Мультивалентная композиция на основе конъюгата пневмокковый полисахарид-белок
Иллюстрации
Показать всеГруппа изобретений относится к медицине, а именно к биофармацевтики, и может быть использована для получения иммуногенного конъюгата. Для этого проводят: (а) осуществление реакции очищенного полисахарида серотипа 1 с буфером со щелочным рН с получением частично дез-О-ацетилированного полисахарида серотипа 1; (b) осуществление реакции частично дез-О-ацетилированного полисахарида серотипа 1 со слабой кислотой с получением нейтрализованного частично дез-О-ацетилированного полисахарида серотипа 1; (с) осуществление реакции нейтрализованного, частично дез-О-ацетилированного полисахарида серотипа 1 с окисляющим агентом с получением активированного полисахарида серотипа 1; (d) смешивание активированного полисахарида серотипа 1 с белком-носителем; (d') совместная лиофилизация смешанных активированного полисахарида серотипа 1 и белка-носителя перед осуществлением реакции с восстанавливающим агентом; (е) осуществление реакции смешанных активированного полисахарида серотипа 1 и белка-носителя с восстанавливающим агентом с получением конъюгата активированный полисахарид серотипа 1:белок-носитель; и (f) кэппирование непрореагировавших альдегидов в конъюгате полисахарид серотипа 1: белок-носитель. Также предложен способ получения мультивалентной иммуногенной композиции. Группа изобретений позволяет получить композицию, изготовленную в форме вакцины, обеспечивающую сокращение числа тяжелых заболеваний, вызываемых пневмококками. 9 н. и 18 з.п. ф-лы, 17 пр.
Реферат
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится в целом к области медицины, а конкретно к области микробиологии, иммунологии, вакцин и предотвращения инфекций, вызываемых бактериальными патогенами, путем иммунизации.
УРОВЕНЬ ТЕХНИКИ
Streptococcus pneumoniae является основным возбудителем менингита, пневмонии и тяжелых инфекционных заболеваний у младенцев и детей младшего возраста по всему миру. Мультивалентные вакцины, содержащие полисахариды пневмококка, были одобрены много лет назад и доказали свою ценность для профилактики заболеваний, вызываемых пневмококками, у пожилых людей и у пациентов с высоким риском заболевания. Однако у младенцев и детей младшего возраста лишь большинство пневмококковых полисахаридов вызывают лишь слабый ответ. 7-валентная пневмококковая конъюгированная вакцина (7vPnC, Prevnar®) была первой вакциной такого рода, которая продемонстрировала высокую иммуногенность и эффективность при борьбе с инфекционными заболеваниями, вызванными инвазивной микрофлорой, и среднего отита у младенцев и детей младшего возраста. В настоящее время эта вакцина одобрена во многих странах мира. Превнар содержит капсульные полисахариды серотипов 6В, 9V, 14, 18С, 19F и 23F, каждый из которых конъюгирован с белком-носителем, обозначаемым CRM197. Превнар защищает приблизительно от 80-90%, 60-80% и 40-80% инфекционных заболеваний, вызываемых пневмококками (инфекционных пневмококковых заболеваний, ИПЗ) в США, Европе и других регионах мира соответственно [1, 2]. Контрольные данные, собранные за несколько лет после внедрения в практику Превнара, как и ожидалось, явно демонстрируют сокращение числа случаев инфекционных пневмококковых заболеваний у младенцев в США (Фиг.1) [3, 4].
Контрольные данные по ИПЗ в отношении младенцев в США до внедрения Превнара, демонстрировали, что значительная доля заболеваний, вызванных серологическими группами 6 и 19, возникала вследствие инфицирования серотипами 6А (приблизительно одна треть) и 19А (приблизительно одна четверть) [5, 6]. Контрольные данные по инфекционным заболеваниям, вызываемым пневмококками, собранные в США после одобрения Превнара, указывают на то, что большую долю заболеваний все по-прежнему можно отнести на счет серотипов 6А и 19А (ФИГ.1) [3]. Кроме того, эти два серотипа являются причиной большего числа случаев, чем серотипы 1, 3, 5 и 7F в сумме (8,2 по сравнению с 3,3 случаями/100000 детей в возрасте 2 лет и младше). Кроме того, с серотипами 6А и 19А связывают повышенную частоту случаев устойчивости к антибиотикам (ФИГ.2) [7, 8, 9]. Хотя возможно, что перекрестный иммунитет серологических групп будет приводить к сокращению случаев заболеваний, вызванных серотипами 6А и 19А, по мере увеличения числа иммунизированных детей, есть данные, свидетельствующие о том, что есть предел такого сокращения, и большая доля заболеваний, вызываемых этими серотипами, сохранится (см. ниже).
Принимая во внимание относительную долю и значимость инфекционных пневмококковых заболеваний, вызываемых серотипами 1, 3, 5, 6А, 7F и 19А, добавление этих серотипов в состав Превнара расширило бы спектр действия в отношении инфекционных заболеваний до >90% в США и Европе, а также до 70%-80% в Азии и Латинской Америке. Такая вакцина имела бы значительно расширенный спектр действия по сравнению со спектром действия Превнара, и проявляла бы также эффективность в отношении серотипов 6А и 19А, вне зависимости от ограниченности перекрестного иммунитета серологических групп.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Соответственно, согласно настоящему изобретению предложена мультивалентная иммуногенная композиция, содержащая 13 полисахарид-белковых конъюгатов (т.е. конъюгатов полисахарид-белок), причем каждый из конъюгатов содержит капсульный полисахарид другого (отличного от содержащегося в других конъюгатах) серотипа Streptococcus pneumoniae, конъюгированный с белком-носителем, в сочетании с физиологически приемлемой средой (основной). В состав препарата может быть включен адъювант, например адъювант на основе алюминия. Более конкретно, согласно настоящему изобретению предложена 13-валентная композиция пневмококковых конъюгатов (13vPnC), содержащая семь серотипов, входящих в вакцину 7vPnC (4, 6В, 9V, 14, 18С, 19F и 23F), и шесть дополнительных серотипов (1, 3, 5, 6А, 7F и 19А).
Согласно настоящему изобретению также предложена мультивалентная иммуногенная композиция, в которой капсульные полисахариды получены из серотипов 1, 3, 4, 5, 6А, 6В, 7F, 9V, 14, 18С, 19А, 19F и 23F Streptococcus pneumoniae, а белком-носителем является CRM197.
Кроме того, согласно настоящему изобретению предложена мультивалентная иммуногенная композиция, в которой капсульные полисахариды получены из серотипов 1, 3, 4, 5, 6А, 6В, 7F, 9V, 14, 18С, 19А, 19F и 23F Streptococcus pneumoniae, белком-носителем является CRM197, а адъювантом является адъювант на основе алюминия, такой как фосфат алюминия, сульфат алюминия или гидрокосид алюминия. Согласно конкретному варианту реализации адъювантом является фосфат алюминия.
Согласно настоящему изобретению также предложена мультивалентная иммуногенная композиция, содержащая полисахарид-белковые конъюгаты в сочетании с физиологически приемлемой средой, причем каждый из конъюгатов содержит капсульный полисахарид из конкретного серотипа Streptococcus pneumoniae, конъюгированный с белком-носителем, и капсульные полисахариды получены из серотипа 3 и по меньшей мере одного дополнительного серотипа.
Согласно одному варианту реализации данной мультивалентной иммуногенной композиции дополнительный серотип выбирают из группы, включающей серотипы 1, 4, 5, 6А, 6В, 7F, 9V, 14, 18С, 19А, 19F и 23F. Согласно другому варианту реализации белок-носитель представляет собой CRM197. Согласно еще одному варианту реализации композиция включает адъювант, такой как адъювант на основе алюминия, выбранный из фосфата алюминия, сульфата алюминия и гидрокосида алюминия. Согласно конкретному варианту реализации адъювантом является фосфат алюминия.
Согласно настоящему изобретению также предложена мультивалентная иммуногенная композиция, содержащая полисахарид-белковые конъюгаты (т.е. конъюгаты полисахарида и белка) в сочетании с физиологически приемлемой средой, причем каждый из конъюгатов содержит капсульный полисахарид конкретного серотипа Streptococcus pneumoniae, конъюгированный с белком-носителем, и капсульные полисахариды получены из серотипов, 6В, 9V, 14, 18С, 19F, 23F и по меньшей мере одного дополнительного серотипа.
В одном варианте реализации данной мультивалентной иммуногенной композиции дополнительный серотип выбирают из группы, включающей серотипы 1, 3, 5, 6А, 7F и 19А. Согласно другому варианту реализации белком-носителем является CRM197. Согласно еще одному варианту реализации композиция включает в себя адъювант, такой как адъювант на основе алюминия, выбранный из фосфата алюминия, сульфата алюминия и гидроксида алюминия. Согласно конкретному варианту реализации адъювантом является фосфат алюминия.
Согласно настоящему изобретению также предложен способ стимуляции (индуцирования) иммунного ответа на конъюгаты капсульных полисахаридов Streptococcus pneumoniae, включающий введение человеку иммунологически эффективного количества любых иммуногенных композиций, описанных выше.
Кроме того, согласно настоящему изобретению любая из иммуногенных композиций, вводимых в однократной дозе 0,5 мл, содержит 2 мкг каждого сахарида, за исключением 6В, содержащегося в количестве 4 мкг; приблизительно 29 мкг белка-носителя CRM197; 0,125 мг адъюванта на основе алюминия (0,5 мг фосфата алюминия), а также хлорид натрия и сукцинатно-натриевый буфер в качестве наполнителей.
Также предложены способы получения иммуногенного конъюгата, содержащего полисахарид серотипа 1 Streptococcus pneumoniae (Pn 1), ковалентно связанный с белком-носителем. Согласно одному варианту реализации способ включает (i) осуществление реакции очищенного полисахарида Pn 1 с буфером со щелочным pH с получением частично дез-O-ацетилированного полисахарида Pn 1; (ii) осуществление реакции частично дез-O-ацетилированного полисахарида Pn 1 со слабой кислотой с получением нейтрализованного частично дез-O-ацетилированного полисахарида Pn 1; (iii) осуществление реакции нейтрализованного, частично дез-O-ацетилированного полисахарида Pn 1 с окисляющим агентом с получением активированного полисахарида Pn 1; (iv) смешивание активированного полисахарида Pn 1 с белком-носителем; (v) осуществление реакции смешанных активированного полисахарида Pn 1 и белка-носителя с восстанавливающим агентом с получением конъюгата полисахарид Pn 1: белок-носитель; и (vi) кэппирование непрореагировавших альдегидов в конъюгате полисахарид Pn 1: белок-носитель с получением иммуногенного конъюгата, содержащего полисахарид Pn 1 Streptococcus pneumoniae, ковалентно связанный с белком-носителем.
Согласно дополнительному варианту реализации способ включает (i) осуществление реакции очищенного полисахарида Pn 1 с бикарбонат/карбонатным буфером с получением частично дез-O-ацетилированного полисахарида Pn 1; (ii) осуществление реакции частично дез-O-ацетилированного полисахарида Pn 1 с уксусной кислотой с получением нейтрализованного частично дез-O-ацетилированного полисахарида Pn 1; (iii) осуществление реакции нейтрализованного частично дез-O-ацетилированного полисахарида Pn 1 с йоднокислым натрием с получением активированного полисахарида Pn 1; (iv) очистку активированного полисахарида Pn 1; (v) смешивание активированного полисахарида Pn 1 с белком-носителем; (vi) совместную лиофилизацию смешанных активированного полисахарида Pn 1 и белка-носителя; (vii) осуществление реакции совместно лиофилизированных активированного полисахарида Pn 1 и белка-носителя с цианоборогидридом с получением конъюгата полисахарид Pn 1:белок-носитель; и (vii) кэппирование непрореагировавших альдегидов в конъюгате полисахарид Pn 1:белок-носитель борогидридом натрия с получением иммуногенного конъюгата, содержащего полисахарид Pn 1 Streptococcus pneumoniae, ковалентно связанный с белком-носителем.
Также предложен способ получения активированного полисахарида Pn 1 Streptococcus pneumoniae. Этот способ включает (i) осуществление реакции очищенного полисахарида Pn 1 с буфером со щелочным pH с получением частично дез-O-ацетилированного полисахарида Pn 1; (ii) осуществление реакции частично дез-O-ацетилированного полисахарида Pn 1 со слабой кислотой с получением нейтрализованного частично дез-O-ацетилированного полисахарида Pn 1; и (iii) осуществление реакции нейтрализованного частично дез-O-ацетилированного полисахарида Pn 1 с окисляющим агентом с получением активированного полисахарида Pn 1.
КРАТКОЕ ОПИСАНИЕ ФИГУР
На ФИГУРЕ 1 показаны изменения частоты ИПЗ, вызываемых серотипом в США у детей в возрасте <2 лет, по сравнению с исходным уровнем (1998/1999) к 2001 г.
На ФИГУРЕ 2 показано распределение изолятов пневмококков с устойчивостью к пенициллину (ПНЦ) у детей в возрасте <5 лет (1998).
На ФИГУРЕ 3 показаны кривые обратных распределений кумулятивных вероятностей (ОРКВ) по результатам ОРА (опсонофагоцитарная реакция) после получения третьей дозы из исследования Превнара D118-P16.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Включение в Превнар серотипов 4, 6В, 9V, 14, 18С, 19F, 23F
Согласно оценке, основанной на контрольных данных по ИПЗ за 1995-1998 годы, семь серотипов в составе Превнара ответственны за 82% ИПЗ у детей в возрасте младше 2 лет [5]. В Северной Калифорнии - центре проведения исследований по оценке эффективности - серотипы в составе Превнара обусловливали 90% из всех случаев ИПЗ у младенцев и детей младшего возраста [10]. Со времени внедрения в практику вакцины Превнар в 2000 году произошло значительное снижение общей частоты ИПВ в связи со снижением общего числа случаев заболеваний, вызываемых серотипами, входящими в состав вакцины [3, 4]. Следовательно, в настоящее время нет оснований для того, чтобы удалять какой-либо из серотипов в составе Превнара из конъюгированных пневмококковых вакцин нового поколения, но есть основания для добавления серотипов с целью более широкого спектра действия.
Включение серотипов 1, 3, 5 и 7F
В США частота возникновении ИПЗ, вызываемых серотипом 1, у детей в возрасте младше 5 лет составляет <2%, и почти такие же частоты характерны для типов 3 и 7F [1, 6]. Серотипы 1 и 5 обусловливают более высокую частоту возникновения ИПЗ в США среди популяций с высоким риском развития инфекционных пневмококковых заболеваний. В частности, серотип 1 вызывает 3,5% ИПЗ у детей-уроженцев Аляски в возрасте младше 2 лет и 18% у детей в возрасте 2-4 лет [11]. И серотип 1, и серотип 5 вызывают значительное число заболеваний в других регионах мира и у коренного населения развитых стран [12, 13, 14].
Серотип 1 также может быть связан с более тяжелыми заболеваниями, чем с другие серотипы пневмококков [15]. Это наблюдение основано на разности количества идентифицируемых случаев между США и Европой и соответствующих различий в медицинской практике. В целом частота возникновения ИПЗ ниже в Европе, чем в США. Однако в Европе процент ИПЗ, вызываемых серотипом 1, непропорционально выше, чем в США (6-7% и 1-2% соответственно). В Европе посев крови проводят преимущественно у госпитализированных детей. В США рутинной клинической практикой является отбор крови на посев в амбулаторных условиях у детей с лихорадкой ≥39°С и повышенным содержанием лейкоцитов в крови. С учетом различий в медицинской практике можно сделать вывод, что более низкий процент заболеваний, вызванных серотипом 1, в США может быть связан с более высоким процентом других серотипов, вызывающих менее тяжелое заболевание, а более высокий процент в Европе соответствует более тяжелому заболеванию. Кроме того, сероэпидемиологические исследования с участием детей с осложненной пневмонией, демонстрируют, что встречаемость серотипа 1 является непропорциональной [16, 17, 18]. Это указывает на то, что включение серотипа 1 может сократить число тяжелых вызываемых пневмококками заболеваний, а также способствовать общему сокращению инфекционных пневмококковых заболеваний.
Добавление серотипа 3 и 7F должно увеличить спектр действия в отношении ИПЗ в большинстве регионов мира приблизительно на 3%-7%, а в Азии примерно на 9%. Таким образом, 11-валентная вакцина охватывает 50% ИПЗ в Азии и примерно 80% ИПЗ в других регионах [1, 2]. Эти серотипы также важны при охвате среднего отита [19]. В многонациональном исследовании серотипов пневмококков, вызывающих средний отит, Хаусдорф и др. (Hausdorff et al.) показали, что серотип 3 занимает 8 место по частоте определения среди изолятов в жидкости из среднего уха [20]. Серотип 3 составляет 8,7% от серотипов пневмококка, ассоциированных со средним отитом. Таким образом, значимость типов 3 и 7F в возбуждении среднего отита, так же как и ИПЗ, является основанием для их включения в пневмококковую конъюгированную вакцину.
Однако попытки получить мультивалентную пневмококковую конъюгированную вакцину, которая проявляла бы значимую иммуногенность в отношении полисахаридов серотипа 3, не увенчивались успехом. Например, в исследовании иммуногенности и безопасности 11-валентной пневмококковой конъюгированной с белком D вакцины (11-Pn-PD) у младенцев, получавших три дозы вакцины, после которых им вводили ревакцинирующую дозу той же вакцины или пневмококковой полисахаридной вакцины, не наблюдали первичной иммунизации (Nurkka et al. (2004) Ped. Inf. Dis. J., 23:1008-1014). В другом исследовании результаты анализа опсонофагоцитирующей активности (ОРА) у детей, которые получали дозы 11-Pn-PD, не показали реакции антител на серотип 3 при уровнях, сравнимых с другими тестируемыми серотипами (Gatchalian et al., 17th Annual Meeting of the Eur. Soc. Paed. Inf. Dis. (ESPID), Poster No. 4, P1A Poster Session 1, Istanbul Turkey, Mar. 27, 2001). Еще в одном исследовании, в котором оценивали эффективность 11-Pn-PD при профилактике острого среднего отита, вакцина не обеспечивала защиту от приступов, вызываемых серотипом 3 (Prymula et al. (2006) Lancet, 367:740-748). Соответственно, пневмококковая конъюгированная вакцина, содержащая капсульные полисахариды серотипа 3 и способная вызывать иммунную реакцию на полисахариды серотипа 3, обеспечивает значительное улучшение существующего положения в данной области.
Включение 6А и 19А
а. Эпидемиология серотипов 6А и 19А
Данные наблюдения, имеющиеся в литературе, указывают на то, что серотипы 6А и 19А обусловливают большее число инфекционных пневмококковых заболеваний в США у детей младше 2 лет, чем серотипы 1, 3, 5 и 7F вместе (ФИГ.1) [1, 5]. Кроме того, эти серотипы часто ассоциированы с устойчивостью к антибиотикам (ФИГ.2) и играют важную роль в возникновении среднего отита [6, 19, 20]. Способность нынешней вакцины Превнар защищать от заболеваний, вызываемых 6А и 19А, не очевидна. Основание для включения компонентов 6А и 19А в вакцину 13vPnC обсуждается ниже.
b. Реакции 6А и 19А, вызываемые полисахаридами 6В и 19F
Зарегистрированные неконъюгированные пневмококковые полисахаридные вакцины (для применения у людей в возрасте двух лет и старше) содержали капсульные полисахариды 6А или 6В, но не оба полисахарида [21]. Данные об иммуногенности, сгенерированные во время подбора состава 23-валентной пневмококковой полисахаридной вакцины, продемонстрировали, что моновалентная вакцина с полисахаридом 6В индуцирует антитела к капсулам и 6А и 6В. Данные, полученные в нескольких исследованиях по оценке IgG и реакций, выявляемых по опсонофагоцитарной реакции (ОРА) в разнообразных популяциях, при введении свободных полисахаридов и пневмококковых конъюгированных вакцин, указали на то, что реакции IgG на 6А индуцируют антигены 6В, но эти ответы обычно ниже, а активность ОРА по отношению к организмам 6А отличается от активности в отношении организмов 6В [22, 23, 24, 25]. Кроме того, испытуемые, вырабатывающие высокий уровень антител в ответ на 6В могут иметь низкую активность в отношении 6А или вообще не иметь такой активности.
В отличие химического состава капсульных полисахаридов 6А и 6В, в которых имеет место высокая степень сходства, капсулы 19А и 19F значительно различаются из-за присутствия двух добавочных боковых цепей в полисахариде 19А. Не удивительно, что иммунные ответы, измеренные у добровольцев, иммунизированных полисахаридной вакциной 19F, показали, что ответ на 19F развивается у 80% испытуемых, но только у 20% испытуемых развивается ответ на 19А [26]. Также в исследованиях с конъюгированными вакцинами был показан низкий уровень перекрестной реактивности IgG и реакций ОРА на серотип 19А после иммунизации полисахаридом 19F [24, 26].
Внутренние данные по перекрестной реактивности ОРА реакций на 6А и 19А были получены в перекрестном испытании вакцины 7vPnC (D118-P16), проведенном в США с участием младенцев (ФИГ.3). Данные этих исследований согласуются с результатами других исследований и демонстрируют индукцию перекрестно-реактивных функциональных антител к полисахаридам 6А после иммунизации полисахаридами 6В, хотя при меньшем уровне, и очень небольшое количество функциональных антител на 19А после иммунизации 19F.
Влияние иммунизации 6В и 19F на 6А и 19А в моделях с использованием животных
Для оценки возможности перекрестной реактивности при иммунизации полисахаридами применяли модели на животных. В модели среднего отита, разработанной Жиебинк и соавт. (Giebink et al.), шиншилл иммунизировали тетравалентной вакциной на основе конъюгата полисахарида и белка наружной мембраны (ОМР) (содержащей сахариды 6В, 14, 19F, 23F) или плацебо [27]. В этом исследовании была выявлена некоторая перекрестная реактивность по отношению к 6А; однако она не достигала статистической значимости, и уровень защиты от среднего отита был ниже, чем уровень защиты, полученный с использованием 6В. В такой же модели имела место 100% защита от среднего отита, вызываемого 19F, но защита только на 17% от среднего отита, вызываемого 19А.
Силенд с соавт. (Saeland et al.) использовали сыворотку крови младенцев, иммунизированных 8-валентной пневмококковой столбнячной конъюгированной вакциной (содержащей 6В и 19F), для введения пассивно иммунизированным мышам перед интраназальным инфицированием микроорганизмами 6А, в модели легочной инфекции [28]. Из 59 проб сыворотки 53% мышей проявили защиту от бактериемии, вызываемой 6В, и у 37% мышей была выявлена защита против 6А. В той же модели мышей, пассивно иммунизированных сывороткой, полученной от младенцев, иммунизированных четырьмя дозами 11-валентной пневмококковой конъюгированной вакцины (содержащей 19F, конъюгированного со столбнячным анатоксином), подвергали интраназальному инфицированию микроорганизмами 19А в той же модели [29]. Из 100 мышей, пассивно иммунизированных и затем подвергнутых инфицированию, у 60 мышей в ткани легких не идентифицировали микроорганизмов 19А, а у всех мышей, получавших плацебо (физиологический (солевой) раствор), были идентифицированы микроорганизмы. Однако пассивная иммунизация в этой модели не защищает от заражения организмами 19F; поэтому применимость данной модели для серогруппы 19 сомнительна. В целом, описанные модели обеспечивают подтверждение определенного биологического влияния иммунизации 6В на организмы 6А, хотя влияние на гетерологичный серотип не был столь сильным, как влияние, наблюдаемое для гомологичного серотипа. Эти модели не дают полного понимания влияния иммунизации 19F на организмы 19А.
Влияние иммунизации конъюгатами полисахаридов 6В и 19F на заболевания, вызываемые 6А и 19А, в исследованиях действенности/ эффективности
Число случаев заболеваний, вызванных серотипами 6В, 6А, 19F и 19А в исследованиях эффективности 7vPnC и 9vPnC (7vPnC плюс серотипы 1 и 5) указано в Таблице 1 [30, 10, 31]. Число случаев инфекционных заболеваний слишком мало и не позволяет сделать какие-либо выводы о серотипах 6А и 19А. Однако в проведенном в Финляндии исследовании среднего отита было получено большое количество изолятов пневмококков [32]. При проведении анализа по протоколу вакцина 7vPnC проявила эффективность, против среднего отита, вызываемого серотипом 6В, равную 84% (95% Cl 62%, 93%), и 57% против среднего отита, вызываемого серотипом 6А (Таблица 1). В отличие от этого, серотип-специфичную эффективность в отношении среднего отита, вызываемого либо 19F, либо 19А, продемонстрировать не удалось.
Таблица 1 | ||||||||
Случаи пневмококковых заболеваний, вызываемых серотипами 6В, 6А, 19F и 19A, в исследованиях эффективности вакцин 7vPnC и 9vPnC | ||||||||
6В | 6А | 19F | 19A | |||||
PnC | Контр. | PnC | Контр. | PnC | Контр. | PnC | Контр. | |
Исследование эффективности Kaiser - 7vPnC (1ТТ (по назначенному лечению)) | 1 | 7 | 0 | 1 | 2* | 13 | 0 | 1 |
Исследование эффективности Navajo - 7vPnC (1ТТ) | 0 | 5 | 1 | 0 | 1 | 1 | 1 | 0 |
Южно-африканское исследование эффективности - 9vPnC ВИЧ (-) (1ТТ) | 1 | 2 | 1 | 0 | 0 | 1 | 3 | 1 |
Южно-африканское исследование эффективности - 9vPnC ВИЧ (+) (1ТТ) | 1 | 7 | 3 | 10 | 2 | 3 | 2 | 3 |
Финское исследование с участием пациентов со средним отитом - 7vPnC (ПП) | 9* | 56 | 19* | 45 | 43 | 58 | 17 | 26 |
*Продемонстрирована статистически значимая эффективность | ||||||||
Из литературных источников 30, 10 и 33 и из личной переписки | ||||||||
Контр. = контроль | ||||||||
ITT = анализ по назначенному лечению | ||||||||
ПП = анализ по протоколу |
Также доступны данные послепродажного контроля по ИПЗ, полученные в исследовании, проводимом Центрами по контролю за заболеванями в целях оценки эффективности Превнара [33]. Случаи инфекционных пневмококковых заболеваний, возникающих у детей в возрасте от 3 до 23 месяцев, выявляли в контролирующих лабораториях и сопоставляли с тремя контрольными случаями, соответствующими по возрасту и почтовому индексу. После получения согласия, осуществляли сбор медицинского анамнеза и истории прививок (испытуемых считали привитыми, если они получали по меньшей мере одну дозу Превнара) у родителей и медицинских сотрудников, предоставивших информацию о случаях и контроле. Предварительные результаты были представлены на конференции 1СААС в 2003 году, а краткий обзор результатов для заболеваний 6В, 19F, 19А и 6А представлен в Таблице 2. Приведенные данные демонстрируют, что Превнар может предотвращать заболевания, вызываемые 6А, хотя степень этой профилактики возможно несколько ниже, чем для заболеваний, вызываемых серотипом 6В. Также эти данные показывают, что перекрестная реактивность в отношении инфекционных заболеваний, вызываемых серотипом 19А, ограничена.
Таблица 2 | ||
Предварительные результаты исследования методом случай-контроль, представленные Центром по контролю и профилактике заболеваний (представлены на 1СААС, 2003 г.) | ||
Серотип | Информационные блоки, n | ЭВ* (95% ДИ) |
Тип вакцины, все | 115 | 94 (87,97) |
Родственная вакцина, все | 36 | 70 (38,86) |
Тип невакцины, все | 43 | -4 (-106,48) |
6В | 27 | 94 (72,99) |
19F | 19 | 73 (16,92) |
6А | 15 | 87 (53,97) |
19А | 16 | 40 (-87,80) |
*эффективность вакцины, сравнивающая вакцинированных (≥1 дозы) и невакцинированных испытуемых, и скорректированная в соответствии с причиной Источник 40 списка литературы и личная/конфиденциальная переписка |
Опубликованный анализ [3] применения Превнара также показывает, что серотипы 6В и 19F давали умеренное сокращение ИПЗ, вызываемых серотипами 6А и 19А, среди детей младше 2 лет (Таблица 1 в [3]). Частота возникновения заболеваний, вызываемых серотипами 6А, 9А, 9L, 9N, 18A, 18В, 18F, 19А, 19В, 19С, 23А и 23В («все связанные с вакциной серотипы»), среди иммунизированных взрослых людей, в некоторой степени снижалась (Таблица 2 в [3]). Эти данные демонстрируют, что популяционный иммунитет, обусловленный использованием Превнара у детей в возрасте до двух лет, был ограниченным в отношении серотипов 6А и 19А, и это дает основание для включения серотипа 6А и 19А в вакцину 13vPnC согласно настоящему изобретению.
Вывод по добавлению 6А и 19А
Данные постпродажного контроля и результаты исследования методом случай-контроль для вакцины 7vPnC показаны на ФИГ.1 и в Таблице 2, и указывают на то, может иметь место некоторая перекрестная защита от заболеваний 6А, но в меньшей степени, чем от заболеваний 6В, что согласуется с другой информацией об иммунных реакциях и действенности в описанных выше моделях на животных. Кроме того, по-видимому, защита от 19А ограничена. Следовательно, вакцина 13vPnC, содержащая серотипы 6А и 19А, обеспечивает спектр действия, который не зависит от ограничений перекрестной защиты, обусловленной серотипами 6В и 19F серогруппы.
Соответственно, согласно настоящему изобретению предложена мультивалентная иммуногенная композиция, содержащая 13 различных конъюгатов полисахарид-белок, причем все конъюгаты содержат разные капсульные полисахариды, конъюгированные с белком-носителем, и капсульные полисахариды получены из серотипов Streptococcus pneumoniae 1, 3, 4, 5, 6А, 6B, 7F, 9V, 14, 18C, 19А, 19F и 23F, в сочетании с физиологически приемлемой средой. Иммуногенная композиция также может содержать адъювант, такой как адъювант на основе алюминия, такой как фосфат алюминия, сульфат алюминия и гидрокосид алюминия. Согласно конкретному варианту реализации, адъювантом является фосфат алюминия.
Капсульные полисахариды получают по стандартным методикам, известным специалистам в данной области. Согласно настоящему изобретению капсульные полисахариды готовят из серотипов Streptococcus pneumoniae 1, 3, 4, 5, 6А, 6B, 7F, 9V, 14, 18C, 19А, 19F и 23F. Указанные пневмококковые конъюгаты получают в отдельных процессах и объединяют в одну лекарственную форму. Например, согласно одному варианту реализации, пневмококки с полисахаридами каждого серотипа выращивают в среде на основе сои. Отдельные полисахариды затем очищают путем центрифугирования, осаждения, ультрафильтрации и колоночной хроматографии. Очищенные полисахариды активируют химически, чтобы придать сахаридам способность реагировать с белком-носителем. После активации полисахаридов, каждый полисахарид отдельно конъюгируют с белком-носителем с получением гликоконъюгата. Согласно одному варианту реализации все капсульные полисахариды конъюгируют с одним и тем же белком-носителем. Согласно данному варианту реализации конъюгацию проводят путем восстановительного аминирования.
Химическую активацию полисахаридов и последующую конъюгацию с белком-носителем осуществляют традиционными методами. Например, см. Патент США No 4673574 и 4902506 [34, 35].
Белками-носителями в предпочтительном случае являются белки, которые не токсичны и нереактогенны и которые можно получать в достаточном количестве и с достаточной степенью чистоты. Белки-носители должны позволять осуществлять стандартные процедуры конъюгации. В конкретном варианте настоящего изобретения в качестве белка-носителя используют CRM197.
CRM197 (Wyeth, Sanford, NC) нетоксичный вариант (т.е. токсоид) дифтерийного токсина, выделяемый из культур штамма С7 (β197) Corynebacterium diphtheria, которые выращивают в среде с казаминовыми кислотами на основе экстракта дрожжей. CRM197 очищают путем ультрафильтрации, осаждения сульфатом аммония и ионообменной хроматографии. В другом случае CRM197 готовят согласно рекомбинантной технологии согласно патенту США No. 5614382, который включен в данную заявку посредством ссылки.
Другие пригодные белки-носители включают инактивированные бактериальные токсины, такие как столбнячный анатоксин, коклюшный анатоксин, холерный анатоксин (напр., как описано в заявке на международный патент WO 2004/083251 [38]), Е. coli LT, Е. coli ST и экзотоксин А из Pseudomonas aeruginosa. Также можно использовать белки наружной мембраны бактерий, такие как комплекс С наружной мембраны (ОМРС), порины, трансферрин-связывающие белки, пневмолизин, поверхностный белок пневмококков A (PspA), белок адгезин пневмококков (PsaA), пептидаза С5а стрептококка группы А и группы В или белок D Haemophilus influenzae. В качестве белков-носителей также можно использовать другие белки, такие как яичный альбумин, гемоцианин лимфы улитки (KLH), бычий сывороточный альбумин (БСА) или очищенное белковой производное туберкулина (PPD).
После конъюгирования капсульных полисахаридов с белком-носителем конъюгаты полисахарид-белок очищают (обогащают по конъюгату полисахарид-белок) с использованием различных методов. К этим методам можно отнести операции концентрирования/диафильтрации, осаждение/элюцию, колоночную хроматографию и объемную фильтрацию. См. Приведенные ниже примеры.
После того как отдельные гликоконъюгаты прошли очистку, их смешивают для получения иммуногенной композиции согласно настоящему изобретению, которую можно применять в качестве вакцины. Препарат иммуногенной композиции согласно настоящему изобретению можно получить при помощи известных в соответствующей области методов. Например, 13 отдельных пневмококковых конъюгатов можно объединить с физиологически приемлемой средой с получением композиции. Примеры такой среды включают в себя воду, физиологический буферный раствор, многоатомные спирты (напр., глицерин, пропиленгликоль, жидкий полиэтиленгликоль) и растворы декстрозы, но не ограничиваются этим перечнем.
Согласно определенным вариантам реализации иммуногенная композиция содержит один или несколько адъювантов. В настоящем изобретении, «адъювант» - это вещество, служащее для усиления иммуногенности иммуногенной композиции согласно настоящему изобретению. Так, часто адъюванты вводят для усиления иммунного ответа, и они хорошо известны специалистам в данной области. Подходящие адъюванты, способные усилить эффективность композиции, включают, но не ограничиваются перечисленными:
(1) соли алюминия (квасцы), такие как гидроксид алюминия, фосфат алюминия, сульфат алюминия и др.;
(2) смеси эмульсий типа масло в воде (с другими специфичными иммуностимулирующими агентами, такими как мурамил-пептиды (определении дано ниже) или компоненты клеточной стенки бактерий или без таких агентов), такие как, например, (a) MF59 (Публикация РСТ № WO 90/14837), содержащий 5% Сквалена, 0,5% Tween 80 и 0,5% Span 85 (может содержать различные количества МТР-РЕ (см. ниже, но не обязательно)), изготовленный в виде субмикронных частиц при помощи микрофлюидизатора, например микрофлюидизатора модели HOY (Microfluidics, Newton, MA), (б) SAF (фактор активации стволовой клетки), содержащий 10% Сквалена, 0,4% Tween 80, 5% блоксополимера полиоксиэтилена и полиоксипропилена L121 и thr-MDP (см. ниже) либо микрофлюидизированный до субмикронной эмульсии, либо перемешанный с образованием эмульсии с более крупными частицами, и (в) адъювантная система Ribi™ (RAS) (Corixa, Hamilton, MT), содержащая 2% Сквалена, 0,2% Tween 80 и один или несколько компонентов клеточной стенки бактерий из группы, включающей 3-O-деаилированный монофосфоролипид A (MPL™), описанный в патенте США №4912 094 (Corixa), трегалозы димиколат (TDM) и скелет клеточной стенки (CWS), желательно MPL+CWS (Detox™);
(3) можно использовать адъюванты на основе сапонина, такие как Quil А или STIMULON™ QS-21 (Antigenics, Framingham, MA) (Патент США №5057540) или частицы, полученные из них, такие как ISCOM (иммуностимулирующие комплексы);
(4) липополисахариды бактерий, аналоги синтетического липида А, такие как соединения аминоалкилглюкозамина фосфата (AGP), или их производные или аналоги, которые можно приобрести в компании «Corixa» и которые описаны в Патенте США №6113918; один из которых, AGP, представляет собой 2-[(R)-3-тетраканолилокситетрадеканоиламино]этил-2-дезокси-4-O-фосфоно-3-O-[(R)-3-тетраканолилокситетрадеканоил]-2-[(R)-3-тетрадеканоилокситетрадеканоиламино]-b-D-глюкопиранозид, который также называют 529 (ранее известный как RC529), который выпускают в водной форме или в форме стабильной эмульсии, синтетических полинуклеотидов, таких как олигонуклеотиды, содержащие мотив(ы) CpG (Патент США №6207646);
(5) цитокины, такие как интерлейкины (напр., ИЛ-1, ИЛ-2, ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-7, ИЛ-12, ИЛ-15, ИЛ-18 и др.), интерфероны (напр., гамма-интерферон), гранулоцитарно-макрофаговый колониестимулирующий фактор (ГМКСФ), колонийстимулирующий фактор макрофагов (МКСФ), фактор некроза опухолей (ФНО), костимулирующие молекулы В7-1 и В7-2, и др.;
(6) детоксифицированные мутанты бактериального АДФ-рибозилирующего токсина, такого как холерный токсин (XT) - в форме мутанта дикого типа, например, в котором глутаминовая кислота в положении 29 цепи аминокислот заменена на другую аминокислоту, предпочтительно - на гистидин, в соответствии с международной публикацией WO 00/18434 (см. также WO 02/098368 и WO 02/098369), коклюшный токсин (KT) или термолабильный токсин Е. coli (ТЛ), в частности LT-K63, LT-R72, CT-S109, PT-K9/G129 (см. напр., WO 93/13302 и WO 92/19265); и
(7) другие вещества, которые действуют как иммуностимулирующие агенты и усиливают эффективность данной композиции.
Мурамил-пептиды включают N-ацетил-мурамил-L-треонил-D-изоглутамин (thr-MDP), N-ацетил-нормурамил-L-аланин-2-(1'-2'-дипалмитоил- sn-глицеро-3-гидроксифосфорилокси)-этиламин (МТР-РЕ) и др., но не ограничиваются этим перечнем.
Лекарственные формы (препараты) вакцины согласно настоящему изобретению можно использовать для защиты или лечения людей, восприимчивых (подверженных) к пневмококковой инфекции, путем введения вакцины системным путем или через слизистые оболочки. Такие пути введения могут включать внутримышечные, внутрибрюшинные или подкожные инъекции; или введение через слизистые оболочки ротовой полости/желудочно-кишечного тракта, дыхательных или мочеполовых путей. Согласно одному варианту реализации интраназальное введение применяют для лечения пневмонии или среднего отита (поскольку таким образом можно более эффективно предотвращать носоглоточное носительство пневмококков и соответственно ограничивать инфекцию на самой ранней стадии).
Количество конъюгата в каждой дозе вакцины выбирают как количество, которое вызывает (стимулирует) защитный иммунный ответ без значимых нежелательных эффектов. Такое количество может меняться в зависимости от серотипа пневмококков. Обычно каждая доза содержит 0,1-100 мкг полисахарида, в частности 0,1-10, а более конкретно 1-5 мкг.
Оптимальное количество компонентов для конкретной вакцины может быть установлено путем стандартных исследований, включающих наблюдение соответствующих иммунных ответов у испытуемых. После первичной вакцинации испытуемые могут получать одну или несколько поддерживающих иммунизаций, через разумные промежутки времени.
Согласно конкретному варианту реализации настоящего изобретения вакцина 13vPnC представляет собой стерильную прозрачную смесь пневмококковых капсульных полисахаридов сер