Способ получения l-аминокислоты с использованием бактерии семейства enterobacteriaceae

Иллюстрации

Показать все

Изобретение относится к биотехнологии и представляет собой бактерию рода Escherichia, которая продуцирует L-аминокислоту, выбранную из группы, состоящей из L-глутамина, L-глутаминовой кислоты, L-пролина, L-аргинина, L-цитруллина и L-орнитина. При этом бактерия модифицирована таким образом, что экспрессия гена bssR в указанной бактерии усилена. Изобретение относится также к способу получения L-аминокислоты, выбранной из группы, состоящей из L-глутамина, L-глутаминовой кислоты, L-пролина, L-аргинина, L-цитруллина и L-орнитина, с использованием указанной бактерии. Изобретение позволяет получать аминокислоты с высокой степенью эффективности. 2 н. и 2 з.п. ф-лы, 2 табл., 14 пр.

Реферат

Область техники

Настоящее изобретение относится к микробиологической промышленности, в частности, к способу получения L-аминокислоты с использованием бактерии семейства Enterobacteriaceae, модифицированной таким образом, что в указанной бактерии усилена экспрессия гена bssR. Ген bssR кодирует регулятор формирования биопленок посредством сигнальной секреции.

Описание предшествующего уровня техники

Традиционно L-аминокислоты в промышленном масштабе могут быть получены методом ферментации с использованием штаммов микроорганизмов, полученных из природных источников, или их мутантов. Обычно микроорганизмы модифицируют для увеличения продукции L-аминокислот.

Описано множество методов увеличения продукции L-аминокислот, включая трансформацию микроорганизмов рекомбинантной ДНК (патент США 4,278,765). Другие методы увеличения продукции включают повышение активности ферментов, вовлеченных в биосинтез аминокислот и/или уменьшении чувствительности целевого фермента к обратному ингибированию продуцируемой L-аминокислотой (см., например, патенты США 4,346,170; 5,661,012 и 6,040,160).

Гены yliH и yceP индуцируются при формировании биопленок клетками Escherichia coli. Показано, что депеция yceP (b1060) и yliH (b0836) увеличивает способность к формированию биопленки при выращивании в камере с непрерывным потоком на минимальной среде, содержащей глюкозу, за счет увеличения массы биопленки, плотности покрытия и толщины слоя. Чтобы выяснить генетические причины такого усиления формирования биопленки, был проведен анализ дифференциальной экспрессии генов в биопленках для обоих мутантов относительно штамма дикого типа при выращивании на богатой среде с глюкозой, и было обнаружено, что экспрессия от 372 до 882 генов была согласованно индуцирована, а экспрессия от 76 до 337 генов была согласованно подавлена. Усиление формирования биопленки для обоих мутантов было связано с дифференциальной экспрессией генов, участвующих в ответе на стресс (от 8 до 64 генов). Более того, экспрессия от 42 до 130 генов была связана с автоиндуктором-2 (autoinducer-2) клеточной сигнальной системы, для этих генов также наблюдалась дифференциальная экспрессия. Кроме того, исследуемые гены связаны и с сигнальной системой индола, поскольку наблюдалась дифференциальная экспрессия от 17 до 26 индол-зависимых генов. Усиление формирования биопленки у мутантов yliH и усеР при выращивании на LB-среде с добавлением 0.2% глюкозы (LB glu) происходит за счет снижения внеклеточной и внутриклеточной концентрации индола у обоих мутантов (от 50 до 140 раз), добавление индола к культуре восстанавливает фенотип формирования биопленки дикого типа, следовательно, индол подавляет образование биопленки. Оба мутанта регулируют формирование биопленки за счет «quorum sensing», поскольку делеция любого из генов yliH и eceP приводит к увеличению внеклеточной концентрации автоиндуктора-2 в 50 раз, при выращивании на сложной среде (особенно на стационарной фазе). Оба белка вовлечены в регуляцию подвижности, белки YliH (127 а.о.) и YceP (84 а.о.) подавляют подвижность на LB от 2 до 7 раз. Предложены новые названия этих двух локусов bssR для yliH и bssS для yceP, основанные на термине "regulator of biofilm through signal secretion" (Domka J, et.al., Appi Environ Microbiol.; 72(4):2449-59 (2006)).

Однако в настоящее время нет сообщений, описывающих использование усиления экспрессии гена bssR для получения L-аминокислот.

Раскрытие изобретения

Цели настоящего изобретения включают повышение продуктивности штаммов-продуцентов L-аминокислоты и предоставление способа получения неароматических или ароматических L-аминокислот с использованием этих штаммов.

Вышеуказанные цели были достигнуты благодаря обнаружению того факта, что усиление экспрессии гена bssR может приводить к увеличению продукции L-аминокислот, таких как L-треонин, L-лизин, L-цистеин, L-метионин, L-лейцин, L-изолейцин, L-валин, L-гистидин, L-глицин, L-серин, L-аланин, L-аспарагин, L-аспарагиновая кислота, L-глутамин, L-глутаминовая кислота, L-пролин, L-аргинин, L-цитруллин, L-орнитин, L-фенилаланин, L-тирозин и L-триптофан.

Предоставляется бактерия семейства Enterobacteriaceae, обладающая способностью к повышенной продукции аминокислот, таких как L-треонин, L-лизин, L-цистеин, L-метионин, L-лейцин, L-изолейцин, L-валин, L-гистидин, L-глицин, L-серин, L-аланин, L-цитруллин, L-орнитин, L-аспарагин, L-аспарагиновая кислота, L-глутамин, L-глутаминовая кислота, L-пролин, L-аргинин, L-фенилаланин, L-тирозин и L-триптофан.

Целью настоящего изобретения является предоставление бактерии семейства Enterobacteriaceae - продуцента L-аминокислоты, при этом указанная бактерия модифицирована таким образом, что экспрессия гена bssR в указанной бактерии усилена.

Также целью настоящего изобретения является предоставление описанной выше бактерии, в которой указанная экспрессия усилена путем модификации последовательности, контролирующей экспрессию гена bssR.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная бактерия принадлежит к роду Escherichia.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная бактерия принадлежит к роду Pantoea.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная L-аминокислота выбрана из группы, состоящей из ароматической L-аминокислоты и неароматической L-аминокислоты.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом ароматическая L-аминокислота выбрана из группы, состоящей из L-фенилаланина, L-тирозина и L-триптофана.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом неароматическая L-аминокислота выбрана из группы, состоящей из L-треонина, L-лизина, L-цистеина, L-метионина, L-лейцина, L-изолейцина, L-валина, L-гистидина, L-глицина, L-серина, L-аланина, L-аспарагина, L-аспарагиновой кислоты, L-глутамина, L-глутаминовой кислоты, L-пролина, L-цитруллина, L-орнитина и L-аргинина.

Также целью настоящего изобретения является предоставление способа получения L-аминокислоты, который включает в себя выращивание описанной выше бактерии в питательной среде и выделение указанной L-аминокислоты из культуральной жидкости.

Также целью настоящего изобретения является предоставление описанного выше способа, при этом указанная L-аминокислота выбрана из группы, состоящей из ароматической L-аминокислоты и неароматической L-аминокислоты.

Также целью настоящего изобретения является предоставление описанного выше способа, при этом указанная ароматическая L-аминокислота выбрана из группы, состоящей из L-фенилаланина, L-тирозина и L-триптофана.

Также целью настоящего изобретения является предоставление описанного выше способа, при этом указанная неароматическая L-аминокислота выбрана из группы, состоящей из L-треонина, L-лизина, L-цистеина, L-метионина, L-лейцина, L-изолейцина, L-валина, L-гистидина, L-глицина, L-серина, L-аланина, L-аспарагина, L-аспарагиновой кислоты, L-глутамина, L- глутаминовой кислоты, L-пролина, L-цитруллина, L-орнитина и L-аргинина.

Наилучший способ осуществления настоящего изобретения

1. Бактерия

Бактерия согласно настоящему изобретению представляет собой бактерию-продуцента L-аминокислоты семейства Enterobacteriaceae, модифицированную таким образом, что экспрессия гена bssR в указанной бактерии усилена.

Термин «бактерия-продуцент L-аминокислоты» может означать бактерию, обладающую способностью к продукции и выделению L-аминокислоты в питательную среду, когда бактерия выращивается в указанной питательной среде.

Термин «бактерия-продуцент L-аминокислоты» также может означать бактерию, которая способна к продукции L-аминокислоты и вызывает накопление L-аминокислоты в ферментационной среде в количествах, больших по сравнению с природным или родительским штаммом Е. coli, таким, как штамм Е. coli K-12, и, может означать, что указанный микроорганизм способен накапливать в среде целевую L-аминокислоту в количестве не менее чем 0.5 г/л, или не менее чем 1.0 г/л в другом примере. Термин «L-аминокислота» включает, например, L-аланин, L-аргинин, L-аспарагин, L-аспарагиновую кислоту, L-цитруллин, L-цистеин, L-глутаминовую кислоту, L-глутамин, L-глицин, L-гистидин, L-изолейцин, L-лейцин, L-лизин, L-метионин, L-цитруллин, L-орнитин, L-фенилаланин, L-пролин, L-серин, L-треонин, L-триптофан, L-тирозин и L-валин.

Термин «ароматическая L-аминокислота» включает, например, L-фенилаланин, L-тирозин и L-триптофан. Термин «неароматическая L-аминокислота» включает, например, L-треонин, L-лизин, L-цистеин, L-метионин, L-лейцин, L-изолейцин, L-валин, L-гистидин, L-глицин, L-серин, L-аланин, L-аспарагин, L-аспартат, L-глутамин, L-глутаминовую кислоту, L-пролин, L-цитруллин, L-орнитин и L-аргинин.

Семейство Enterobacteriaceae включает в себя бактерии, принадлежащие к родам Escherichia, Enterobacter, Erwinia, Klebsiella, Pantoea, Photorhabdus, Providencia, Salmonella, Serratia, Shigella, Morganella, Yersinia и т.д. Более конкретно, могут быть использованы бактерии, классифицируемые как принадлежащие к семейству Enterobacteriaceae в соответствии с таксономией, используемой в базе данных NCBI (National Center for Biotechnology Information)

(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=543). Примерами могут служить бактерии, принадлежащие к роду Escherichia или Pantoea.

Термин "бактерия, принадлежащая к роду Escherichia" может означать, что бактерия относится к роду Escherichia в соответствии с классификацией, известной специалисту в области микробиологии. В качестве примера микроорганизма, принадлежащего к роду Escherichia, может быть упомянута бактерия Escherichia coli (E. coli).

Круг бактерий, принадлежащих к роду Escherichia, не ограничен каким-либо образом, однако, например, бактерии, описанные в книге Neidhardt, F.C. et al. (Escherichia coli and Salmonella typhimurium, American Society for Microbiology, Washington D.C., 1208, Таблица 1), могут быть приведены в качестве примеров.

Термин «бактерия, принадлежащая к роду Pantoea» может означать, что бактерия относится к роду Pantoea в соответствии с классификацией, известной специалисту в области микробиологии. Недавно несколько видов Enterobacter agglomerans были классифицированы как Pantoea agglomerans, Pantoea ananatis, Pantoea stewartii или подобные им, на основе анализа нуклеотидной последовательности 16S рРНК и т.д. (Int. J. Syst. Bacteriol, 43, 162-173 (1993)).

Термин "усиление экспрессии гена" может означать, что экспрессия гена выше, чем в немодифицированном штамме, например, в штамме дикого типа. Примеры таких модификаций могут включать увеличение числа копий экспрессируемого гена в клетке, усиление экспрессии гена и т.д. Количество копий экспрессируемого гена определяют, например, путем рестрикции хромосомной ДНК с последующим блоттингом по Саузерну с использованием зонда, сконструированного на основе последовательности гена, флуоресцентной гибридизации in situ (FISH), и т.п. Уровень экспрессии гена можно определить различными известными методами, включая Нозерн-блоттинг, количественную ОТ-ПЦР, и т.п. Кроме того, штаммы, которые могут быть использованы в качестве контроля, включают, например, Escherichia coli К-12 или Pantoea ananatis PERM BP-6614.

Ген bssR (синонимы: yliH, b0836) кодирует регулятор формирования биопленки BssR. Ген bssR (нуклеотиды с 877471 по 877854; в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990) расположен между геном rimO, ориентированным в противоположном направлении, и геном ylil на хромосоме Е. coli K-12. Нуклеотидная последовательность гена bssR и аминокислотная последовательность белка BssR, кодируемого геном bssR, представлены в SEQ ID NO:1 и SEQ ID NO:2, соответственно.

Поскольку у представителей различных родов или штаммов семейства Enterobacteriaceae возможны некоторые вариации в нуклеотидных последовательностях, ген bssR не ограничивается геном, последовательность которого приведена в SEQ ID NO:1, но также может включать и гены, гомологичные SEQ ID NO:1. Следовательно, вариант белка, кодируемого геном bssR, может иметь гомологию не менее 80% или не менее 90% в другом примере, или не менее 95% в другом примере, по отношению к полной аминокислотной последовательности, приведенной в SEQ ID NO.2, при условии, что он имеет активность белка BssR. Термин "вариант белка", может означать белок с изменениями в последовательности, будь то делеции, вставки, добавления или замены аминокислот. Число изменений в варианте белка зависит от положения или типа аминокислотного остатка в третичной структуре белка. Оно может быть от 1 до 30, или от 1 до 15 в другом примере, или от 1 до 5 в другом примере, в SEQ ID NO:2. Данные изменения в вариантах могут иметь место в областях, не критичных для функции белка. Данные изменения возможны потому, что некоторые аминокислоты имеют высокую гомологию друг другу, поэтому такие изменения не влияют на третичную структуру.

Гомология между двумя аминокислотными последовательностями может быть определена с использованием известных методов, например, компьютерной программы BLAST 2.0, которая считает три параметра: счет, идентичность и сходство.

Замена, делеция, вставка или добавление одного или нескольких аминокислотных остатков являются консервативной(-ыми) мутацией(-ями), если сохраняется активность. Типичным примером консервативной мутации является консервативная замена. Примеры консервативных замен включают замену А1а на Ser или Thr, замену Arg на Gin, His или Lys, замену Asn на Glu, Gin, Lys, His или Asp, замену Asp на Asn, Glu или Gin, замену Cys на Ser или Ala, замену Gln на Asn, Glu, Lys, His, Asp или Arg, замену Glu на Asn, Gln, Lys или Asp, замену Gly на Pro, замену His на Asn, Lys, Gln, Arg или Tyr, замену Ile на Leu, Met, Val или Phe, замену Leu на Ile, Met, Val или Phe, замену Lys на Asn, Glu, Gin, His или Arg, замену Met на Ile, Leu, Val или Phe, замену Phe на Trp, Tyr, Met, Ile или Leu, замену Ser на Thr или Ala, замену Thr на Ser или Ala, замену Trp на Phe или Tyr, замену Tyr на His, Phe или Trp, и замену Val на Met, Ile или Leu.

В связи с этим ген bssR может быть вариантом, который гибридизуется в жестких условиях с нуклеотидной последовательностью, представленной в SEQ ID NO:1, или с зондом, который может быть синтезирован на основе указанной нуклеотидной последовательности, при условии, что он кодирует функциональный белок BssR. «Жесткие условия» включают такие условия, при которых специфические гибриды, например, гибриды с гомологией не менее 60%, 70%, 80%, 90% или 95% в разных примерах, образуются, а неспецифические гибриды, например, гибриды с меньшей гомологией, чем указано выше, - не образуются. Практическим примером жестких условий является однократная или многократная отмывка, или двух- или трехкратная в другом примере, при концентрации солей 1×SSC, 0.1% SDS, предпочтительно 0.1×SSC, 0.1% SDS, при 60°С. Продолжительность отмывки зависит от типа используемой для блоттинга мембраны и, как правило, такова, как рекомендовано производителем. Например, рекомендуемая продолжительность отмывки для нейлоновой мембраны Hybond™ N+ (Amersham) в жестких условиях - 15 минут. Отмывка может быть выполнена два или три раза. Длина зонда может быть выбрана в зависимости от условий гибридизации, обычно составляет около 100-1000 п.н.

Методы усиления экспрессии гена включают увеличение числа копий гена. Введение гена в вектор, способный функционировать в бактерии семейства Enterobacteriaceae, может увеличивать число копий гена. Могут использоваться низкокопийные векторы. Примеры низкокопийных векторов включают, но не ограничиваются ими, pSC101, pMW118, pMW119, и т.п. Термин "низкокопийный вектор" используется для векторов, число копий которого в клетке достигает пяти.

Усиление экспрессии гена может также быть достигнуто путем введения множества копий гена в бактериальную хромосому, например, методом гомологичной рекомбинации, Ми интеграции и т.п. Например, один акт Ми интеграции позволяет ввести в бактериальную хромосому до 3 копий гена.

Число копий гена также может быть увеличено путем введения множества копий гена в хромосомную ДНК бактерии. Для введения множества копий гена в бактериальную хромосому может быть выполнена гомологичная рекомбинация с использованием в качестве целевых последовательностей, присутствующих в хромосоме во множестве копий. Последовательности с множеством копий в хромосомной ДНК, включают, но не ограничиваются ими, повторяющиеся ДНК или инвертированные повторы, присутствующие на концах мобильных элементов. Также возможно включить ген в состав транспозона и обеспечить его перенос для введения множества копий гена в хромосомную ДНК.

Усиление экспрессии гена также может быть достигнуто путем подстановки фрагмента ДНК под контроль сильного промотора. Примерами сильных промоторов являются lac промотор, trp промотор, trc промотор, PR или PL промоторы фага λ. Использование сильного промотора можно сочетать с увеличением копий гена.

С другой стороны, действие промотора может быть усилено, например, введением в промотор мутации, ведущей к увеличению уровня транскрипции локализованного за промотором гена. Кроме того, известно, что замена нескольких нуклеотидов в области между сайтом связывания рибосомы (ribosome binding site - RBS) и стартовым кодоном, особенно в последовательности непосредственно перед стартовым кодоном, существенно влияет на трансляционную способность мРНК. Например, обнаружен 20-кратный разброс в уровне экспрессии в зависимости от природы трех нуклеотидов, предшествующих стартовому кодону (Gold et al., Annu. Rev. Microbiol., 35, 365-403, 1981; Hui et al., EMBO J., 3, 623-629, 1984).

Кроме того, возможно ввести нуклеотидную замену в область промотора гена на бактериальной хромосоме, результатом чего является усиление функции промотора. Изменение последовательности, контролирующей экспрессию, можно осуществить, например, таким же способом, что и замена гена с использованием чувствительной к температуре плазмиды, как раскрыто в международной заявке WO 00/18935 и заявке Японии JP 1-215280 А.

Методы приготовления плазмидной ДНК, рестрикции и лигирования ДНК, трансформации, выбора нуклеотидов в качестве праймера и т.п. могут быть обычными методами, известными специалисту в этой области. Эти методы описаны, например, в Sambrook, J., Fritsch, E.F., and Maniatis, Т., "Molecular Cloning: A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989).

Бактерия-продуцент L-аминокислоты

В качестве бактерии согласно настоящему изобретению, модифицированной таким образом, что экспрессия гена bssR усилена, может быть использована бактерия, способная к продукции ароматической или неароматической L-аминокислоты.

Бактерия согласно настоящему изобретению может быть получена путем усиления экспрессии гена bssR в бактерии, уже обладающей способностью к продукции L-аминокислот. С другой стороны, бактерия согласно настоящему изобретению может быть получена путем придания бактерии, в которой экспрессия гена bssR уже усилена, способности к продукции L-аминокислот.

Бактерия-продуцент L-треонина

Примеры родительских штаммов, которые могут быть использованы для получения бактерии-продуцента L-треонина, включают, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм Е. coli TDH-6/pVIC40 (ВКПМ В-3996) (патенты США 5175107 и 5705371), штамм Е. coli NRRL-21593 (патент США 5939307), штамм Е. coli FERM ВР-3756 (патент США 5474918), штаммы Е. coli FERM ВР-3519 и FERM ВР-3520 (патент США 5376538), штамм Е. coli MG442 (Гусятинер и др, Генетика, 14, 947-956 (1978)), штаммы Е. coli VL643 и VL2055 (Европейская патентная заявка ЕР 1149911 А) и подобными им.

Штамм TDH-6 является дефицитным по гену thrC, способен ассимилировать сахарозу и содержит ген ilvA с мутацией типа "leaky". Указанный штамм содержит мутацию в гене rhtA, которая обуславливает устойчивость к высоким концентрациям треонина и гомосерина. Штамм В-3996 содержит плазмиду pVIC40, которая была получена путем введения в вектор, производный от вектора RSF1010, оперона thrA*BC, включающего мутантный ген thrA, кодирующий аспартокиназа-гомосериндегидрогеназу I, у которой существенно снижена чувствительность к ингибированию треонином по типу обратной связи. Штамм В-3996 был депонирован 19 ноября 1987 года во Всесоюзном научном центре антибиотиков (РФ, 117105 Москва, Нагатинская ул., 3-А) с инвентарным номером РИА 1867. Указанный штамм также был депонирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ) (РФ, 117545 Москва, 1-й Дорожный проезд, 1) 7 апреля 1987 г. с инвентарным номером В-3996.

В качестве родительского штамма для получения бактерии-продуцента L-треонина также может быть использован штамм Е. coli ВКПМ В-5318 (Европейская заявка 0593792 В). Штамм В-5318 является прототрофным относительно изолейцина, и чувствительный к температуре С1 репрессор фага λ и PR-промотор замещает регуляторную область в треониновом опероне на плазмиде pVIC40. Штамм ВКПМ В-5318 депонирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ) (РФ, 117545 Москва, 1-й Дорожный проезд, 1) 3 мая 1990 г. с инвентарным номером В-5318.

Бактерия может быть дополнительно модифицирована таким образом, чтобы иметь повышенную экспрессию одного или нескольких следующих генов:

- мутантного гена thrA, кодирующего аспартокиназа-гомосериндегидрогеназу I, устойчивую к ингибированию треонином по типу обратной связи;

- гена thrB, кодирующего гомосеринкиназу;

- гена thrC, кодирующего треонинсинтазу;

- гена rhtA, предположительно кодирующего трансмембранный белок;

- гена asd, кодирующего аспартат-р-семиальдегиддегидрогеназу, и

- гена aspC, кодирующего аспартатаминотрансферазу (аспартаттрансаминазу).

Нуклеотидная последовательность гена thrA, кодирующего аспартокиназа-гомосериндегидрогеназу I из Escherichia coli, известна (номера нуклеотидов с 337 по 2799 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990). Ген thrA расположен на хромосоме штамма Е. coli K-12 между генами thrL и thrB. Нуклеотидная последовательность гена thrB, кодирующего гомосеринкиназу из Escherichia coli, известна (номера нуклеотидов с 2801 по 3733 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990). Ген thrB расположен на хромосоме штамма Е. coli K-12 между генами thrA и thrC. Нуклеотидная последовательность гена thrC, кодирующего треонинсинтазу из Escherichia coli, известна (номера нуклеотидов с 3734 по 5020 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990). Ген thrC расположен на хромосоме штамма Е. coli K-12 между геном thrB и открытой рамкой считывания уааХ. Все три указанных гена функционируют как один треониновый оперон. Для усиления экспрессии треонинового оперона, из оперона может быть удалена область аттенюатора, который влияет на транскрипцию (заявка РСТ WO 2005/049808, заявка РСТ WO 2003/097839).

Мутантный ген thrA, кодирующий аспартокиназу-гомосериндегидрогеназу I, устойчивую к ингибированию треонином по типу обратной связи, так же, как и гены thrB и thrC могут быть получены в виде единого оперона из хорошо известной плазмиды pVIC40, которая представлена в штамме-продуценте Е. coli ВКПМ В-3996. Плазмида pVIC40 подробно описана в патенте США 5705371.

Ген rhtA расположен на 18 минуте хромосомы Е. coli около оперона glnHPQ, который кодирует компоненты транспортной системы глутамина, ген rhtA идентичен ORF1 (ген ybiF, номера нуклеотидов с 764 по 1651 в последовательности с инвентарным номером ААА218541 в базе данных GenBank, gi: 440181), расположен между генами рехВ и ompX. Участок ДНК, экспрессирующийся с образованием белка, кодируемого рамкой считывания ORF1, был назван геном rhtA (rht: resistance to homoserine and threonine). Также было показано, что мутация rhtA13 представляет собой замену А-на-G в положении -1 по отношению к старт кодону ATG (тезисы 17th International Congress of Biochemistry and Molecular Biology, тезисы 1997 Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No.457; Европейская заявка ЕР 1013765 A).

Нуклеотидная последовательность гена asd из E. coli известна (номера нуклеотидов с 3572511 по 3571408 в последовательности с инвентарным номером NC_000913.1 в базе данных GenBank, gi: 16131307) и может быть получена с помощью ПЦР (полимеразная цепная реакция; ссылка на White, T.J. et al., Trends Genet., 5, 185 (1989)) с использованием праймеров, синтезированных на основе нуклеотидной последовательности указанного гена. Гены asd т других микроорганизмов могут быть получены сходным образом.

Также нуклеотидная последовательность гена aspC из E. coli известна (номера нуклеотидов с 983742 по 984932 в последовательности с инвентарным номером NC_000913.1 в базе данных GenBank, gi: 16128895) и может быть получена с помощью ПЦР. Гены aspC из других микроорганизмов могут быть получены сходным образом.

Бактерия-продуцент L-лизина

Примеры бактерий-продуцентов L-лизина, принадлежащих к роду Escherichia, включают мутанты, обладающие устойчивостью к аналогу L-лизина. Аналог L-лизина ингибирует рост бактерий, принадлежащих к роду Escherichia, но это ингибирование полностью или частично снимается, когда в среде также присутствует L-лизин. Примеры аналога L-лизина включают, но не ограничиваются оксализином, лизингидроксаматом, S-(2-аминоэтил)-L-цистеином (АЕС), γ-метиллизном, α-хлорокапролактамом и так далее. Мутанты, обладающие устойчивостью к указанным аналогам лизина, могут быть получены путем обработки бактерий, принадлежащих к роду Escherichia, традиционными мутагенами. Конкретные примеры бактериальных штаммов, используемых для получения L-лизина, включают штамм Escherichia coli AJ11442 (PERM BP-1543, NRRL В-12185; смотри патент США 4346170) и штамм Escherichia coli VL611. В этих микроорганизмах аспартокиназа устойчива к ингибированию L-лизином по принципу обратной связи.

Штамм WC196 может быть использован в качестве бактерии-продуцента L-лизина Escherichia coli. Данный бактериальный штамм был получен путем селекции фенотипа устойчивости к АЕС у штамма W3110, производного от штамма Escherichia coli K-12. Полученный штамм был назван Escherichia coli AJ13069 и был депонирован в Национальном Институте Биологических Наук и Человеческих Технологий, Агентство Промышленной Науки и Технологии, Министерство Международной Торговли и Промышленности (National Institute ofBioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry), в настоящее время называющийся Национальный Институт Прогрессивной Промышленной Науки и Технологии, Международный Депозитарий Организмов для Целей Патентования, Централ 6, 1-1, Хигаши 1-Чоме, Тсукуба-ши, Ибараки-кен, 305-8566, Япония (National Institute of Advanced Industrial Science and Technology, International Patent Organism Depositary, Central 6, 1-1, Higashi 1-Chome, Tsukuba-shi, Ibaraki-ken, 305-8566, Japan), 6 декабря 1994 года и получил инвентарный номер FERM Р-14690. Затем было произведено международное депонирование этого штамма согласно условиям Будапештского Договора 29 сентября 1995 года, и штамм получил инвентарный номер PERM BP-5252 (патент США 5827698).

Примеры родительских штаммов, которые могут быть использованы для получения бактерий, продуцирующих L-лизин, также включают штаммы, в которых усилена экспрессия одного или нескольких генов, кодирующих ферменты биосинтеза L-лизина. Примеры ферментов, вовлеченных в биосинтез L-лизина, включают, но не ограничиваются ими, дигидродипиколинатсинтазу (dapA), аспартокиназу (lysC), дигидродипиколинатредуктазу (dapB), диаминопимелатдекарбоксилазу (lysA), диаминопимелатдегидрогеназу (ddh) (патент США. 6,040,160), фосфоенолпируваткарбоксилазу(дрс), аспартатсемиальдегиддегидрогеназу (asd), никотинамидадениндинуклеотидтрансгидрогеназу (pntAB) и аспартазу (aspA) (европейская заявка ЕР 1253195 А). Кроме того, родительские штаммы могут иметь повышенный уровень экспрессии гена, вовлеченного в процесс дыхания (суо) (европейская заявка ЕР 1170376 А), гена, кодирующего никотинамиднуклеотидтрансгидрогеназу (pntAB) (патент США 5,830,716), гена ybjE (заявка РСТ W02005/073390), или комбинации этих генов.

Примеры родительских штаммов, которые могут использоваться для получения бактерий, продуцирующих L-лизин, также включают штаммы, в которых снижена или отсутствует активность ферментов, катализирующих реакции образования отличных от L-лизина соединений, ответвляющихся от основного пути биосинтеза L-лизина. Примеры ферментов, которые катализируют реакции образования отличных от L-лизина соединений, ответвляющихся от основного пути биосинтеза L-лизина, включают гомосериндегидрогеназу, лизиндекарбоксилазу (патент США 5,827,698) и малатдегидрогеназу (заявка РСТ WO 2005/010175).

Бактерия-продуцент L-цистеина

Примеры родительских штаммов, которые могут быть использованы для получения бактерии-продуцента L-цистеина, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм Е. coli JM15, трансформированный различными аллелями гена cysE, кодирующими устойчивые к ингибированию по типу обратной связи серинацетилтрансферазы (патент США 6218168, патентная заявка РФ 2003121601); штамм Е. coli W3110, содержащий сверхэкспрессированные гены, кодирующие белок, способный к секреции соединений, токсичных для клетки (патент США 5972663); штаммы Е. coli, содержащие цистеиндесульфогидразу со сниженной активностью (патент Японии JP 11155571А2); штамм Е. coli W3110 с повышенной активностью позитивного транскрипционного регулятора цистеинового регулона, кодируемого геном cysB (международная заявка РСТ WO 0127307A1) и подобные им.

Бактерия-продуцент L-лейцина

Примеры родительских штаммов, которые могут быть использованы для получения бактерии-продуцента L-лейцина, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штаммы Е. coli, устойчивые к аналогам лейцина, включающим, например, β-2-тиенилаланин, 3-гидроксилейцин, 4-азалейцин и 5,5,5-трифлуоролейцин (выложенные патентные заявки Японии 62-34397 и 8-70879), штаммы Е. coli, полученные с помощью генно-инженерных методов, описанных в заявке РСТ 96/06926; Е. coli штамм Н-9068 (JP 8-70879A), и подобные им.

Бактерия может быть улучшена путем усиления экспрессии одного или нескольких генов, вовлеченных в биосинтез L-лейцина. Примеры таких генов включают в себя гены оперона leuABCD, которые могут быть представлены мутантным геном leuA, кодирующим изопропилмалатсинтазу со снятым ингибированием L-лейцином по типу обратной связи (патент США 6403342). Кроме того, бактерия согласно настоящему изобретению может быть улучшена путем усиления экспрессии одного или нескольких генов, кодирующих белки, которые экспортируют L-аминокислоту из бактериальной клетки. Примеры таких генов включают в себя гены b2682 и b2683 (гены ygaZH) (европейская заявка ЕР 1239041 А2).

Бактерия-продуцент L-гистидина

Примеры родительских штаммов, которые могут быть использованы для получения бактерии-продуцента L-гистидина, включают в себя, но не ограничиваются бактериями-продуцентами L-гистидина, принадлежащими к роду Escherichia, такими как штамм Е. coli 24 (ВКПМ В-5945, патент РФ 2003677); штамм Е. coli 80 (ВКПМ В-7270, патент РФ 2119536); штаммы Е. coli NRRL B-12116-B12121 (патент США 4388405); штаммы Е. coli Н-9342 (FERM ВР-6675) и Н-9343 (FERM ВР-6676) (патент США 6344347); штамм Е. coli Н-9341 (FERM ВР-6674) (Европейский патент 1085087); штамм Е. coli AI80/pFM201 (патент США 6258554) и подобными им.

Примеры родительских штаммов, которые могут быть использованы для получения бактерий, продуцирующих L-гистидин, также включают штаммы, в которых усилена экспрессия одного или нескольких генов, кодирующих ферменты биосинтеза L-гистидина. Примеры таких генов включают гены, кодирующие АТФ-фосфорибозилтрансферазу (hisG), фосфорибозил-АМФ-циклогидролазу (hisI), фосфорибозил-АТФ-фосфогидролазу (hisIE), фосфорибозилформимино-5-аминоимидазолкарбоксамидриботидизомеразу (hisA), амидотрансферазу (hisH), гистидинолфосфатаминотрансферазу (hisC), гистидинолфосфатазу (hisB), гистидинолдегидрогеназу (hisD) и т.д.

Известно, что гены, кодирующие ферменты биосинтеза L-гистидина (hisG, hisBHAFI), ингибируются L-гистидином, поэтому способность к продукции L-гистидина также может быть значительно усилена введением мутации, придающей устойчивость к ингибированию по типу обратной связи, в ген АТФ-фосфорибозидтрансферазы (hisG) (патенты РФ. 2003677 и 2119536).

Специфические примеры штаммов, обладающих способностью к продукции L-гистидина, включают Е. coli FERM-P 5038 и 5048, в которые был введен вектор, содержащий ДНК, кодирующую фермент биосинтеза L-гистидина (заявка Японии 56-005099 А), штаммы E.coli, в которые введен ген rht, для экспорта аминокислоты (европейская заявка ЕР 1016710А), штамм Е. coli 80, которому придана устойчивость к сульфагуанидину, DL-1,2,4-триазол-3-аланину и стрептомицину (ВКПМ В-7270, патент РФ. 2119536), и т.д.

Бактерия-продуцент L-глутаминовой кислоты

Примеры родительских штаммов, которые могут быть использованы для получения бактерии-продуцента L-глутаминовой кислоты, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм Е. coli VL334 thrC+ (Европейский патент ЕР 1172433). Штамм Е. coli VL334 (ВКПМ В-1641) является ауксотрофом по L-изолейцину и L-треонину с мутациями в генах thrC и UvA (патент США 4278765). В этот штамм был перенесен природный аллель гена thrC методом общей трансдукции с использованием бактериофага Р1, выращенного на клетках природного штамма Е. coli К 12 (ВКПМ В-7). В результате был получен штамм, ауксотроф по L-изолейцину, VL334thrC+ (ВКПМ В-8961), который обладает способностью к продукции L-глутаминовой кислоты.

Примеры родительских штаммов, которые могут быть использованы для получения бактерии-продуцента L-глутаминовой кислоты, включают в себя, но не ограничиваются ими, штаммы, дефектные по активности α-кетоглутаратдегидрогеназы, или штаммы, в которых усилена экспрессия одного или нескольких генов, кодирующих ферменты биосинтеза L-глутаминовой кислоты. Примеры таких ферментов включают глутаматдегидрогеназу (gdh), глутаминсинтетазу (glnA), глутаматсинтетазу (jgltAB), изоцитратдегидрогеназу (icdA), аконитатгидратазу (acnA, acnB), цитратсинтазу (gltA), фосфоенолпируваткарбоксилазу (ррс), пируватдегидрогеназу (aceEF, lpdA), пируваткиназу (pykA, pykF), фосфоенолпируватсинтазу (ppsA), енолазу (eno), фосфоглицеромутазу (pgmA, pgmI), фосфоглицераткиназу (pgk), глицеральдегид-3-фосфатдегидрогеназу (gapA), триозофосфатизомеразу (tpiA), фруктозобифосфатальдолазу (fbp), фосфофруктокиназу (pfkA, pfkB) и глюкозофосфатизомеразу (pgi).

Примеры штаммов, модифицированных таким образом, что усилена экспрессия гена цитратсинтетазы, гена фосфоенолпируваткарбоксилазы и/или гена глутаматдегидрогеназы, включают описанные в европейских заявках ЕР 1078989А, ЕР 955368А и ЕР 952221А.

Примеры штаммов, модифицированных таким образом, что снижена экспрессия генов цитратсинтетазы и/или фосфоенолпируваткарбоксилазы, и/или дефицитные по активности α-кетоглутаратдегидрогеназы, включают описанные в европейских заявках ЕР 1078989А, ЕР 955368А и ЕР 952221А.

Примеры родительских штаммов, которые могут быть использованы для получения продуцирующих L-глутаминовую кислоту бактерий, также включают штаммы, в которых снижена или отсутствует активность ферментов, которые катализируют синтез отличных от L-глутаминовой кислоты соединений, ответвляющихся от основного пути биосинтеза L-глутаминовой кислоты. Примеры таких ферментов включают изоцитратлиазу (асеА), α-кетоглутаратдегидрогеназу (sucA), фосфотрансацетилазу (pta), ацетаткиназу (ack), синтазу ацетогидроксикислот (ilvG), ацетолактатсинтазу (ilvI), форматацетилтрансферазу (pfl), лактатдегидрогеназу (ldh) и глутаматдекарбоксилазу (gadAB). Бактерии, принадлежащие к роду Escherichia, лишенные активности α-кетоглутаратдегидрогеназы или обладающие сниженной активностью α-кетоглутаратдегидрогеназы и способы их получения описаны в патентах США 5,378,616 и 5,573,945. Конкретно, примеры таких штаммов могут включать в себя следующие штаммы:

Е. coli W3110sucA::KmR

Е. coli AJ12624 (FERM ВР-3853)

Е. coli AJ2628 (FERM BP-3854)

Е. coli AJ2949 (FERM BP-4881)

Е. coli W3110sucA::KmR - это штамм, полученный в результате разрушения гена α-кетоглутаратдегидрогеназы (далее называемого "ген sucA") в штамме Е. coli W3110. У этого штамма активность α-кетоглутаратдегидрогеназы отсутствует полностью.

Другие примеры бактерии-продуцента L-глутаминовой кислоты включают в себя бактерии, принадлежащие к роду Escherichia и обладающие устойчивостью к антиметаболитам аспарагиновой кислоты и дефицитные по активности α-кетоглутаратдегидрогеназы, например, штамм AJ 13199 (FERM BP-5807) (патент США 5,908,768), или штамм FERM Р-12379, дополнительно обладающий низкой активностью по расщеплению L-глутаминовой кислоты (патент США 5,393,671); штамм Е. coli AJ 13138 (FERM BP-5565) (патент США 6,110,714) и подобные им.

Примеры бактерии-продуцента L-глутаминовой кислоты включают в себя мутантные штаммы, принадлежащие к роду Pantoea, которые лишены активности α-кетоглутаратдегидрогеназы или имеют сниженную активность α-кетоглутаратдегидрогеназы, и могут быть получены описанным выше способом. Примерами таких штаммов являются штамм Pantoea ananatis AJ13356 (патент США 6,331,419), штамм Pantoea ananatis AJ13356, депонированный в Национальном Институте Биологических Наук и Человеческих Технологий, Агентство Промышленной Науки и Технологии, Министерство Международной Торговли и Промышленности (National Institute ofBioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry) (в настоящее время называющийся Национальный Институт Прогрессивной Промышленной Науки и Технологии, Международный Депозитарий Организмов для Целей Патентования, Централ 6, 1-1, Хигаши 1-Чоме, Тсукуба-ши, Ибараки-кен, 305-8566, Япония - National Institute of Advanced Industrial Science and Technology, International Patent Organism Deposi