Устройство для считывания изображения, электронное устройство, фотогальванический элемент и способ изготовления устройства для считывания изображения

Иллюстрации

Показать все

Изобретение относится к устройству для считывания изображения и способу его изготовления, видеокамере, фотогальваническому устройству. Заявленное устройство для считывания изображения содержит модуль считывания изображения, в котором множество пикселов, воспринимающих падающий свет, расположены на фотоприемной поверхности в считывающей области подложки, в котором пиксел включает группу приборов с термопарами, в которой несколько термопар ориентированы вдоль фотоприемной поверхности, в котором в этой группе приборов с термопарами несколько термопар расположены отдельно одна от другой, так что фотоприемная поверхность имеет решетчатую структуру, и в котором группа приборов с термопарами расположена так, что падающий свет, попадающий на решетчатую структуру, вызывает плазменный резонанс на фотоприемной поверхности. В результате изменения температуры части группы приборов с термопарами, где возник плазменный резонанс, происходит генерация электродвижущей силы в каждой из нескольких термопар. Технический результат - повышение качества принятого изображения и уменьшение размеров. 4 н. и 16 з.п. ф-лы, 31 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к устройству для считывания изображения, электронному устройству, фотогальваническому элементу и способу изготовления устройства для считывания изображения.

Предпосылки к созданию изобретения

Электронные устройства, такие как цифровые видеокамеры, включают устройства для считывания изображения. В таком устройстве для считывания изображения считывающая область, где размещены множество пикселов, расположена на поверхности подложки. Устройство для считывания изображения принимает падающий свет, несущий изображение предмета, в области для считывания изображения, и генерирует принятое изображение. Здесь, например, генерируют цветное изображение в качестве принятого изображения путем приема света трех основных цветов.

Например, к устройствам для считывания изображения относятся формирователи сигналов изображения на основе приборов с зарядовой связью (ПЗС (CCD) и формирователи сигналов изображения на основе комплементарных структур металл-оксид-полупроводник (КМОП-структур (CMOS)). В таком случае в считывающей области в каждом из множества пикселов имеется, например, фотодиод в качестве фотоэлектрического преобразователя (см., например, заявку JP-A-2009-277732). Более конкретно, как показано в заявке JP-A-2009-277732, фотодиоды формируют посредством имплантации ионов легирующих примесей в кремниевую полупроводниковую подложку, а готовые фотодиоды принимают падающий свет и осуществляют фотоэлектрическое преобразование этого падающего света, генерируя в результате сигнальные электрические заряды.

Кроме того, предложено считывать изображение путем измерения светового потока с использованием приборов на основе плазменного резонанса (см., например, заявки JP-A-2009-38352, JP-T-2009-528542 и JP-A-2009-175124).

Плазменным резонансом называется явление, когда поверхностный плазмой резонирует при возбуждении на металлической поверхности затухающим полем света, появляющимся при падении света на металлическую поверхность и локально усиливающим электрическое поле. Соответственно, при использовании этого способа считывание изображения осуществляется посредством сигнала, принимаемого на основе локально усиленного электрического поля.

Более конкретно, в случае, описываемом в заявке JP-A-2009-38352, свет падает на поверхность решетчатой структуры с периодически выполненными выпуклостями-вогнутостями из полупроводникового материала и происходит генерация энергии электрического поля на основе плазмонного резонанса. Затем эту энергию электрического поля используют для фотоэлектрического преобразования в слое кремния, осуществляя тем самым детектирование света. Здесь, изменяя должным образом форму решетчатой структуры, можно избирательно детектировать свет конкретной длины волны, создавая в результате цветное изображение.

В случае, описанном в заявке JP-T-2009-528542, свет падает на границу между металлом и диэлектриком, где происходит генерация энергии электрического поля на основе плазмонного резонанса. Здесь одна на другой расположены три границы раздела в соответствии с излучением трех основных цветов. Таким образом, энергию электрического поля плазмонов, генерируемых на этих границах, используют в процессе фотоэлектрического преобразования в полупроводниковом слое с высокой эффективностью генерации электронов, осуществляя тем самым детектирование падающего света.

Согласно заявке JP-A-2009-175124 на изоляционной пленке расположена наноцепочка из нескольких соединенных наночастиц, на которую падает свет, что вызывает плазменный резонанс.Соответственно, детектирование света осуществляют путем считывания изменения сопротивления диода, расположенного на нижнем слое, или изменения электрического потенциала вследствие эффекта термопары под воздействием энергии электрического поля (энергия экзотермической реакции) в ответ, на возникновение плазмонного резонанса.

Сущность изобретения

В представленном выше описании, как в заявке JP-A-2009-277732, когда в состав пиксела входит фотодиод, возможны ситуации, когда рекомбинация или генерация электронов происходит на дефектах кристалла кремния. Соответственно, возможны ситуации, когда происходит генерация сигнального заряда и передача на выход сигнала изображения даже тогда, когда на пиксел не падает свет.В результате на принятом изображении образуется так называемая «белая точка» (белая царапина), что ведет к деградации качества изображения.

Аналогично, в случаях заявок JP-A-2009-38352 и JP-T-2009-528542 используется фотоэлектрическое преобразование в полупроводниковом слое и, соответственно имеют место ситуации, когда качество изображения деградирует из-за образования белых точек (белых царапин) в принятом изображении.

В отличие от описанных выше случаев, если нет распространения электронов внутри полупроводникового слоя (кристалла кремния), белые точки (белые царапины) в принятом изображении не образуются в принципе.

Однако в случае заявки JP-A-2009-175124, поскольку используется пространственно изотропная структура наноцепочки, имеет место сильная зависимость от поляризации. Соответственно, хотя такой способ подходит для детектирования света, такого как лазерный луч, обладающий сильной поляризацией, он не годится для детектирования такого света, в котором, как, например, в естественном свете, присутствуют составляющие с различными поляризациями. В дополнение к этому, хотя энергию электрического поля, генерируемую в соответствии с плазменным резонансом, измеряют в форме изменений температуры, используется структура, в которой сигнал считывают путем усреднения изменений температуры. Вследствие этого динамический диапазон измерения интенсивности оказывается узким, так что способ может быть непригодным с точки зрения спектральных характеристик и чувствительности.

Как указано выше, в рассматриваемом устройстве для считывания изображения трудно повысить качество принятого изображения вследствие проявления различных дефектов.

Кроме того, трудно уменьшить толщину устройства для считывания изображения, так что возможны ситуации, когда затруднительно миниатюризировать такое устройство. Более того, возможны ситуации, когда трудно снизить стоимость.

Аналогично пикселу устройства для считывания изображения, поскольку затруднительно уменьшить толщину фотогальванического элемента, включающего фотогальванический прибор, возможны ситуации, когда трудно миниатюризировать устройство. Более того, возможны ситуации, когда трудно снизить стоимость.

Таким образом, желательно создать устройство для считывания изображения и электронное устройство, способные повысить качество принятого изображения, и при этом уменьшить размеры и стоимость таких устройств, а также способ изготовления подобных устройств. Кроме того, желательно создать фотогальванический элемент, позволяющий уменьшить размеры и стоимость таких устройств.

Один из вариантов настоящего изобретения направлен на создание устройства для считывания изображения, содержащего: модуль считывания изображения, в котором множество пикселов, воспринимающих падающий свет, расположены на фотоприемной поверхности в считывающей области подложки. Пиксел включает группу приборов с термопарами, в которой несколько термопар ориентированы вдоль фотоприемной поверхности, причем в этой группе приборов с термопарами несколько термопар расположены отдельно одна от другой, так что фотоприемная поверхность имеет решетчатую структуру, при этом группа приборов с термопарами расположена так, что падающий свет, попадающий на решетчатую структуру, вызывает плазменный резонанс на фотоприемной поверхности, а в результате изменения температуры части группы приборов с термопарами, где возник плазменный резонанс, происходит генерация электродвижущей силы в каждой из нескольких термопар.

Другой вариант настоящего изобретения направлен на создания способа изготовления устройства для считывания изображения. Этот способ включает: изготовление модуля считывания изображения путем расположения множества пикселов, воспринимающих падающий свет на фотоприемной поверхности считывающей области подложки. Изготовление модуля считывания изображения включает создание группы приборов с термопарами, в которой несколько термопар ориентированы вдоль фотоприемной поверхности, в пикселе, причем при создании группы приборов с термопарами несколько термопар размещают отдельно одну от другой, так что фотоприемная поверхность группы приборов с термопарами имеет решетчатую структуру, при этом группу приборов с термопарами формируют так, что падающий свет, попадающий на решетчатую структуру, вызывает плазменный резонанс на фотоприемной поверхности, а в результате изменения температуры части группы приборов с термопарами, где возник плазменный резонанс, происходит генерация электродвижущей силы в каждой из нескольких термопар.

Еще один из вариантов настоящего изобретения направлен на создание электронного устройства, содержащего: модуль считывания изображения, в котором множество пикселов, воспринимающих падающий свет, расположены на фотоприемной поверхности в считывающей области подложки. Пиксел включает группу приборов с термопарами, в которой несколько термопар ориентированы вдоль фотоприемной поверхности, причем в этой группе приборов с термопарами несколько термопар расположены отдельно одна от другой, так что фотоприемная поверхность имеет решетчатую структуру, при этом группа приборов с термопарами расположена так, что падающий свет попадающий на решетчатую структуру, вызывает плазменный резонанс на фотоприемной поверхности, а в результате изменения температуры части группы приборов с термопарами, где возник плазменный резонанс, происходит генерация электродвижущей силы в каждой из нескольких термопар.

Следующий вариант настоящего изобретения направлен на создание фотогальванического элемента, содержащего: фотогальванический источник энергии, генерирующий электродвижущую силу в результате приема света, падающего на фотоприемную поверхность. Фотогальванический источник включает группу приборов с термопарами, в которой несколько термопар ориентированы вдоль фотоприемной поверхности, причем в этой группе приборов с термопарами несколько термопар расположены отдельно одна от другой, так что фотоприемная поверхность имеет решетчатую структуру, при этом группа приборов с термопарами расположена так, что падающий свет попадающий на решетчатую структуру, вызывает плазменный резонанс на фотоприемной поверхности, а в результате изменения температуры части группы приборов с термопарами, где возник плазменный резонанс, происходит генерация электродвижущей силы в каждой из нескольких термопар.

Согласно указанным вариантам настоящего изобретения группу приборов с термопарами создают, располагая несколько термопар отдельно одна от другой, так что фотоприемная поверхность группы приборов с термопарами имеет решетчатую структуру. Здесь группа приборов с термопарами создана так, что падающий свет попадающий на решетчатую структуру, вызывает плазменный резонанс на фотоприемной поверхности, а в результате изменения температуры части группы приборов с термопарами, где возник плазменный резонанс, происходит генерация электродвижущей силы в каждой из нескольких термопар.

Согласно указанным вариантам настоящего изобретения предложены устройство для считывания изображения и электронное устройство, позволяющие повысить качество принятого изображения при уменьшении размеров и стоимости этих устройств, а также способ изготовления устройств. Кроме того, предложен фотогальванический элемент, позволяющий уменьшить размеры и стоимость таких устройств.

Краткое описание чертежей

Фиг.1 представляет схему, иллюстрирующую главную часть фотодатчика (фотогальванического прибора), включенного в состав пиксела или аналогичного элемента, конфигурирующего устройство для считывания изображения согласно одному из вариантов настоящего изобретения.

Фиг.2 представляет схему, иллюстрирующую главную часть указанного фотодатчика (фотогальванического прибора), включенного в состав пиксела или аналогичного элемента, конфигурирующего устройство для считывания изображения согласно указанному варианту настоящего изобретения.

Фиг.3 представляет схему, иллюстрирующую попадание падающего света на решетчатую структуру.

Фиг.4А и 4В представляют графики, иллюстрирующие попадание падающего света на решетчатую структуру.

Фиг.5 представляет блок-схему, иллюстрирующую конфигурацию видеокамеры согласно Варианту 1 настоящего изобретения.

Фиг.6 представляет схему, иллюстрирующую полную конфигурацию устройства для считывания изображения согласно Варианту 1 настоящего изобретения.

Фиг.7 представляет схему, иллюстрирующую главную часть устройства для считывания изображения согласно Варианту 1 настоящего изобретения.

Фиг.8 представляет вид сверху, схематически иллюстрирующий расположение цветов в пикселе согласно Варианту 1 настоящего изобретения.

Фиг.9А-9D представляют схемы, иллюстрирующие основные этапы способа изготовления устройства для считывания изображения согласно Варианту 1 настоящего изобретения.

Фиг.10Е и 10F представляют схемы, иллюстрирующие основные этапы способа изготовления устройства для считывания изображения согласно Варианту 1 настоящего изобретения.

Фиг.11G и 11Н представляют схемы, иллюстрирующие основные этапы способа изготовления устройства для считывания изображения согласно Варианту 1 настоящего изобретения.

Фиг.12I и 12J представляют схемы, иллюстрирующие основные этапы способа изготовления устройства для считывания изображения согласно Варианту 1 настоящего изобретения.

Фиг.13K представляет схему, иллюстрирующую один из основных этапов способа изготовления устройства для считывания изображения согласно Варианту 1 настоящего изобретения.

Фиг.14 представляет схему, иллюстрирующую основную часть группы приборов с термопарами согласно Модифицированному примеру 1 Варианта 1.

Фиг.15 представляет схему, иллюстрирующую основную часть группы приборов с термопарами согласно Модифицированному примеру 2 Варианта 1.

Фиг.16 представляет схему, иллюстрирующую основную часть группы приборов с термопарами согласно Модифицированному примеру 3 Варианта 1.

Фиг.17 представляет схему, иллюстрирующую основную часть группы приборов с термопарами согласно Модифицированному примеру 3 Варианта 1.

Фиг.18 представляет схему, иллюстрирующую главную часть устройства для считывания изображения согласно Варианту 2 настоящего изобретения.

Фиг.19 представляет схему, иллюстрирующую главную часть устройства для считывания изображения согласно Варианту 3 настоящего изобретения.

Фиг.20 представляет схему, иллюстрирующую главную часть устройства для считывания изображения согласно Варианту 4 настоящего изобретения.

Фиг.21 представляет схему, иллюстрирующую главную часть устройства для считывания изображения согласно Варианту 4 настоящего изобретения.

Фиг.22А и 22В представляют схемы, иллюстрирующие главные части устройства для считывания изображения согласно Варианту 4 настоящего изобретения.

Фиг.23 представляет схему, иллюстрирующую главную часть устройства для считывания изображения согласно Варианту 5 настоящего изобретения.

Фиг.24 представляет блок-схему, иллюстрирующую главную часть модуля обработки сигнала (см. фиг.5) согласно Варианту 6 настоящего изобретения.

Фиг.25 представляет логическую схему, иллюстрирующую процесс коррекции согласно Варианту 6 настоящего изобретения.

Фиг.26 представляет график, иллюстрирующий характеристику зависимости электродвижущей силы от интенсивности падающего света согласно Варианту 6.

Фиг.27 представляет блок-схему, иллюстрирующую главную часть модуля управления (см. фиг.5) согласно Варианту 7 настоящего изобретения.

Фиг.28 представляет логическую схему, иллюстрирующую процесс охлаждения согласно Варианту 7 настоящего изобретения.

Фиг.29 представляет вид сечения, иллюстрирующий процесс охлаждения согласно Варианту 7 настоящего изобретения.

Фиг.30А и 30В представляет графики, иллюстрирующий процесс считывания изображения согласно Варианту 8 настоящего изобретения.

Фиг.31 представляет вид сверху, иллюстрирующий главную часть фотогальванического элемента согласно Варианту 9 настоящего изобретения.

Подробное описание

Далее варианты настоящего изобретения будут описаны со ссылками на прилагаемые чертежи.

Описание будет дано в следующем порядке.

0. Базовая конфигурация

1. Вариант 1 (устройство для считывания изображения)

2. Вариант 2 (случай, когда верхняя поверхность группы приборов с термопарами покрыта пленкой алюминия)

3. Вариант 3 (случай, когда приборы с термопарами расположены один на другом)

4. Вариант 4 (случай, когда часть группы приборов с термопарами покрыта экранирующей свет пленкой)

5. Вариант 5 (случай с нанопружинками)

6. Вариант 6 (случай, когда производится коррекция данных)

7. Вариант 7 (случай, когда применяется охлаждение на основе эффекта Пельтье)

8. Вариант 8 (считывание изображения)

9. Вариант 9 (фотогальванический элемент)

10. Другое

<0. Базовая конфигурация>

Фиг.1 и 2 представляют собой схемы, иллюстрирующие главные части фотодатчика (фотогальванического прибора), включенного в состав пиксела или аналогичного элемента, образующего устройство для считывания изображения согласно одному из вариантов настоящего изобретения.

Здесь фиг.1 изображает сечение. Кроме того, на фиг.2 показана верхняя поверхность. Фиг.1 представляет сечение по линии X1-Х2, показанной на фиг.2, для случая когда линия взгляда направлена снизу вверх. Хотя сечение по линии X1-Х2, изображенной на фиг.2, для случая, когда линия взгляда направлена сверху вниз, на чертеже не показано, каждый участок расположен так же и имеет такую же форму, как представлено на фиг.1.

Как показано на фиг.1 и 2, фотодатчик включает группу 210 приборов с термопарами.

Как изображено на фиг.1, группа 210 приборов с термопарами расположена на поверхности (верхней поверхности) подложки 11, на которую попадает падающий свет L. Периферийная часть группы 210 приборов с термопарами покрыта изоляционным слоем SZ, который выполнен, например, из изоляционного материала, такого как диоксид кремния SiO2. Предпочтительно, чтобы периферийная часть группы 210 приборов с термопарами была покрыта таким материалом, как пористая органическая пленка или воздушный слой, обладающим низкой теплопроводностью.

Как изображено на фиг.2, группа 210 приборов с термопарами составлена из нескольких термопар с 211 по 216. Например, группа 210 приборов с термопарами построена из шести термопар и в том числе первая термопара 211, вторая термопара 212, третья термопара 213, четвертая термопара 214, пятая термопара 215 и шестая термопара 216.

В группе 210 приборов с термопарами несколько термопар с 211 по 216, как показано на фиг.1 и 2, ориентированы вдоль верхней поверхности (плоскость xy) подложки 11. Эти несколько термопар с 211 по 216 соединены последовательно.

Здесь, как показано на фиг.1 и 2, несколько термопар с 211 по 216 включают соответственно первые металлические участки с 211А по 216А и вторые металлические участки с 211В по 216В.

В этих нескольких термопарах с 211 по 216 первые металлические участки с 211А по 216А и вторые металлические участки с 211В по 216В ориентированы вдоль верхней поверхности (плоскость xy) подложки 11 для соединения одна с другой. Эти первые металлические участки с 211А по 216А и вторые металлические участки с 211В по 216В выполнены из металлов с различными термоэлектрическими характеристиками, так что в каждой из термопар с 211 по 216 происходит генерация термоэлектродвижущей силы в соответствии с эффектом Зеебека. Указанные первые металлические участки с 211А по 216А и вторые металлические участки с 211В по 216В, например, выполняют из меди (Cu), алюминия (Al), серебра (Ag), никеля (Ni), железа (Fe) или их сплавов. Например, первые металлические участки с 211А по 216А конфигурированы в качестве отрицательных мостиков, а вторые металлические участки с 211В по 216В конфигурированы в качестве положительных мостиков.

В таком варианте, как показано на фиг.1 и 2, в группе 210 приборов с термопарами эти несколько термопар с 211 по 216 расположены по отдельности одна от другой, так что образована решетчатая структура.

Кроме того, в этом варианте группа 210 приборов с термопарами расположена таким образом, что под воздействием попадающего на решетчатую структуру падающего света L возникает плазменный резонанс, так что температура участка, где возник плазменный резонанс, изменяется для генерации электродвижущих сил в нескольких термопарах с 211 по 216.

Иными словами, каждый пиксел Р имеет выпукло-вогнутую решетчатую структуру, в которой интегрированы фотоприемная секция и детекторная секция. Здесь в решетчатой структуре фотоприемная поверхность (верхняя поверхность) группы 210 приборов с термопарами имеет выпуклые и вогнутые участки, так что на этой фотоприемной поверхности (верхней поверхности) возникает плазменный резонанс в ответ на воздействие света в конкретном диапазоне длин волн, входящего в состав падающего света L. Таким образом, энергия локального тепловыделения, обусловленного усиленным электрическим полем плазменного резонанса (на основе которого появляется затухающее поле света), возникающего на решетчатой структуре, эффективно преобразуется группой 210 приборов с термопарами в разность потенциалов электрического поля. Соответственно, определение интенсивности падающего света (падающей электромагнитной волны) или считывание изображения осуществляется на основе сигнала, получаемого согласно электродвижущей силе.

Каждый участок, составляющий группу 210 приборов с термопарами, будет подробно описан ниже.

Как показано на фиг.1, в термопарах 211-213 с первой по третью из состава группы 210 приборов с термопарами выполнены канавки TR 12 и TR 23, расположенные между первой термопарой 211 и второй термопарой 212 и между второй термопарой 212 и третьей термопарой 213. Кроме того, как показано на фиг.2, третья канавка TR 13 расположена между первой термопарой 211 и третьей термопарой 213.

Как показано на фиг.1, первая термопара 211 и вторая термопара 212 соединены последовательно на нижней стороне канавки TR 21. Кроме того, вторая термопара 212 и третья термопара 213 соединены последовательно на нижней стороне канавки TR 23.

Как указано выше, для каждой из термопар 211-213 с первой по третью в соответствии с изображением на фиг.1 верхние концы первых металлических участков с 211А по 213А и верхние концы вторых металлических участков с 211В по 213В соединены вместе на верхней стороне, на которую попадает падающий свет L в направлении z глубины подложки 11. Другими словами, в термопарах 211-213 с первой по третью первые металлические участки с 211А по 213А и вторые металлические участки с 211В по 213В соединены вместе так, что указанные верхние боковые участки становятся термометрическими спаями (горячие спаи).

Кроме того, на нижних боковых участках термопар 211-213 с первой по третью, через которые выходит падающий свет L, расположены нижние концы первых металлических участков с 211А по 213А и нижние концы вторых металлических участков 211В to 213B, так что эти нижние концы обеих сторон отделены одни от других зазорами с G1 по G3, расположенными между ними. Другими словами, в термопарах 211-213 с первой по третью первые металлические участки с 211А по 213А и вторые металлические участки с 211В по 213B отделены одни от других так, что эти нижние боковые участки становятся опорными спаями (холодные спаи).

Более того, второй металлический участок 211В первой термопары 211 и первый металлический участок 212А второй термопары 212 электрически соединены один с другим. В дополнение к этому, второй металлический участок 212В второй термопары 212 и первый металлический участок 213А третьей термопары 213 электрически соединены один с другим.

Напротив, хотя сечения термопар 214-216 с четвертой по шестую на чертежах не показаны, между четвертой термопарой 214 и пятой термопарой 215 и между пятой термопарой 215 и шестой термопарой 216 расположены, как описано выше, канавки (на чертежах не показаны). Кроме того, как показано на фиг.2, канавка TR 46 расположена между четвертой термопарой 214 и шестой термопарой 216.

Кроме того, четвертая термопара 214 и пятая термопара 215 соединены последовательно на нижней стороне канавки (на чертеже не показана). Пятая термопара 215 и шестая термопара 216 соединены последовательно на нижней стороне канавки (на чертеже не показана).

Другими словами, хотя это и не показано на чертеже, на верхних боковых участках термопар 214-216 с четвертой по шестую, аналогично термопарам 211-213 с первой по третью, верхние концы первых металлических участков с 214А по 216А и верхние концы вторых металлических участков с 214В по 216В соединены вместе одни с другими. Кроме того, нижние концы первых металлических участков с 214А по 216А и нижние концы вторых металлических участков с 214В по 216В расположены на нижней стороне термопар 214-216 с четвертой по шестую, так что эти нижние концы обеих сторон отделены одни от других зазорами (на чертеже не показаны), расположенными между ними.

Второй металлический участок 214В четвертой термопары 214 и первый металлический участок 215А пятой термопары 215 электрически соединены один с другим. Кроме того, второй металлический участок 215В пятой термопары 215 и первый металлический участок 216А шестой термопары 216 электрически соединены один с другим.

Более того, как показано на фиг.2, канавки TR расположены соответственно между первой термопарой 211 и шестой термопарой 216, между второй термопарой 212 и пятой термопарой 215 и между третьей термопарой 213 и четвертой термопарой 214. Здесь канавка TR расположена так, чтобы проходить через центр группы 210 приборов с термопарами и быть протяженной в направлении «x».

Как показано на правой стороне фиг.2, третья термопара 213 и четвертая термопара 214 соединены последовательно. Другими словами второй металлический участок 213В третьей термопары 213 и первый металлический участок 214А четвертой термопары 214 электрически соединены один с другим. Хотя это и не показано на чертеже, канавка TR проходит в направлении «x» на верхней стороне соединительного участка между третьей термопарой 213 и четвертой термопарой 214.

В дополнение к этому, внутри каждой канавки, как показано на фиг.1, расположен изоляционный слой SZ.

Как описано выше, в группе 210 приборов с термопарами несколько термопар с 211 по 216 выполнены в виде выпуклых участков, а канавки образуют вогнутые участки, так что термопары с 211 по 216 отделены одна от другой. Соответственно, группа 210 приборов с термопарами служит дифракционной решеткой, благодаря своей выпукло-вогнутой поверхности, образованной совокупностью выпуклых участков и вогнутых участков.

Здесь, как показано на фиг.2, в группа 210 приборов с термопарами несколько термопар с 211 по 216 расположены таким образом, что решетчатая структура имеет центральную симметрию.

В этом варианте, как показано на фиг.2, группа 210 приборов с термопарами имеет структуру песочного торта, где внешний контур имеет форму окружности на фотоприемной поверхности, а несколько термопар с 211 по 216 выполнены симметрично относительно оси симметрии, проходящей через центр окружности.

Более конкретно, как показано на фиг.2, в группе 210 приборов с термопарами вторая термопара 212 и пятая термопара 215 имеют каждая на виде в плане полукруглую форму. Эти вторая термопара 212 и пятая термопара 215 совмещены в направлении «y» таким образом, что они образуют полный круг, если их соединить.

В отличие от этого, первая термопара 211, третья термопара 213, четвертая термопара 214 и шестая термопара 216 имеют каждая дугообразную форму на виде в плане. Эти первая термопара 211, третья термопара 213, четвертая термопара 214 и шестая термопара 216 расположены на периферии относительно второй термопары 212 и пятой термопары 215, так что при соединении они образуют круг. Первая термопара 211 и третья термопара 213 совмещены в направлении оси «x» на верхней стороне относительно второй термопары 212. Кроме того, четвертая термопара 214 и шестая термопара 216 совмещены в направлении оси «x» на нижней стороне относительно пятой термопары 215.

В этом варианте группа 210 приборов с термопарами выполнена таким образом, что несколько термопар с 211 по 216 расположены в области усиленного электрического поля (область, соответствующая пучности затухающего поля света) в соответствии с плазменным резонансом, возникающим на фотоприемной поверхности. Другими словами, каждая часть выполнена таким образом, что области нескольких термопар с 211 по 216, где первые металлические участки с 211А по 216А и вторые металлические участки с 211В по 216В соединены одни с другими, соответствуют областям, где электрические поля локально усилены в соответствии с плазменным резонансом.

Как показано на фиг.1 и 2, в схеме проходят проводники H1 и Н2. Здесь эти проводники H1 и Н2 соединены соответственно с одним концом и с другим концом каждой из нескольких термопар с 211 по 216 в группе 210 приборов с термопарами, соединенных последовательно. Кроме того, проводники H1 и Н2 соединены с логическими схемами (не показаны на этих чертежах).

В частности, как показано на фиг.1, в группе из нескольких термопар с 211 по 216, соединенных последовательно, проводник H1 расположен на нижнем конце первого металлического участка 211А, составляющего первую термопару 211. Кроме того, проводник Н2 расположен на нижнем конце второго металлического участка 216В, составляющего шестую термопару 216. Эти проводники H1 и Н2 изготовлены, например, использованием электропроводного материала, такого как медь (Cu), с низким электрическим сопротивлением.

В описанной выше группе 210 приборов с термопарами, когда падающий свет L попадает на верхнюю поверхность решетчатой структуры, на этой верхней поверхности возбуждается поверхностный плазмой. Таким образом, участок верхней поверхности локально принимает тепловую энергию в соответствии с усиленным электрическим полем затухающего света, генерируемым этим плазмоном.

Соответственно, в группе 210 приборов с термопарами, показанных на фиг.1, происходит нагрев горячей области НТ, расположенной на верхней поверхности. Другими словами, изменяется температура термометрических спаев в группе 210 приборов с термопарами.

В отличие от этого, в группе 210 приборов с термопарами плазменный резонанс не возникает в опорной области REF, расположенной со стороны нижней поверхности, так что опорная область REF не нагревается. Другими словами, на опорном переходе группы 210 приборов с термопарами температура не меняется.

Соответственно, в группе 210 приборов с термопарами, когда на нее попадает падающий свет L, возникает разность температур между горячей областью НТ и опорной областью REF, вследствие чего происходит генерация электродвижущей силы на основе эффекта Зеебека.

Как показывает Уравнение (1), в каждой из термопар с 211 по 216 может быть получена электродвижущая сила Vi, представленная произведением разности (T1-Т0) температур между температурой T1 горячей области НТ и температурой ТО опорной области REF на коэффициент Zc Зеебека. В группе 210 приборов с термопарами, как показывает следующее Уравнение (2), может быть получено суммарное напряжение Vtot, представленное суммой электродвижущих сил Vi, генерируемых несколькими термопарами с 211 по 216.

Более конкретно, как показано на фиг.1, термопары 211-213 с первой по третью генерируют электродвижущую силу V1, V2 и V3, и в этих термопарах текут токи от первых металлических участков с 211А по 213А ко вторым металлическим участкам с 211В по 213В. Как показано на фиг.2 термопары 214-216 с четвертой по шестую аналогично генерируют электродвижущую силу, и в этих термопарах текут электрические токи. Другими словами, ток течет в направлении расположения термопар 211-216 с первой по шестую.

Фиг.3, 4А, и 4В представляют схему и графики, иллюстрирующие падение света на решетчатую структуру.

Фиг.3 представляет вид сечения. Эта фиг.3 иллюстрирует падение света сквозь слой оксида кремния SiO2 на решетчатую структуру, выполненную из металла (никеля Ni или алюминия А1), с расположенными на фотоприемной поверхности с заданным шагом Т выпуклыми участками заданной высоты d.

Фиг.4А и 4В представляют графики, иллюстрирующие результаты моделирования. Эти фиг.4А и 4В иллюстрируют результаты моделирования соотношения между длиной волны света и величиной его поглощения для случая, когда свет падает на решетчатую структуру, показанную на фиг.3. Фиг.4А иллюстрирует случай, когда решетчатая структура выполнена из единственного материала - алюминия, а фиг.4В иллюстрирует случай, когда решетчатая структура выполнена из единственного материала - никеля. Здесь показаны результаты моделирования, выполненного двумерным методом конечных разностей во временной области (FDTD).

Как можно понять из фиг.4А и 4В, при адекватной установке коэффициента формы вогнуто-выпуклой решетчатой структуры можно избирательно детектировать свет в конкретном диапазоне длин волн. Кроме того, подбирая разницу характеристик материалов (диэлектрической проницаемости), можно избирательно детектировать свет в конкретном диапазоне длин волн.

<1. Вариант 1>

[А. Конфигурация устройства]

(А-1) Конфигурация главной части видеокамеры

Фиг.5 представляет схему конфигурации, иллюстрирующую конфигурацию видеокамеры 40 согласно Варианту 1 настоящего изобретения.

Как показано на фиг.5, видеокамера 40 включает устройство 1 для считывания изображения, оптическую систему 42, модуль 43 управления и модуль 44 обработки сигнала. Эти устройства и модули будут описаны далее.

Устройство 1 для считывания изображения принимает падающий свет L, по падающий на поверхность PS для считывания изображения, в качестве изображения предмета через оптическую систему 42 и генерирует соответствующий сигнал. Здесь устройство 1 для считывания изображения, управляемое в соответствии с сигналом управления с выхода модуля 43 управления, формирует выходной сигнал.

Оптическая система 42 включает оптические элементы, такие как считывающий объектив и диафрагму, и построена таким образом, чтобы собрать падающий свет L на поверхности PS для считывания изображения в устройстве 1 для считывания изображения.

Модуль 43 управления передает различные сигналы управления в устройство 1 для считывания изображения и модулю 44 обработки сигнала, чтобы управлять работой устройства 1 для считывания изображения и модуля 44 обработки сигнала. Модуль 43 управления включает компьютер, выполняющий функции модуля управления в соответствии с программой.

Модуль 44 обработки сигнала генерирует принятое изображение предмета посредством обработки выходного сигнала устройства 1 для считывания изображения. Модуль 44 обработки сигнала включает компьютер, выполняющий функции модуля в соответствии с программой.

(А-2) Конфигурация главной части устройства для считывания изображения

Далее будет описана полная конфигурация устройства 1 для считывания изображения.

Фиг.6 представляет схему, иллюстрирующую полную конфигурацию устройства 1 для считывания изображения согласно Варианту 1 настоящего изобретения. Фиг.6 изображает верхнюю поверхность.

Как показано на фиг.6, устройство 1 для считывания изображения включает подложку 11. Эта подложка, представляющая собой, например, полупроводниковую подложку, выполненную из полупроводникового кремния, а на поверхности этой подложки 11 расположены считывающая область РА и периферийная область SA.

Считывающая область РА, как показано фиг.6, имеет прямоугольную форму. В этой области в горизонтальном направлении «x» и вертикальном направлении «y» расположены пикселы Р. Другими словами, эти пикселы Р расположены в виде матрицы. Пиксел Р будет подробно описан позднее. Считывающая область РА соответствует поверхности PS для считыв