Устройство автоматического управления системой обеспечения большой подъемной силы самолета
Иллюстрации
Показать всеИзобретение относится к системам автоматического управления обеспечения большой подъемной силы самолета с помощью пред-/закрылок (21, 22), которые выполнены с возможностью установки в различные конфигурации: для крейсерского полета, полета в зоне ожидания, взлета или посадки. Система состоит из устройства управления пред-/закрылками (26), которое посредством управляющего соединения (25) соединено с приводной системой (23, 24) пред-/закрылок (21, 22), и функционального блока (7), который соединен с устройством (26) управления пред-/закрылками для ввода рабочих команд, управляющих установкой пред-/закрылок (21, 22). Устройство (26) управления пред-/закрылками предназначено для расчета соответствующих конфигураций пред-/закрылок (21, 22), направления конфигурационного изменения, рабочих режимов скоростей переключения, взаимосвязанных с автоматизированными компонентами регулирования пред-/закрылок (21, 22) в зависимости от данных о состоянии полета и/или других существенных для управления полетом данных, при этом устройство (26) управления пред-/закрылками может также выполнять автоматическое переключение рабочих режимов для взлета и захода на посадку, и предусмотрено для автоматического формирования команд, обуславливающих изменение конфигурации в зависимости от скорости полета. Обеспечивается повышение надежности и оптимизация режимов взлёта и посадки. 2 н. и 19 з.п. ф-лы, 17 ил.
Реферат
Изобретение относится к устройству для автоматического управления системой обеспечения большой подъемной силы самолета согласно ограничительной части пункта 1 формулы изобретения.
Документ US 2006/049308 А1 описывает систему самолетного крыла с устройствами обеспечения подъемной силы и приводной системой с приводным звеном, выполненным с возможностью сочленения с устройствами обеспечения подъемной силы, и системой управления, сочлененной с приводной системой. Система управления имеет первую конфигурацию, в которой приводное звено эффективно сопряжено с первым и вторым выпускаемым устройством обеспечения подъемной силы, при этом активация по меньшей мере части приводного звена перемещает первое и второе выпускаемое устройство обеспечения подъемной силы. Система управления имеет также вторую конфигурацию, в которой приводное звено эффективно сопряжено с первым выпускаемым устройством обеспечения подъемной силы и эффективно разъединено со вторым выпускаемым устройством обеспечения подъемной силы, при этом при активации по меньшей мере части приводного звена первое выпускаемое устройство обеспечения подъемной силы перемещается относительно второго выпускаемого устройства обеспечения подъемной силы.
Известно множество систем обеспечения большой подъемной силы, которые применяются для увеличения максимальной подъемной силы на крыле самолета во время взлета, посадки и медленного полета. Они используются в самолетах гражданской авиации и другой транспортной авиации, а также в самолетах бизнес-класса и моторных спортивных самолетах. В случае гражданской авиации и другой транспортной авиации, в качестве аэродинамически эффективных элементов обеспечения большой подъемной силы широкое распространение получили системы обеспечения большой подъемной силы с предкрылками и закрылками на крыльях. Предкрылки выполняются с зазором между предкрылком и основным крылом или без такого зазора, а закрылки обычно выполняются в виде закрылков с одним зазором или в виде закрылков с несколькими зазорами.
Как правило, управление такими пред-/закрылками или элементами обеспечения большой подъемной силы в настоящее время происходит вручную с помощью рычага управления в кабине пилота, при этом в устройстве управления пред-/закрылками формируются электрические сигналы, которые соответствуют положению рычага, эти сигналы управляют положением пред-/закрылков посредством электрических или гидравлических исполнительных механизмов. Обычно, пред-/закрылки или элементы обеспечения большой подъемной силы выпускаются для взлета, полета в зоне ожидания и посадки, и убираются для крейсерского полета для того, чтобы уменьшить аэродинамическое сопротивление или лобовое сопротивление. Поскольку относительно характеристик полета и создания шума оптимальными для взлета, посадки и, если это применимо, полета в зоне ожидания являются различные углы отклонения, могут быть выбраны различные положения.
Кроме того, существуют концепции автоматического выпуска предкрылков как устройств обеспечения большой подъемной силы в качестве защитной меры, когда превышается критический угол атаки, или когда скорость полета падает ниже заданного предела для того, чтобы предотвратить сваливание и связанную с этим потерю подъемной силы. Более того, существуют системы, которые посредством убирания предназначены для предотвращения конструктивной перегрузки предкрылков или закрылков, когда превышается заданный верхний предел скорости полета.
Кроме того, известны концепции, которые нацелены на автоматизацию управления системами обеспечения большой подъемной силы. В этих концепциях можно провести различие между такими, которые предназначены для оптимизации летно-технических характеристик, что важно, прежде всего, для взлета, и такими, которые главным образом предназначены для защиты самолета от какого-либо повреждения или возникновения неконтролируемых состояний полета.
Из US 2350751 известна система, в которой и управление, и выпуск, и убирание закрылков осуществляются электрически с помощью электродвигателя. Управление закрылками должно осуществляться таким образом, чтобы максимальная подъемная сила крыла самолета увеличивалась. Рычаг управления закрылками обеспечивает возможность выбора вручную между тремя различными углами отклонения, а именно одним, в котором угол отклонения равен нулю (далее также называемым «убранным состоянием» или «полетным положением»), одним для взлета и одним для посадки. Известная система предназначена для автоматического убирания закрылков после взлета, когда превышен определенный динамический напор. В соответствии с положением рычага управления закрылками, которое выбирается в полете, закрылки автоматически выпускаются в соответствующее взлетное или посадочное положение, если динамический напор падает ниже порогового значения, которое является независимым от выбранной конфигурации.
Система позволяет, в случае, если динамический напор ниже порогового значения динамического напора, выбирать любое из трех положений закрылков с помощью рычага управления закрылками, при этом выбранные конфигурации принимаются немедленно. Выше порогового значения, независимо от положения рычага управления закрылками, всегда инициируется переход в убранное положение.
Недостатком является то, что известная система предусматривает только один переключающий динамический напор. В связи с аэродинамическими, конструкционными/механическими и связанными с характеристиками полета граничными условиями систем обеспечения большой подъемной силы больших современных самолетов, подходящие скорости для перевода закрылков из взлетного положения в полетное положение сильно колеблются относительно скорости выпуска закрылков из полетного положения в положение захода на посадку. Обычные управляемые вручную системы закрылков этих самолетов учитывают смежные дискретные углы отклонения закрылков, то есть положения закрылков, с помощью каскада накладывающихся диапазонов скорости. Изменение конфигурации закрылков от полетного положения в посадочное положение происходит промежуточными шагами. Чтобы получить соответствующее наложение скоростей в большом пассажирском самолете, требуется больше чем просто два или три различных положения для закрылков для обеспечения большой подъемной силы, если в то же время максимальные рабочие скорости в отдельных конфигурациях ограничены. Например, в аэробусе Airbus A320 предусмотрено шесть различных положений (0, 1, 1+F, 2, 3, Full). Ограничение максимальной рабочей скорости используется для предотвращения возникновения полетных состояний, в которых на закрылки для обеспечения большой подъемной силы могут действовать недопустимо высокие конструктивные нагрузки. За счет ограничения рабочих скоростей ожидаемые нагрузки снижаются и, следовательно, при соответствующем определении размеров, конструктивный вес может быть ограничен до уровня, который является оптимальным в контексте общей концепции.
В DE 2531799 С3 описано зависимое от скорости устройство для автоматического переключения закрылков, которое обеспечивает в значительной степени автоматическое управление закрылками. Целью является предотвращение катастроф в результате того, что экипаж самолета не установил закрылки в нужное положение. В отличие от упомянутого выше известного устройства, в этой конструкции предусмотрены только два положения закрылков вместо трех. В отличие от этого, по-прежнему должен быть предусмотрен гистерезис скорости, что в полете приводит к тому, что закрылки при более высокой скорости полета втягиваются и при сравнительно более низкой скорости полета снова выпускаются, только если не изменяется конфигурация переключателя динамического напора, предусмотренного в этом известном устройстве для автоматического переключения закрылков. Если динамический напор находится в диапазоне, который значительно больше нуля, но меньше, чем требуется для отрыва от земли, контакт переключателя динамического напора замыкается, что приводит к подаче тока на электрический привод закрылков в направлении убирания. Если динамический напор увеличивается, цепь тока прерывается. В диапазоне более высокого напора, который следует за диапазоном прерывания, который начинается ниже динамического напора необходимого для отрыва от земли и заканчивается на значениях, которые типичны для первоначального резкого набора высоты, замыкается другой контакт, и в результате этого приводной двигатель закрылков снабжается током в направлении выпуска закрылков. В другом варианте осуществления этого известного автоматического переключающего устройства цепь тока для выпуска закрылков замыкается уже во время выруливания посредством переключателя, который связан со скоростью вращения колес шасси. Во время дальнейшего увеличения динамического напора, которое типично для крейсерского полета, замыкание третьего контакта снова приводит к убиранию закрылков. Между отдельными диапазонами динамического напора имеются зоны, в которых не замкнута ни одна из цепей тока. При повторном последовательном уменьшении динамического напора, описанная выше последовательность происходит в обратном направлении. Таким образом, в случае очень низких и очень высоких скоростей полета, соответствующих имеющимся динамическим напорам, закрылок переводится в убранное состояние, в то время как в случае средних динамических напоров, которые типичны для отрыва самолета от земли, первоначального резкого набора высоты, а также для захода на посадку и для посадки, закрылок выпускается или остается в выпущенном состоянии. Согласно известному решению, как вариант, закрылки перед взлетом также возможно выпускать вручную. Затем разомкнутый прерыватель предотвращает убирание закрылков во время выруливания на взлет. Известное устройство для автоматического переключения закрылков связано с тем недостатком, что возможен только выбор одного из двух положений закрылков (а именно убранного или выпущенного положения). Еще один недостаток состоит в том, что, хотя динамические напоры переключения могут быть изменены посредством смещения скользящих контактов переключателя динамического напора, это требует вмешательства пилота. В зависимости от массы самолета в данный момент времени, в каждом случае скорости переключения должны быть установлены перед взлетом и перед посадкой, чтобы обеспечить убирание или выпуск закрылков при подходящих скоростях.
В US 4042197 описана еще одна система обеспечения большой подъемной силы для взлета и посадки самолета, с тем отличием, что управление системой значительно отличается в каждой фазе полета. Цель состоит в том, чтобы уменьшить шум, создаваемый самолетом на земле во время взлета и посадки. В результате применения автоматического устройства во время взлета должно происходить более раннее убирание закрылков после отрыва от земли по сравнению с обычным ручным управлением, и, следовательно, должно быть уменьшено аэродинамическое сопротивление, в то время как степень набора высоты должна быть увеличена ранее. Во время захода на посадку, автоматическое устройство должно обеспечить возможность приведения самолета в посадочную конфигурацию позднее, чем это обычно происходит при ручном выборе положения закрылков пилотом.
В известном автоматическом устройстве закрылки выпускаются вручную, перед взлетом, с помощью рычага управления закрылками. Затем рычаг управления закрылками перемещается в положение, до которого автоматическое устройство должно убрать закрылки автоматически после взлета. Никаких дополнительных объяснений относительно необходимой коммутационной логики не дается. Автоматическое убирание закрылков после взлета происходит в зависимости от скорости полета после уборки шасси. Скорость, при которой начинается убирание закрылков, предварительно выбирается экипажем перед взлетом. Продольное ускорение самолета интегрируется дважды, чтобы определить расстояние от начала выруливания на взлет. Когда достигается предварительно выбранное расстояние, дисплей в кабине пилота показывает экипажу точку для уменьшения тяги двигателя. Кроме уменьшения тяги, угол тангажа самолета уменьшается до такой степени, что самолет при значительно уменьшенной степени набора высоты ускоряется, несмотря на уменьшенную тягу, таким образом, достигая, наконец, скорости переключения для убирания закрылков.
В этой известной автоматической системе обеспечения большой подъемной силы в фазе захода на посадку предусмотрен выпуск закрылков в зависимости от расстояния до (желательного) места приземления или от непрерывно измеряемой высоты. В первом случае данные о расстоянии обеспечиваются либо инерционной навигационной системой, либо посредством оценки сигнала дальномерной системы DME. Во втором случае используется барометрическая высота, которая является явно более предпочтительной, чем истинная высота. Как режим работы, так и расстояние или высота, при которой должна быть достигнута посадочная конфигурация, указываются экипажем посредством функционального блока. Известная система предусматривает заход на посадку с непрерывным замедлением, во время которого закрылки также непрерывно перемещаются из убранного положения в посадочное положение. Как тяга двигателя, так и установочный угол регулируемого горизонтального оперения подстраиваются под соответствующее положение закрылков посредством функций предварительного регулирования. Команда по скорости для регулятора тяги корректируется в зависимости от положения закрылков. Во введенной пилотом посредством управляющего устройства скорости захода на посадку в качестве нижнего придела наконец достигается посадочная конфигурация закрылков.
Эта известная автоматическая система обеспечения большой подъемной силы связана с тем недостатком, что перед заходом на посадку пилотам приходится вручную устанавливать, какие сигналы должны быть использованы для управления автоматическим устройством для закрылков обеспечения большой подъемной силы. Ручное указание пилотами параметров управления полетом (скорость, расстояние, высота) не только увеличивает их рабочую нагрузку, но и связано с опасностью неправильного ввода. Логическая схема ухода на новый круг для случаев, в которых заход на посадку прекращается в пользу ухода на новый круг, отсутствует и, следовательно, требуется параллельное описанному автоматическому устройству устройство ручного управления.
Наконец, кроме функции, которая оказывает помощь пилоту или пилотам, содержащей сигнал для отображения на дисплее выпуска закрылков в оптимальной точке траектории захода на посадку, ЕР 1684144 А1 предлагает в качестве альтернативы использовать указанный поддерживающий сигнал для автоматического выпуска закрылков для обеспечения большой подъемной силы. Упоминается, что автоматическую функцию предпочтительно реализовывать в системе управления полетом. Для этой цели используется навигационная система, которая основана на предварительном планировании поперечных и вертикальных профилей траектории полета. Условия переключения для перехода от одной части траектории к другой, а также для формирования сигнала, который обеспечивает приведение закрылков системы в положение, которое соответствует предварительному планированию, определяются в виде высот, скоростей полета или латеральных положений самолета, или в виде комбинаций этих параметров. Если параметры состояния, которые необходимы для переключения, достигают или превышают условия переключения, средства обеспечения большой подъемной силы приводятся в положение, назначенное в соответствии с планированием.
Эта функциональность связана с тем недостатком, что она может быть применена только к фазе захода на посадку. Таким образом, автоматическое управление закрылками для обеспечения большой подъемной силы не предусмотрено во время подготовки к полету, выруливания на земле, взлета, набора высоты и крейсерского полета, ухода на новый круг после неудавшегося захода на посадку, во время посадки и во время действий на земле после посадки. Кроме того, для направления самолета по предварительно запланированной траектории полета, обязательна соответствующая навигационная информация. Если эта информация недоступна, навигационная система не работает, и поэтому функциональность для автоматического выпуска закрылков для обеспечения большой подъемной силы является недоступной.
Цель изобретения состоит в создании устройства для автоматического управления системами обеспечения большой подъемной силы самолета, которое позволяет уменьшить рабочую нагрузку на пилота или пилотов самолета в фазах полета около земли. Прежде всего, безопасность полета должна быть улучшена за счет уменьшения возможностей неправильного управления. Кроме того, должны быть улучшены летные характеристики самолета, прежде всего во время взлета и набора высоты.
Эта цель достигнута посредством устройства с признаками пункта 1 формулы изобретения.
Изобретение создает устройство для автоматического управления системой обеспечения большой подъемной силы самолета, содержащее элементы обеспечения большой подъемной силы, которые выполнены с возможностью установки в убранную и несколько выпущенных конфигураций для крейсерского полета, полета в зоне ожидания, взлета или посадки, устройство управления закрылками, которое посредством управляющей связи соединено для того, чтобы быть функционально эффективным, с системой привода элементов обеспечения большой подъемной силы, и функциональный блок, соединенный с устройством управления закрылками, для ввода управляющих команд, которые оказывают влияние на установку элементов обеспечения большой подъемной силы. Согласно изобретению устройство управления закрылками предусмотрено для расчета скоростей переключения, которые взаимосвязаны с соответствующими конфигурациями и с направлениями изменения конфигурации, для регулирования элементов обеспечения большой подъемной силы, в зависимости от данных о состоянии полета и/или дополнительных данных, существенных для управления полетом, и устройство управления закрылками предусмотрено для автоматического формирования команд на изменение конфигурации в зависимости от скорости полета и/или других данных о состоянии полета.
Согласно одному особенно предпочтительному конструктивному варианту выполнения предлагаемого устройства для автоматического управления системой обеспечения большой подъемной силой самолета дополнительно предусмотрено устройство управления закрылками для автоматического переключения режимов работы для взлета и захода на посадку, соответственно.
Другие предпочтительные конструктивные варианты и усовершенствования устройства согласно изобретению изложены в остальных подчиненных пунктах формулы изобретения.
Ниже, примерные варианты осуществления изобретения поясняются со ссылками на чертежи. Показано на:
Фиг.1: схематическое изображение самолета с элементами обеспечения большой подъемной силы в виде расположенных на крыле предкрылков и закрылков,
Фиг.2: блок-схема, показывающая устройство для автоматического управления системой обеспечения большой подъемной силы самолета согласно примерному варианту осуществления изобретения вместе с другими компонентами, которые являются значимыми для функционирования системы,
Фиг.3: диаграмма, обеспечивающая понимание используемых ниже определений скорости,
Фиг.4: вид сверху функционального блока устройства для автоматического управления системой обеспечения большой подъемной силы самолета согласно примерному варианту осуществления изобретения,
Фиг.5: временная диаграмма, показывающая изменения во времени параметров состояния и параметров управления во время взлета согласно примерному варианту осуществления изобретения,
Фиг.6: диаграммы, показывающие оптимизированную по характеристикам набора высоты рабочую кривую, относящуюся к управляемому скоростью устройству для автоматического управления системой обеспечения большой подъемной силы самолета во время взлета согласно примерному варианту осуществления изобретения, а также соответствующие зависящие от скорости конфигурации закрылков,
Фиг.7: диаграмма, показывающая изменения во времени параметров состояния и параметров управления во время захода на посадку, посадки и во время выруливания после посадки согласно примерному варианту осуществления изобретения,
Фиг.8: диаграмма, показывающая рабочую кривую для управляемого скоростью устройства для автоматического управления системой обеспечения большой подъемной силы самолета во время захода на посадку согласно примерному варианту осуществления изобретения,
Фиг.9: диаграмма, показывающая изменения во времени параметров состояния и параметров управления во время перехода от захода на посадку к набору высоты при маневре ухода на новый круг,
Фиг.10: диаграмма, показывающая переход от рабочей кривой для захода на посадку к рабочей кривой для взлета в случае ухода на новый круг,
Фиг.11: диаграмма, показывающая переход от рабочей кривой для взлета к рабочей кривой для захода на посадку,
Фиг.12: упрощенная блок-схема программы автоматического управления системой обеспечения большой подъемной силы самолета согласно одному примерному варианту осуществления изобретения,
Фиг.13: упрощенная блок-схема подпрограммы, которая содержит значимые элементы схемы логического управления,
Фиг.14: блок-схема программы логической схемы, которая позволяет определять условия, в которых автоматическая система не должна действовать,
Фиг.15: блок-схема программы логической схемы для переключения режима работы,
Фиг.16: блок-схема подпрограммы, которая определяет параметр, который управляет автоматическим или ручным убиранием закрылков для обеспечения большой подъемной силы на земле,
Фиг.17: блок-схема программы для логической схемы, которая определяет скорости изменения конфигурации и на основе имеющейся в данный момент времени конфигурационной команды и скорости полета в данный момент времени, а также, если это применимо, высоты полета, формирует сигналы для убирания или выпуска закрылков для обеспечения большой подъемной силы.
На фиг.1 показана часть системы обеспечения большой подъемной силы, которая расположена на крыле 20 самолета, содержащая элементы обеспечения большой подъемной силы в виде предкрылков 21 и закрылков 22. В каждом случае они являются выпускаемыми и втягиваемыми соответствующим, самим по себе известным образом посредством показанной на фиг.2 приводной системы 23, 24, которая, как правило, содержит по меньшей мере два приводных узла 23 и, кроме того, содержит механические приводные соединения 24, которые связаны с пред-/закрылками 21, 22. Управление пред-/закрылками 21, 22 для обеспечения большой подъемной силы происходит посредством показанного на фиг.2 устройства 26 управления пред-/закрылками, которое посредством управляющего соединения 25 соединено, чтобы быть функционально действующим, с приводной системой 23, 24 для регулирования элементов обеспечения большой подъемной силы, которые на фиг.2 обозначены ссылочными обозначениями 21, 22, в зависимости от управляющих команд, получаемых посредством указанных соответствующих механических соединений 24.
При реализации на основе программного обеспечения устройство 26 управления закрылками может быть частью бортового компьютера 28, который, кроме других функций 27', также содержит функции получения, обработки и передачи относящихся к управлению самолетом данных. Последние (функции) имеют ссылочное обозначение 27.
Функциональный блок 7, который соединен с устройством 26 управления закрылками, используется для установки взлетной конфигурации пред-/закрылков 21, 22 для обеспечения большой подъемной силы, предварительного выбора посадочной конфигурации и для ввода дополнительных взаимодействующих команд, которые влияют на систему автоматического управления.
На фиг.1 показана система обеспечения большой подъемной силы самолета с предкрылками 21 и закрылками 22. Однако это только примерный вариант осуществления изобретения. Система обеспечения большой подъемной силы может быть также предусмотрена и некоторым другим образом, например только с закрылками 22, в виде подвижных областей крыла, кривизна которых является непрерывно изменяемой, или каким-либо другим подходящим образом. Это выражено обозначением «элементы обеспечения большой подъемной силы». Изобретение не ограничивается системами обеспечения большой подъемной силы, в которых сочетаются предкрылки 21 и закрылки 22.
Управляющее соединение 25 между устройством 26 управления закрылками и приводной системой 23, 24, с одной стороны, содержит передачу совместно используемых команд для установки предкрылков 21 и закрылков 22 в соответствующие желаемые положения, которые в сводке согласно таблице на первой странице иллюстраций обозначены как «конфигурации», а с другой стороны, содержит передачу ответной реакции на устройство 26 управления закрылками в виде принятой пред-/закрылками 21, 22 конфигурации.
В описываемом в данный момент примерном конструктивном варианте система обеспечения большой подъемной силы включает n=4 дискретные конфигурации, обозначенные цифрами 0, 1, 2 и 3. Однако в других примерных конструктивных вариантах система может также включать другое число, либо большее, либо меньшее, конфигураций. Таблица на странице 1 иллюстраций содержит примерные комбинации возможных углов δS отклонения предкрылков 21 и δF закрылков 22, комбинация которых называется «конфигурациями». Приводная система 23 назначает указанные командами взаимосвязанные с соответствующими конфигурационными спецификациями устройства 26 управления закрылками положения для предкрылков и закрылков согласно таблице. Кроме того, таблица содержит назначение конфигураций для отдельных фаз полета для данного примерного конструктивного варианта.
Для описания автоматического управления пред-/закрылками 21, 22 для обеспечения большой подъемной силы является полезным определение скоростей, которые важны в контексте соответствующей, принятой пред-/закрылками 21, 22 для обеспечения большой подъемной силы конфигурации. Индикаторная земная скорость на основе измерения данных воздушного пространства используется в качестве основной сравнительной количественной величины для управления системой обеспечения большой подъемной силы самолета, которая содержит пред-/закрылки 21, 22 для обеспечения большой подъемной силы. Перед ее дальнейшим использованием, сигнал, который представляет скорость полета, сглаживается посредством низкочастотного фильтра, для того чтобы компенсировать краткосрочные помехи сигналу, которые могут быть вызваны, например, турбулентностью.
Как при убранных, так и при выпущенных пред-/закрылках 21, 22 нормальный рабочий диапазон самолета ограничен предельными рабочими скоростями. Со ссылкой на пример двух смежных конфигураций системы 21, 22 обеспечения большой подъемной силы фиг.3 иллюстрирует положения отдельных скоростей.
В конфигурации 0, как предкрылки 21, так и закрылки 22, находятся в полностью убранном положении, что соответствует полетному положению. В конфигурации 1, пред-/закрылки 21, 22 находятся в выпущенном состоянии, при этом, как уже было упомянуто выше, в принципе неважно, являются ли в этом положении выпущенными предкрылки 21 или закрылки 22, или задействована комбинация предкрылков и закрылков или других элементов обеспечения большой подъемной силы.
При скорости VS1g1 поток на крыле 20 в конфигурации 1 приводит к сваливанию, если подъемная сила самолета соответствует весу самолета (кратное число нагрузки n=1). По существу, скорость зависит от фактической массы самолета, а также от числа Маха. При прибавлении запаса надежности к VS1g1 получается (верхняя) минимальная рабочая скорость VMINOP1 для конфигурации 1.
Вообще говоря, указанный запас надежности обычно определяется посредством множителей kj, так что
VMINOPi=kj·VS1gi,
где i означает индекс для отдельных конфигураций, а индекс j означает различные множители, которые, однако, в зависимости от конфигурации, также могут принимать различные значения в зависимости от фазы полета.
Нормальный рабочий диапазон конфигурации 1 в верхнем направлении ограничен максимальной скоростью VMAXOP1.
Определения скоростей VS1g0 и VMINOP0 в полетной конфигурации 0 аналогичны определениям VS1g1 и VMINOP1 в конфигурации 1.
Заштрихованная область 1 означает диапазон скоростей, в котором скорости обеих конфигураций 0 и 1 находятся в нормальных рабочих диапазонах, другими словами, как в конфигурации 1, так и в конфигурации 0 имеется достаточная сила подъема для безопасного управления полетом. Имеется также максимальная рабочая скорость в конфигурации 0, другими словами, на верхнем конце диапазона крейсерской скорости с полностью убранными пред-/закрылками 21, 22, однако, указанная максимальная рабочая скорость не имеет значения для системы автоматического управления системой обеспечения большой подъемной силы.
В дальнейшем описании будут рассмотрены следующие сценарии:
- подготовка к взлету, взлет и набор высоты,
- заход на посадку, посадка, управление самолетом после посадки на земле,
- полет в зоне ожидания,
- уход на новый круг от участка захода на посадку или уход на новый круг после касания взлетно-посадочной полосы («критическая ситуация»),
- прекращение набора высоты и полета с ускорением после взлета с непосредственно следующим заходом на посадку.
Предполагается, что все системы самолета полностью функциональны.
На фиг.4 показан примерный конструктивный вариант функционального блока 7 описанной автоматической системой обеспечения большой подъемной силы. Функциональный блок содержит секцию 8 для задания взлетной конфигурации (Т/О), секцию 9 для предварительного выбора посадочной конфигурации (LDG), секцию 18 для переключения с взлетного режима на режим захода на посадку автоматической системы и секцию 10 для дополнительных функций управления на земле. Отдельные взлетные конфигурации могут быть выбраны с помощью кнопок 11, предусмотренных в панели 8 управления оператора для выбора взлетной конфигурации. Соответственно, кнопки 12 позволяют предварительно выбирать посадочные конфигурации в панели 9 управления оператора для предварительного выбора посадочной конфигурации. Цифровые дисплеи 15 предусмотрены для отображения соответствующих величин для подтверждения сделанного выбора. В показанном на фиг.4 примере для взлета была выбрана конфигурация 2, но никакой посадочной конфигурации предварительно выбрано не было.
Предусмотренная в панели 10 управления оператора для функций управления на земле кнопка 13 позволяет втягивать устройства для обеспечения большой подъемной силы на земле. Тумблер 14 используется в качестве блокировки автоматической системы, в активированном состоянии указанный тумблер 14 позволяет предотвратить автоматическое убирание пред-/закрылков 21, 22 после посадки. Коммутационное состояние блокировки 14 автоматической системы показывается встроенным в тумблер световым индикатором. Когда кнопочный выключатель 19 в панели управления оператора для переключения 18 активирован, в полете может быть произведено явное прямое переключение с взлетного рабочего режима на режим захода на посадку автоматической системы в случае, если сразу после взлета должен произойти заход на посадку и посадка, а скорость полета еще пока недостаточна для того, чтобы произошло предусмотренное автоматическое переключение рабочего режима. Для предотвращения непреднамеренной активации выключатель 19 может быть закрыт откидной крышкой.
Дополнительная информация о текущем состоянии системы, прежде всего об автоматически или вручную заданной желаемой конфигурации и текущем положении предкрылков 21 и закрылков 22, а также информация о любых сбоях системы предоставляется экипажу посредством обычных дисплейных устройств в кабине пилота, которые сами по себе не являются частью изобретения.
На фиг.5 показано изменение во времени параметров состояния и параметров управления во время подготовки к взлету, во время взлета и во время набора самолетом высоты.
Когда самолет стоит на месте или выруливает на земле, необходимое взлетное положение пред-/закрылков 21, 22 задается пилотом вручную с помощью кнопок 11 секции 8 функционального блока 7 (ср. фиг.4). В показанном примере это конфигурация 2 (ср. фиг.5).
Убирание элементов 21, 22 обеспечения большой подъемной силы на земле возможно, если необходимо, посредством нажима на кнопку 13 панели 10 управления функциями наземного управления функционального блока 7, при этом система возвращается в исходное состояние.
Для того чтобы предотвратить преждевременное убирание закрылков во время взлета, параметр «БЛОКИРОВКА АВТОМАТИЧЕСКОЙ СИСТЕМЫ» устанавливается на величину 1 посредством выбора взлетной конфигурации.
В настоящем примерном варианте осуществления выполнение сигналов положений закрылков автоматического устройства переключения закрылков предотвращается до тех пор, пока сигнал «БЛОКИРОВКА АВТОМАТИЧЕСКОЙ СИСТЕМЫ» не переключится на величину ноль. В настоящем примерном варианте осуществления переключение сигнала «БЛОКИРОВКА АВТОМАТИЧЕСКОЙ СИСТЕМЫ» на ноль происходит после того, как достигнута высота над уровнем взлетной полосы, которая соответствует предварительно определенной величине Hnoreconf.
В других примерных вариантах осуществления точка переключения блокировки автоматической системы может быть также связана с другими условиями или их комбинациями, например уборкой шасси после прохождения определенного расстояния от точки начала движения на взлетной полосе, или после установки переключателя «НА ЗЕМЛЕ» на ноль. Сигнал «НА ЗЕМЛЕ» определяется известным образом, например с помощью датчика на основе направленного внутрь пружинящего действия стоек главного шасси самолета. Если стойка шасси подвергается направленному наружу пружинящему действию в результате снятия нагрузки во время взлета, этот сигнал устанавливается на величину ноль.
Кроме того, является возможным, что переключение параметра «БЛОКИРОВКА АВТОМАТИЧЕСКОЙ СИСТЕМЫ» происходит лишь после того, как прошло некоторое время выдержки после возникновения необходимого условия или условий переключения.
Предпочтительно, уже перед взлетом при t2 посредством кнопок 12 секции 9 функционального блока 7 производится (предварительный) выбор конфигурации, которая рассматривается как подходящая, пред-/закрылков 21, 22 для захода на посадку и посадки в намеченном месте назначения. В показанном примере это конфигурация 3 (ср. фиг.5). Если необходимо, этот выбор может быть скорректирован вручную экипажем во время полета под любые изменяющиеся условия захода на посадку (ветер, траектория). Чтобы уменьшить тяжесть последствий каких-либо ошибок оператора, в описанном ниже режиме захода на посадку пред-/закрылки 21, 22 приводятся в зависимости от скорости в конфигурацию, которая обычно предусматривается для посадки, если не произошел ручной предварительный выбор.
Посредством установки тяги при взлете на момент времени tBR формируется соответствующий сигнал, и происходит автоматическое переключение параметра «ВЗЛЕТ» с величины ноль на величину 1, что соответствует переключению с режима захода на посадку на режим взлета. В этой конфигурации переключения для взлета используются скорости изменения конфигурации.
Самолет разгоняется на взлетной полосе до тех пор, пока он не взлетит при tLO. Вскоре после этого, в показанном на фиг.5 примере достигается первое условие переключения для убирания закрылков из конфигурации 2 в конфигурацию 1 при tCС21. Однако блокировка автоматической системы предотвращает исполнение сигнала для убирания пред-/закрылков 21, 22.
Когда достигнута высота Hnoreconf, параметр «БЛОКИРОВКА АВТОМАТИЧЕСКОЙ СИСТЕМЫ» устанавливается на величину 0. Тогда, все еще дейс