродного слоя воздушным зазором; и поддерживающие структуры, расположенные ниже по меньшей мере участка подвижного слоя и содержащие по существу горизонтально выступающий участок, отделенный от электродного слоя указанным зазором.
[0008] В другом варианте реализации изобретения предложено устройство МЭМС, содержащее первые средства, проводящие электричество; вторые средства, проводящие электричество; и средства поддержки вторых проводящих средств над первыми проводящими средствами, причем вторые проводящие средства расположены выше поддерживающих средств и выполнены с возможностью перемещения относительно первых проводящих средств в ответ на образование электростатического потенциала между первыми и вторыми проводящими средствами, а указанные поддерживающие средства содержат по существу горизонтально выступающий участок, отделенный от первых проводящих средств.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0009] На фиг.1 показано трехмерное изображение участка варианта реализации интерферометрического модуляционного дисплея, в котором подвижный отражающий слой первого интерферометрического модулятора находится в релаксационном положении, а подвижный отражающий слой второго интерферометрического модулятора находится в активированном положении.
[0010] На фиг.2 показана принципиальная схема одного варианта предлагаемого электронного устройства, содержащего интерферометрический модуляционный дисплей с размерами 3×3.
[ООН] На фиг.3 показан график зависимости положения подвижного зеркала от поданного напряжения для примера реализации интерферометрического модулятора, изображенного на фиг.1.
[0012] Фиг.4 иллюстрирует значения напряжения группы строк и столбцов, которые могут быть использованы для приведения в действие интерферометрического модуляционного дисплея.
[0013] Фиг.5А иллюстрирует пример кадра данных, отображаемых на интерферометрическом модуляционном дисплее с размерами 3×3, изображенном на фиг.2.
[0014] Фиг.5В иллюстрирует пример временной диаграммы сигналов строк и столбцов, которые могут быть использованы для записи кадра, показанного на фиг.5А.
[0015] На фиг.6А и 6В показаны принципиальные схемы варианта предлагаемого устройства визуального представления данных, содержащего несколько интерферометрических модуляторов.
[0016] На фиг.7А показано сечение устройства, проиллюстрированного на фиг.1.
[0017] На фиг.7В показано сечение еще одного варианта предлагаемого интерферометрического модулятора.
[0018] На фиг.7С показано сечение еще одного варианта предлагаемого интерферометрического модулятора.
[0019] На фиг.7D показано сечение еще одного варианта предлагаемого интерферометрического модулятора.
[0020] На фиг.7Е показано сечение еще одного варианта предлагаемого интерферометрического модулятора.
[0021] На фиг.8 показана сверху матриц элементов интерферометрического модулятора, в которой отдельные элементы содержат поддерживающие структуры.
[0022] На фиг.9A - 9J схематично показаны сечения, поясняющие способ изготовления элемента интерферометрического модулятора, содержащего поддерживающие структуры, расположенные над подвижным слоем.
[0023] На фиг.10 схематично показано сечение элемента интерферометрического модулятора, изготовленного способом, поясняемым на фиг.9А - 9J, при котором поддерживающие структуры изготавливаются более толстыми.
[0024] На фиг.11А - 11G схематично показаны сечения, поясняющие некоторые операции процесса изготовления интерферометрического модулятора, имеющего неорганические опорные поддерживающие структуры.
[0025] На фиг.12А - 12D схематично показаны сечения, поясняющие способ изготовления элемента интерферометрического модулятора, содержащего поддерживающие структуры, расположенные как выше, так и ниже подвижного слоя.
[0026] На фиг.13А - 13Е схематично показаны сечения, поясняющие способ изготовления интерферометрического модулятора, при котором для создания по существу плоской поверхности, на которой изготавливают подвижный слой, используют участок фоторезистивной маски.
[0027] На фиг.14А - 14С схематично показаны сечения, поясняющие операции, которые могут быть выполнены для выборочного удаления участков отражающего слоя до формирования подвижных и поддерживающих структур.
[0028] На фиг.15А - 15С схематично показаны сечения, поясняющие другие операции, которые могут быть выполнены для выборочного удаления участков отражающего слоя до формирования подвижных и поддерживающих структур.
[0029] На фиг.16А - 16В схематично показаны сечения, поясняющие некоторые операции процесса изготовления интерферометрического модулятора, содержащего слой, барьерный к травлению, который защищает материал временного слоя от травления, в процессе которого образуются неорганические опоры.
[0030] На фиг.17А - 17В схематично показаны сечения, поясняющие некоторые операции процесса изготовления интерферометрического модулятора, содержащего слой, препятствующий травлению, который изолирует неорганические опоры от временного материала.
[0031] На фиг.18 схематично показано сечение частично изготовленного интерферометрического модулятора, в котором частично удален слой, препятствующий травлению, который изолирует неорганические опоры от временного материала.
[0032] На фиг.19 схематично показано сечение частично изготовленного интерферометрического модулятора, в котором опорную структуру используют в качестве твердой маски для удаления участка слоя, барьерного к травлению.
[0033] На фиг.20 схематично показано сечение, поясняющее операцию изготовления интерферометрического модулятора, на которой поддерживающую структуру прикрепляют к подвижному слою с помощью адгезионного слоя.
[0034] На фиг.21 схематично показано сечение, поясняющее операцию изготовления интерферометрического модулятора, при которой защитный слой изолирует заклепочную структуру.
[0035] На фиг.22 схематично показано сечение, поясняющее операцию изготовления интерферометрического модулятора, при которой заклепочную структуру непосредственно прикрепляют к нижележащей оптической стопе.
[0036] На фиг.23А - 23Е схематично показаны сечения, поясняющие некоторые операции изготовления интерферометрического модулятора, при которых для создания неорганической опоры используют нанесение покрытия.
[0037] На фиг.24А - 24В схематично показаны сечения, поясняющие некоторые операции изготовления интерферометрического модулятора, имеющего поддерживающие опоры, сформированные из анодированного материала.
[0038] На фиг.25А - 25Н схематично показаны сечения, поясняющие способ изготовления элемента интерферометрического модулятора, содержащего поддерживающие структуры, расположенные над подвижным слоем, и дополнительную поддерживающую структуру, содержащую временный материал, расположенный под подвижным слоем.
[0039] На фиг.26А - 26В и 26D - 26Е схематично показаны сечения, поясняющие некоторые операции изготовления интерферометрического модулятора, содержащего другую поддерживающую структуру, выполненную из материала, полученного методом центрифугирования. На фиг.26С приведен вид сверху частично изготовленного интерферометрического модулятора по фиг.FIG. 26B.
[0040] На фиг.27 схематично показано сечение интерферометрического модулятора, в котором участок поддерживающей структуры расположен под подвижным слоем, причем нижележащий участок поддерживающей структуры сформирован одновременно с вышележащим участком поддерживающей структуры.
[0041] На фиг.28А - 28В схематично показаны сечения, поясняющие некоторые операции изготовления интерферометрического модулятора, при которых для создания заклепочной структуры используют нанесение покрытия.
[0042] На фиг.29 сверху показан участок матрицы интерферометрических модуляторов и некоторые внешние компоненты, соединенные с полосовыми электродами в этой матрице.
[0043] На фиг.30А - 30В схематично показаны сечения по линии 30-30 на фиг.29, поясняющие некоторые операции формирования вывода, соединенного с полосовым электродом.
[0044] На фиг.31А - 31D схематично показаны сечения по линии 31-31 на фиг.29, поясняющие некоторые операции формирования и пассивирования вывода, соединенного с полосовым электродом.
[0045] На фиг.32 схематично показано сечение по линии 31-31 на фиг.29, поясняющее этап другого способа формирования и пассивирования вывода, соединенного с полосовым электродом.
[0046] На фиг.33А - 33В схематично показаны сечения, поясняющие способ изготовления интерферометрического модулятора, содержащего подвижный слой с жесткостью, которая является переменной вследствие наличия оставшихся кусочков поддерживающего материала.
[0047] На фиг.34 сверху показан элемент интерферометрического модулятора, созданный при выполнении операций по фиг.33А - 33В.
[0048] На фиг.35А - 35Н схематично показаны сечения, поясняющие операции изготовления интерферометрического модулятора, имеющего подвижный слой, который содержит отражающий слой, частично отделенный от механического слоя и имеющий опорную структуру, расположенную по меньшей мере под участком подвижного слоя.
[0049] На фиг.36А - 36С схематично показаны сечения, поясняющие операции способа изготовления интерферометрического модулятора, содержащего жесткие структуры, выполненные на верхней поверхности отражающего слоя, частично отделенного от механического слоя.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
[0050] Приведенное ниже подробное описание относится к некоторым конкретным вариантам реализации изобретения, однако имеется множество других способов его реализации. В настоящем описании даются ссылки на чертежи, причем на всех чертежах одинаковые элементы имеют одинаковые обозначения. Из следующего ниже описания следует, что варианты изобретения могут быть реализованы в любом устройстве, выполненном с возможностью вывода на дисплей изображения, движущегося (например, видео) или неподвижного (например, статического) и текстового или графического. В частности, предполагается, что варианты изобретения могут быть реализованы в различных электронных устройств или объединено с различными электронными устройствами, такими, помимо прочего, как мобильные телефоны, беспроводные устройства, персональные электронные ассистенты (PDA), карманные или портативные компьютеры, GPS-приемники/навигаторы, камеры, МР3-плейеры, видеокамеры, игровые консоли, наручные часы, обычные часы, калькуляторы, телевизионные мониторы, плоские панельные дисплеи, компьютерные мониторы, дисплеи автомобильных приборов (например, дисплей счетчика пробега), приборы управления и/или дисплеи кабины самолета, дисплеи обзорных камер (например, дисплей камеры заднего обзора в транспортном средстве), электронные фотографии, электронные информационные щиты или вывески, прожекторы, архитектурные конструкции, упаковка, художественные конструкции (например, вывод на дисплей изображений на ювелирных изделиях). Устройства МЭМС со структурой, схожей с описанной здесь, также можно использовать без дисплея, например, в электронных переключающих устройствах.
[0051] Отдельные элементы МЭМС, такие как элементы интерферометрического модулятора, могут иметь поддерживающие структуры как внутри себя, так и по своим краям. В некоторых вариантах реализации изобретения эти поддерживающие структуры могут содержать поддерживающие слои, расположенные над углублениями в подвижном слое. Формирование этих структур из жесткого материала, такого как алюминий или оксиды, позволяет повысить стабильность работы устройства МЭМС по сравнению со структурами, сформированными из менее жесткого материала. Кроме того, использование жесткого материала позволяет решить проблемы постепенного ухудшения или деформации поддерживающих структур со временем, которые могут привести к постепенному изменению цвета, отраженного данным пикселом. Кроме того, поскольку эти поддерживающие структуры расположены над устройством МЭМС, они могут быть выполнены любой необходимой толщины и не влиять на работу устройства МЭМС. В некоторых вариантах реализации изобретения вышележащие поддерживающие структуры могут проходить через подвижный слой и контактировать с нижележащими неподвижными слоями, скрепляя краевые участки вышележащей поддерживающей структуры с нижележащими слоями и/или подпирая краевые участки вышележащей поддерживающей структуры относительно нижележащих слоев. В других вариантах реализации изобретения остатки поддерживающего материала могут использоваться для придания жесткости участкам подвижного слоя, или пассивирования открытых выводов внутри или вблизи устройства МЭМС.
[0052] В других вариантах реализации изобретения эти поддерживающие структуры могут содержать элементы, лежащие ниже подвижного слоя внутри Элемента МЭМС. Формируя такие структуры из жесткого неорганического материала, такого как металл или оксид, можно повысить стабильность работы устройства МЭМС по сравнению со структурами, сформированными из менее жесткого материала. Кроме того, использование жесткого материала позволяет решить проблему постепенного ухудшения или деформации поддерживающих структур со временем, которые могут привести к постепенному изменению цвета, отраженного данным пикселом. Другие варианты реализации изобретения могут содержать поддерживающие структуры, лежащие сверху и снизу. Для упрощения работы с материалами, которые используются для формирования поддерживающих структур и которые не являются селективно вытравливаемыми по отношению к другим внутренним компонентами устройства МЭМС, могут быть нанесены покрытия, барьерные к травлению. Между поддерживающими структурами и другими слоями могут быть также расположены дополнительные слои, так чтобы улучшить прилипание различных компонентов устройства МЭМС друг к другу.
[0053] Один вариант реализации изобретения с интерферометрическим модуляционным дисплеем, содержащим интерферометрический дисплейный элемент МЭМС, изображен на фиг.1. В этих устройствах пикселы могут находятся в светлом или темном состоянии. В светлом («включенном», или «открытом») состоянии дисплейный элемент отражает пользователю значительную часть видимого падающего света. В темном («выключенном», или «закрытом») состоянии дисплейный элемент отражает пользователю незначительную часть видимого падающего света. В зависимости от варианта реализации изобретения отражающие свойства «включенного» и «выключенного» состояний могут быть изменены на противоположные. Пикселы МЭМС могут быть выполнены с возможностью преимущественного отражения определенного цветового спектра, благодаря чему возможен вывод на дисплей выбранных цветов помимо черного и белого.
[0054] На фиг.1 представлено трехмерное изображение двух смежных пикселов в ряде пикселов дисплея, каждый из которых содержит интерферометрический модулятор МЭМС. В некоторых вариантах реализации изобретения интерферометрический модуляторный дисплей содержит матрицу из строк и столбцов указанных интерферометрических модуляторов. Каждый интерферометрический модулятор содержит два отражающих слоя, которые расположены на изменяемом и регулируемом расстоянии друг от друга, образуя полость оптического резонатора, выполненную с возможностью изменения по меньшей мере по одной координате. В одном варианте реализации изобретения один из отражающих слоев может быть перемещен в одно из двух положений. В первом положении, релаксационном, подвижный отражающий слой расположен на относительно большом расстоянии от зафиксированного частично отражающего слоя. Во втором положении, активированном, подвижный отражающий слой расположен ближе к частично отражающему слою, является смежным с ним. В зависимости от положения подвижного отражающего слоя падающий света может подвергаться конструктивной или деструктивной интерференции, в результате чего каждый пиксел может быть в полностью отражающем состоянии или не отражающем состоянии.
[0055] Изображенная на фиг.1 часть матрицы пикселов содержит два смежных интерферометрических модулятора 12а и 12b. Подвижный отражающий слой 14а левого модулятора 12а находится в релаксационном положении и расположен на заданном расстоянии от оптической стопы 16а, которая содержит частично отражающий слой. Подвижный отражающий слой 14b правого модулятора 12b показан в активированном положении смежным с оптической стопой 16b.
[0056] Стопы 16а и 16b (именуемые собирательно оптической стопой (stack) 16) по существу содержат несколько сплавленных слоев, в число которых могут входить электродный слой (состоящий, например, из оксидов индия и олова), частично отражающий слой (состоящий, например, из хрома) и прозрачный диэлектрик. Таким образом, стопа 16 является электропроводящей, частично прозрачной и частично отражающей и может быть изготовлена, например, путем осаждения по меньшей мере одного из указанных выше слоев на прозрачную подложку 20. Частично отражающий слой может быть сформирован из различных материалов, являющихся частично отражающими, таких как различные металлы, полупроводники и диэлектрики. Частично отражающий слой может быть сформирован из одного слоя материала или нескольких слоев материалов, и каждый из слоев может быть сформирован из одного материала или комбинации материалов.
[0057] В некоторых вариантах реализации изобретения на слои оптической стопы 16 сформирован рельеф в виде параллельных полос, с образованием строковых электродов дисплейного устройства, как описано ниже. Подвижные слои 14а, 14b могут быть сформированы в виде ряда параллельных полос по меньшей мере одного металлического слоя (перпендикулярного строковым электродам 16а и 16b), осажденного на верхнюю часть опор 18, с промежуточным временным материалом, осажденным между опорами 18. После удаления травлением временного материала подвижные слои 14а, 14b оказываются отделены заданным зазором 19 от стоп 16а, 16b. Для получения отражающих слоев 14 можно использовать материал, обладающий высокими проводящими и отражающими свойствами, например, алюминий, а полученные полосы могут образовывать в дисплейном устройстве столбцовые электроды.
[0058] Когда электрическое напряжение не приложено, между слоем 14а и стопой 16а остается полость 19, причем слой 14а находится в механически релаксационном положении, как показано на примере пиксела 12а (фиг.1). Однако когда к выбранной строке и столбцу приложена разность потенциалов, конденсатор, образующийся в соответствующем пикселе на пересечении электродов строки и столбца, становится заряженным, и электростатические силы сближают эти электроды. Если напряжение достаточно высоко, то слой 14 деформируется и прижимается к стопе 16. Диэлектрический слой (не показан), находящийся внутри стопы 16, может предотвращать закорачивание и контролировать зазор между слоями 14 и 16, как показано на примере правого пиксела 12b (фиг.1). Описанный характер действий одинаков при любой полярности приложенной разности потенциалов. Таким образом, активация строки/столбца, с помощью которой можно переводить пикселы в отражающее и неотражающее состояние, во многом аналогична соответствующим процессам в жидкокристаллических и других дисплеях.
[0059] Фиг.2-5В иллюстрируют один пример осуществления процесса и построения системы использования матрицы интерферометрических модуляторов в дисплеях.
[0060] На фиг.2 показана принципиальная схема одного варианта электронного устройства, в котором могут быть реализованы некоторые аспекты изобретения. Предлагаемое электронное устройство содержит процессор 21, который может представлять собой одно- или многокристальный универсальный микропроцессор, такой как ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, 8051, MIPS®, Power PC®, ALPHA®, или любой микропроцессор специального назначения, такой как цифровой сигнальный процессор, микроконтроллер или программируемая матрица логических элементов. Как и в известных решениях, процессор 21 может быть выполнен с возможностью выполнения по меньшей мере одного программного модуля. Помимо выполнения операционной системы процессор может быть выполнен с возможностью выполнения по меньшей мере одного программного приложения, включая web-браузер, телефонное приложение, программу для работы с электронной почтой или любое другое программное приложение.
[0061] В одном варианте реализации изобретения процессор 21 также выполнен с возможностью взаимодействия с матричным формирователем 22. В одном варианте реализации изобретения формирователь 22 содержит схему 24 формирования срок и схему 26 формирования столбцов, при этом эти схемы подают сигналы на дисплейную матрицу или панель 30. На фиг.2 линиями 1-1 обозначена линия разреза матрицы, показанной на фиг.1. В протоколе активации строк и столбцов интерферометрических модуляторов МЭМС могут использоваться гистерезисные свойства указанных устройств (фиг.3). В этом случае для деформации подвижного слоя и перевода его из релаксационного состояния в активированное состояния может потребоваться, например, разность потенциалов, равная 10 вольтам. Однако при уменьшении напряжения подвижный слой остается в активированном состоянии. В примере реализации изобретения, изображенном на фиг.3, подвижный слой не подвергается релаксации полностью до тех пор, пока напряжение не упадет ниже 2 вольт. Таким образом, в примере, изображенном на фиг.3, имеется область поданного напряжения (приблизительно от 3В до 7В), при котором устройство стабильно в релаксационном или активированном состоянии. В настоящем описании этот диапазон называется «гистерезисной областью», или «областью стабильности». Для дисплейной матрицы, имеющей гистерезисные характеристики, показанные на фиг.3, протокол активации строк и столбцов может быть разработан таким образом, что во время стробирования строки к тем ее пикселам, которые необходимо активировать, подают разность напряжений приблизительно 10 вольт, а к тем пикселам, которые необходимо подвергнуть релаксации, - разность напряжений, близкую к нулю. После стробирования к пикселам подают разность напряжений приблизительно 5 вольт, так что они остаются в том состоянии, в которое их привел строковый строб. В данном примере после осуществления записи к каждому пикселу подают разность потенциалов, которая находится в «области стабильности» (3-7 вольт). Это позволяет придать пикселам (фиг.1) конструкционную стабильность при условии подачи одного и того же напряжения в существующем перед этим активированном или релаксационном состоянии. Поскольку каждый пиксел интерферометрического модулятора, в активированном или релаксационном состоянии, по существу представляет собой конденсатор, образованный зафиксированным и подвижным отражающими слоями, указанное стабильное состояние может быть сохранено при напряжении, значение которого находится в гистерезисной области, почти без рассеивания мощности. Если поданный потенциал имеет постоянное значение, то в пикселе нет тока.
[0062] Обычно дисплейный кадр может быть создан путем «задания» группы столбцовых электродов в соответствии с требуемой группой активированных пикселов в первой строке. После этого к электроду строки 1 подают строковый импульс, который активирует пикселы, соответствующие линиям заданных столбцов. Затем заданную группу столбцовых электродов изменяют, так что они соответствуют требуемой группе активированных пикселов во второй строке. Далее к электроду строки 2 подают импульс, который активирует соответствующие пикселы в строке 2 в соответствии с заданными столбцовыми электродами. Пикселы строки 1 не испытывают влияния импульса строки 2 и остаются в том же состоянии, в которое они были переведены во время импульса строки 1. Для получения кадра описанные действия могут быть выполнены последовательно для всех рядов строк. Обновление и/или коррекция кадра по существу осуществляют новыми отображаемыми данными путем непрерывного повторения этого процесса с определенным количеством кадров в секунду. Кроме того, известно очень много протоколов для управления строковыми и столбцовыми электродами пикселных матриц с целью получения дисплейных кадров. Все эти протоколы могут быть использованы совместно с настоящим изобретением.
[0063] На фиг.4, 5А, и 5В изображен возможный вариант протокола активации для создания дисплейного кадра в матрице 3х3, которая показана на фиг.2. На фиг.4 показаны возможные уровни столбцовых и строковых напряжений, которые могут быть использованы для пикселов, характеризующихся гистерезисными кривыми фиг.3. В варианте реализации изобретения, изображенном на фиг.4, для активации пиксела к соответствующему столбцу подают напряжение -Vbias, а к соответствующей строке напряжение +ΔV, которые могут быть равны -5 вольт и +5 вольт, соответственно. Релаксация пиксела выполняется подачей к соответствующему столбцу напряжения +Vbias, а к соответствующей строке аналогичного напряжения +ΔV, благодаря чему на концах пиксела создается нулевая разность потенциалов. В тех строках, где сохраняют нулевое напряжение, пикселы находятся в стабильном состоянии независимо от того, в каком состоянии они находились изначально, и независимо от того, какое напряжение подано на столбец: +Vbias или -Vbias. Как показано на фиг.4, также могут быть использованы напряжения, полярность которых противоположна полярности напряжений, указанных выше. Например, для активации пиксела к соответствующему столбцу может быть приложено напряжение +Vbias, а к соответствующей строке напряжение -ΔV. В этом варианте реализации изобретения высвобождение пиксела выполняют подачей на соответствующий столбец напряжения -Vbias, а на соответствующую строку аналогичного напряжения -ΔV, благодаря чему на концах пиксела создается нулевая разность потенциалов.
[0064] На фиг.5В изображена временная диаграмма, показывающая последовательность строковых и столбцовых сигналов, подаваемых на матрицу 3×3 (фиг.2) для получения дисплейной конфигурации, показанной на фиг.5А и в которой активированные пикселы являются неотражающими. Перед записью кадра, показанного на фиг.5А, пикселы могут находиться в любом состоянии, а в данном примере напряжение на всех строках равно нулю, а напряжение на всех столбцах составляет +5 вольт. При таких напряжениях все пикселы стабильны как в активированных, так и релаксационных состояниях.
[0065] В кадре, показанном на фиг.5А, пикселы (1, 1), (1, 2), (2, 2) и (3, 3) активированы. Для этого в течение «линейного времени передачи данных» для строки 1 на столбцы 1 и 2 подают напряжение -5 вольт, а на столбец 3 напряжение +5 вольт. При этом состояние пикселов не изменяется, т.к. напряжение на всех пикселах остается в области стабильности 3-7 вольт. Далее выполняют стробирование строки 1 с помощью импульса, который увеличивается от 0 до 5 вольт, а затем снова падает до нуля. Это приводит к активации пикселов (1, 1), (1, 2) и релаксации пиксела (1, 3). При этом другие пикселы в матрице не испытывают воздействия. Для приведения строки 2 в необходимое состояние на столбец 2 подают напряжение -5 вольт, а на столбцы 1 и 3 напряжение +5 вольт. Посредством аналогичного стробирования строки 2 активируют пиксел (2, 2) и приводят пикселы (2, 1) и (2, 3) в релаксационное состояние. Как и в прошлом случае, другие пикселы не испытывают воздействия. Строку 3 обрабатывают аналогичным образом путем подачи на столбцы 2 и 3 напряжения -5 вольт, а на столбец 1 напряжения +5 вольт. Посредством стробирования строки 3 ее пикселы оказываются в состоянии, показанном на фиг.5А. После записи кадра потенциалы строк равны нулю, а потенциалы столбцов могут иметь значения +5 или -5 вольт. При этом изображение на дисплее (фиг.5А) остается стабильным. Аналогичный порядок действий может быть использован для матриц, которые состоят из десятков или сотен строк и столбцов. Распределение временных интервалов, последовательность действий и уровни напряжений, которые используют для активации строк и столбцов, могут быть любыми в рамках общих принципов, описанных выше. Указанные случаи являются лишь примерами, и в описываемых способах и системах могут быть использованы любые способы активации напряжением.
[0066] На фиг.6А, 6В изображены принципиальные схемы варианта реализации дисплейного устройства 40. Устройство 40 может представлять собой, например, сотовый или мобильный телефон. Однако аналогичные компоненты устройства 40 или их незначительно измененные варианты могут служить примером при описании различных типов дисплейных устройств, таких, как телевизионные приемники и портативные медиаплейеры.
[0067] Устройство 40 содержит корпус 41, дисплей 30, антенну 43, динамик 45, устройство 48 ввода данных и микрофон 46. Корпус 41 по существу сформирован по любой из известных технологий, в том числе с помощью литья под давлением и вакуумного формования. Кроме того, корпус 41 может быть выполнен из любого материала, в том числе, помимо прочего, пластмассы, металла, стекла, резины и керамики или их сочетаний. В одном варианте корпус 41 содержит съемные части (не показаны), которые могут быть заменены другими съемными частями, имеющими другой цвет или содержащими другие логотипы, изображения или символы.
[0068] В рассматриваемом примере дисплей 30 устройства 40 может представлять собой любой из дисплеев, в том числе бистабильный дисплей, который описан в тексте настоящей заявки. В других вариантах реализации изобретения понятие дисплей 30 включает плоскопанельный дисплей, например, плазменный, электролюминесцентный, светодиодный, жидкокристаллический дисплей с матрицей пассивных скрученных нематических элементов или жидкокристаллический дисплей тонкопленочной технологии, которые были описаны выше, или неплоскопанельный дисплей, например, с электронно-лучевой или иной трубкой, известный специалистам. Однако при описании настоящего варианта изобретения понятие дисплей 30 включает интерферометрический модуляционный дисплей.
[0069] На фиг.6 В схематически изображены компоненты одного варианта реализации устройства 40, которое содержит корпус 41 и может содержать дополнительные компоненты, которые по меньшей мере частично заключены в корпус. Например, в одном варианте реализации изобретения устройство 40 содержит сетевой интерфейс 27, в состав которого входит антенна 43, соединенная с приемопередатчиком 47. Приемопередатчик 47 соединен с процессором 21, который в свою очередь соединен с модифицирующими аппаратными средствами 52. Средства 52 могут быть выполнены с возможностью модифицирования сигнала (например, его фильтрации). Средства 52 соединены с динамиком 45 и микрофоном 46. Процессор 21 также соединен с устройством 48 ввода и контроллером 29 формирователя. Контроллер 29 соединен с буфером 28 кадра и с формирователем 22 матрицы, который в свою очередь соединен с дисплейной матрицей 30. Источник 50 питания обеспечивает необходимое питание всех компонентов устройства 40.
[0070] Интерфейс 27 содержит антенну 43 и приемопередатчик 47, благодаря которым устройство 40 может взаимодействовать по меньшей мере с одним устройством в сети. В одном варианте реализации изобретения интерфейс 27 может также иметь технические возможности для облегчения работы процессора 21. Антенна 43 представляет собой любую известную антенну для передачи и приема сигналов. В одном из вариантов реализации изобретения антенна передает радиосигналы в соответствии со стандартом IEEE 802.11, в том числе IEEE 802.11 (a), (b) или (g). В другом варианте реализации изобретения антенна передает и принима