Светоизлучающее устройство с покрытием и способ нанесения покрытия на него

Иллюстрации

Показать все

Светоизлучающее устройство (1) содержит светоизлучающий диод (2), размещенный на монтажной подложке (3), причем упомянутое устройство имеет боковую периферийную поверхность (6) и верхнюю поверхность (8) и оптически активный слой покрытия (7), причем упомянутый слой покрытия (7) покрывает по меньшей мере часть упомянутой периферийной поверхности (6), простирается от монтажной подложки (3) до упомянутой верхней поверхности (8) и по существу не покрывает верхнюю поверхность (8). При этом по меньшей мере часть упомянутой боковой периферийной поверхности была предварительно обработана, чтобы она стала одной из полярной и аполярной, и при этом композиция покрытия, которая была использована для образования по меньшей мере части упомянутого слоя покрытия, является одной из полярной и аполярной. Также раскрыт способ получения такого устройства и предложен массив светоизлучающих устройств, состоящий из упомянутых выше светоизлучающих устройств. Изобретение обеспечивает возможность снижения потерь эффективности из-за рассеяния света через боковые поверхности светоизлучающего устройства. 3 н. и 12 з.п. ф-лы, 9 ил.

Реферат

Область изобретения

Настоящее изобретение относится к светоизлучающему устройству, содержащему светоизлучающий диод, расположенный на монтажной подложке, причем упомянутое устройство имеет боковую периферийную поверхность и верхнюю поверхность и оптически активный слой покрытия. Также раскрыт способ нанесения такого слоя покрытия на светоизлучающее устройство.

Предпосылки изобретения

Сегодня светоизлучающие устройства высокой мощности, содержащие светоизлучающие диоды (СИД), используются во все увеличивающемся ряде применений в освещении. Обычно для изготовления СИД высокой мощности используются две системы материалов.

InGaN используется для получения эффективных синих СИД.

AlInGaP используется для получения эффективных красных и янтарных СИД.

Обе системы материалов страдают от значительных потерь эффективности, когда состав их материалов изменяют для смещения длины волны излучения от синего к зеленому и от красного к зеленому.

При применении на пути света преобразующих длину волны материалов, таких как флуоресцентные и/или люминесцентные материалы, излученная длина волны может быть приспособлена ко многим специальным длинам волн. СИД, излучающие синий и/или ультрафиолетовый (УФ) свет, являются особенно подходящими в качестве источника света в таких светоизлучающих диодах (или светоизлучающих диодах с преобразованием длины волны) благодаря тому, что преобразующие длину волны материалы обычно поглощают по меньшей мере часть света, излучаемого диодом, и излучают свет, имеющий большую длину волны (красное смещение).

Системы InGaN могут быть объединены с таким преобразующим длину волны материалом, или оптическим компонентом, например, материалом-люминофором, для преобразования части синего света низкой длины волны с высокой энергией в более высокие длины волн низкой энергии. Таким образом, при объединении синего СИД с соответствующими люминофорными телами на СИД могут быть получены белые СИД (т.е. СИД белого свечения) (обычно с использованием люминофоров YAG:Ce), или же синий СИД может быть преобразован в зеленый, желтый, янтарный или красный СИД с использованием подходящих материалов-люминофоров. Это преобразование цвета идет с потерями эффективности (главным образом, потерями на смещение Стокса), но высокая исходная эффективность синих СИД делает даже полное преобразование в янтарный и красный привлекательной альтернативой непосредственно излучающим системам AlInGaP, которые страдают от проблем термической эффективности.

JP 2002353507 раскрывает светоизлучающее тело, в котором флуоресцентное вещество, которое изменяет излучаемый свет на другой цвет, стабилизируют. Это достигается заполнением канавок внутри СИД смолой, содержащей люминофор, в качестве связующего кристаллы агента для стабилизации общего количества смолы.

Традиционная люминофорная технология СИД использует люминофорные пигменты или порошковые частицы, заделанные в смолу поверх СИД. Это ведет, однако, к потерям на обратное рассеяние и технологическим отклонениям. Новая технология использует керамическую люминофорную технологию, названную технологией “Lumiramic” (преобразователь Lumiramic описан в US2005/0269582А1). Данная технология позволяет получать высоко фото- и термостойкие керамические люминофорные пластинки с точно заданными толщиной и геометрией, чтобы соответствовать геометрии СИД, которая обычно представляет собой квадрат 1×1 мм. При регулировании пористости в этих керамических люминофорных телах, или люминофорах, различия длины пути с углом могут быть достаточно разбросаны/рассеяны с обеспечением довольно однородной по углу цветовой характеристики, хотя и с потерей некоторой части света в результате обратного рассеяния к СИД.

Используя технологию Lumiramic, белые СИД могут быть получены (с использованием, например, люминофоров YAG:Ce) за счет частичного преобразования синего света в более высокие длины волн. Также могут быть получены зеленые, янтарные и красные СИД при попытке полностью поглотить синий свет СИД и эффективно преобразовать его в цветовой спектр, соответствующий характеристикам зеленого, янтарного или красного.

Однако, эта люминофорная технология с пластинками требует непренебрежимой толщины люминофорного тела по сравнению с размером СИД. Люминофорное тело обычно имеет толщину порядка 120 мкм при размере 1×1 мм для белого СИД. Это дает в результате значительный вклад в излучение света от четырех боковых поверхностей, или боковых сторон, данного квадратного объема.

Кроме того, сам СИД имеет боковую поверхность с непренебрежимым извлечением света. Чип СИД может быть перевернутым (типа «флип-чип»), где оба вывода расположены на одной и той же стороне чипа. Данная конструкция облегчает размещение преобразующего длину волны тела на светоизлучающей поверхности устройства. В случае СИД-технологии с перевернутым чипом СИД монтируют с подложкой, или светопропускающим телом, на нем. Когда эту подложку, обычно сапфировую, не удаляют, данная сапфировая подложка толщиной обычно 100 мкм также дает значительный вклад в боковую поверхность. Для решения этой проблемы подложка может быть удалена в процессе отслаивания. Все же, пакет слоев СИД на InGaN, состоящий из квантовых ям и анода, катода и отражателя, может иметь толщину порядка 10 мкм и состоит из материалов с высоким показателем преломления, что приводит в результате к значительному волноводному распространению и непренебрежимому боковому излучению.

Связующий слой, соединяющий СИД и люминофор Lumiramic, увеличивает толщину боковой поверхности и обычно имеет толщину 10 мкм.

Примеры связующих материалов включают в себя, например, силиконовую смолу.

Недостатки, относящиеся к излучаемому из боковых (краевых) поверхностей светоизлучающего устройства свету, заключаются в следующем:

С краев СИД и краев связки возникает утечка непреобразованного света, такого как синий свет, из краевых поверхностей. В случае Lumiramic частичного преобразования это может привести к избытку синего света, а также значительным колебаниям потока синего света, имеющимся при больших углах по отношению к направлению нормали, и поэтому снижению цветовой однородности и насыщенности по углу. В частности, колебания толщины слоя, такой как толщина связки, и неточности размещения люминофора, как имеет место при обработке, дают колебания утечки синего света из боковых поверхностей. В случае Lumiramic полного преобразования утечка синего света сильно снижает чистоту цвета зеленого, янтарного или красного СИД. Кроме того, эта утечка света снижает эффективность, так как часть синего света не преобразуется в желаемый цвет.

Преобразование длины волны через боковые края люминофора, которое является иным по спектру по сравнению со спектром преобразования из верхней поверхности люминофора из-за различий в длине пути между светом, излучаемым из боковых сторон и из верхней поверхности. Это является особенно нежелательным для люминофоров полного преобразования, так как неполное преобразование через боковые стороны люминофора снижает чистоту цвета СИД.

Излучение потока света из боковых поверхностей частично (приближенно наполовину) направлено вниз, обратно к монтажной подложке, которая обычно расположена рядом с кристаллом СИД. Обычно такой свет, излучаемый в неправильную сторону, а также свет, излучаемый в направлении вверх, но под большими углами к направлению нормали, трудно эффективно улавливать в оптической системе, объединенной с источником света, такой как коллиматорная оптика, линзы и т.д., и поэтому он, вероятно, снижает эффективность системы. Аналогично, идущий вниз поток света взаимодействует с монтажной подложкой и типично будет частично поглощаться, частично отражаться и обычно меняться в цвете при взаимодействии с поверхностью монтажной подложки. Свет, рассеянный или отраженный от монтажной подложки, также увеличивает площадь СИД-источника и дает посторонний (паразитный) свет, который является нежелательным для требующих протяженности в пространстве критических применений, таких как автомобильное переднее освещение или проекционные СИД-системы.

Увеличенная протяженность в пространстве сравнима с площадью активной поверхности СИД. Это обусловлено увеличенной площадью поверхности люминофора по сравнению с площадью поверхности СИД. Боковые стороны люминофора будут вносить вклад в увеличенную площадь источника, даже если площадь верхней поверхности люминофора сходна с СИД. Это особенно важно в требующих протяженности в пространстве критических применений, таких как автомобильное переднее освещение, модули фото- или видео-вспышек или проекционные СИД-системы.

В заключение, все различные варианты светоизлучающих устройств страдают от недостатков, относящихся к боковым краям Lumiramic и/или связующего слоя и/или кристалла СИД. Эти недостатки связаны, главным образом, с колебаниями цвета или ограниченной чистотой цвета из-за нежелательных спектральных различий между боковым излучением и верхним излучением. Кроме того, имеется излучение светового потока с преобразованием длины волны из боковых поверхностей, частично (приближенно наполовину) направленного вниз и вбок, который трудно эффективно использовать при каком-либо применении. Кроме того, протяженность в пространстве может быть также увеличенной по сравнению с площадью активных поверхностей СИД, что является недостатком в требующих протяженности в пространстве критических применениях, таких как проекционные СИД-системы, автомобильные фары или прожекторы.

В US 2005/0062140 был раскрыт способ нанесения покрытия на светоизлучающее устройство с использованием литейной формы для нанесения материалов со светопреобразующими частицами на СИД-устройство. Однако, данный способ включает в себя специальное устройство для нанесения покрытия и является трудоемким и дорогостоящим.

Таким образом, имеется потребность в светоизлучающем устройстве и способах получения такого светоизлучающего устройства, которое не страдает от нежелательных колебаний или чистоты цвета и потерь эффективности из-за излучения света через боковые края светоизлучающего устройства или дает увеличенную протяженность в пространстве по сравнению с площадью активной поверхности СИД.

Сущность изобретения

Задачей настоящего изобретения является по меньшей мере частичное преодоление указанных проблем и создание светоизлучающего устройства и способа получения такого светоизлучающего устройства, которое не страдает от потери эффективности из-за рассеяния света через боковые поверхности светоизлучающего устройства.

Следовательно, согласно первому аспекту настоящее изобретение предусматривает светоизлучающее устройство 1, содержащее светоизлучающий диод 2, размещенный на монтажной подложке 3. Устройство имеет боковую периферийную поверхность 6 и верхнюю поверхность 8 и оптически активный слой покрытия 7. Этот слой покрытия 7:

- покрывает по меньшей мере часть упомянутой периферийной поверхности 6,

- простирается от монтажной подложки 3 до упомянутой верхней поверхности 8 и

- по существу не покрывает верхнюю поверхность 8.

Когда по меньшей мере часть боковой периферийной поверхности светоизлучающего устройства покрыта оптически активным слоем покрытия от монтажной подложки до верхней поверхности, но по существу не включая верхнюю поверхность, можно контролировать свет, выходящий из боковой поверхности. Таким образом, свет может быть, например, увеличен на верхней поверхности.

В вариантах воплощения изобретения оптически активный слой покрытия выбран из группы отражательного, диффузного, спектрально фильтрующего, люминесцентного и светоблокирующего слоев покрытия и их комбинаций.

Когда такой оптически активный слой покрытия используется для покрытия боковой периферийной поверхности, этот слой покрытия будет становиться отражательным, диффузным, спектрально фильтрующим, люминесцентным или светоблокирующим в соответствии с выбором.

В вариантах воплощения изобретения устройство дополнительно содержит размещенный на светоизлучающем диоде оптический компонент 4, выбранный из группы люминофорного тела, светопропускающего тела и отражающего тела и их комбинаций. В вариантах воплощения изобретения отражающее тело размещено так, что свет будет выходить через по меньшей мере часть боковой периферийной поверхности.

В вариантах воплощения изобретения устройство дополнительно содержит оптический компонент, размещенный на светоизлучающем устройстве.

В вариантах воплощения изобретения слой покрытия является твердым. Боковая периферийная поверхность также может быть покрыта более чем одним слоем покрытия.

В вариантах воплощения изобретения светоизлучающие устройства согласно изобретению могут быть размещены в массивах.

При размещении в массивах светоизлучающих устройств согласно изобретению, имеющих слой покрытия на боковой периферийной поверхности, можно, например, избежать перекрестных помех между отдельными светоизлучающими устройствами. Таким образом, светоизлучающие устройства могут быть адресованы индивидуально.

Массив светоизлучающих устройств также может быть выполнен совместно использующим слой покрытия.

Согласно второму аспекту настоящее изобретение предусматривает способ нанесения слоя покрытия на по меньшей мере часть боковой периферийной поверхности 6 светоизлучающего устройства 1, содержащего светоизлучающий диод. Способ содержит:

размещение оптически активного слоя покрытия 7 на по меньшей мере части периферийной поверхности 6, причем слой покрытия 7 простирается от подложки 3 до верхней поверхности 8 и по существу не покрывает верхнюю поверхность 8.

Авторы изобретения выяснили, что при использовании способа по настоящему изобретению для покрытия боковой периферийной поверхности, или бокового края, светоизлучающего устройства может быть осуществлен быстрый и простой способ нанесения покрытия. Более того, покрытие устройства может быть получено при использовании капиллярной силы для того, чтобы покрыть боковую периферийную поверхность. Благодаря этому твердому слою покрытия, образованному на боковой периферийной поверхности, и отрегулированным оптическим свойствам данного покрытия управляют свойствами света, выходящего через боковой край светоизлучающего устройства.

В вариантах воплощения изобретения способ дополнительно содержит следующие стадии:

- нанесение первой жидкой композиции покрытия на монтажную подложку 3,

- обеспечение возможности первой композиции покрытия покрыть по меньшей мере часть первой боковой периферийной поверхности 6 светоизлучающего устройства 1, и

- отверждение первой композиции покрытия с получением первого твердого слоя покрытия 7 на упомянутой по меньшей мере части боковой периферийной поверхности 6.

В вариантах воплощения изобретения композиции покрытия обеспечивают возможность покрывать по меньшей мере часть первой боковой периферийной поверхности 6 под действием капиллярной силы.

В вариантах воплощения изобретения композицию покрытия наносят способом, выбранным из группы дозирования иглой, дозирования соплом, печати и распыления.

Когда используют эти способы нанесения, можно добиться точного количества композиции покрытия. Таким образом, можно контролировать количество слоя покрытия путем контролирования количества используемой композиции покрытия.

В вариантах воплощения изобретения жидкая композиция покрытия при отверждении образует твердый слой покрытия, выбранный из группы отражательного, диффузного, спектрально фильтрующего, люминесцентного и светоблокирующего слоев покрытия и их комбинаций.

Когда образован такой твердый слой покрытия, можно контролировать утечку света из боковой периферийной поверхности светоизлучающего устройства. Таким образом, для различных целей композиция покрытия может быть выбрана образующей отражательный, диффузный, спектрально фильтрующий, люминесцентный или светоблокирующий слой.

Композиция покрытия может содержать золь-гель-производный материал или силиконовую смолу.

В вариантах воплощения изобретения боковая периферийная поверхность может быть предварительно обработана, чтобы она стала полярной, когда используется полярная композиция покрытия. Альтернативно, боковая периферийная поверхность может быть обработана, чтобы она стала аполярной, и может использоваться аполярная или полярная композиция покрытия.

Когда монтажная подложка и боковая периферийная поверхность предварительно обработаны таким путем, капиллярная сила будет помогать полярной композиции покрытия покрывать монтажную подложку. При обработке только части монтажной подложки и боковой периферийной поверхности так, чтобы она стала полярной, можно покрывать только некоторые части боковой периферийной поверхности. Как следствие, также можно получать части боковой периферийной поверхности, свободные от слоя покрытия. Аналогично аполярная композиция покрытия может быть использована на поверхности, предварительно обработанной так, чтобы она стала полярной или аполярной, для того, чтобы покрыть выбранные части боковой периферийной поверхности.

В вариантах воплощения изобретения способ дополнительно содержит следующие стадии:

- нанесение по меньшей мере второй жидкой композиции покрытия на монтажную подложку;

- обеспечение возможности второй композиции покрытия покрыть по меньшей мере часть второй боковой периферийной поверхности светоизлучающего устройства; и

- отверждение второй композиции покрытия с получением второго твердого слоя покрытия на упомянутой по меньшей мере части второй боковой периферийной поверхности.

Первая композиция покрытия может в одном варианте воплощения отличаться от второй композиции покрытия.

Благодаря использованию различных материалов в первом и втором слое покрытия можно получить различные твердые слои покрытия, имеющие отражательные, диффузные, спектрально фильтрующие и светоблокирующие оптические функциональности. Таким образом, одна и та же боковая периферийная поверхность может быть покрыта более чем одним слоем покрытия, имеющим одинаковую или различную оптическую функциональность.

Первая боковая периферийная поверхность может в другом варианте воплощения отличаться от второй боковой периферийной поверхности.

Когда различные боковые периферийные поверхности покрыты различными твердыми слоями покрытия, части боковой периферийной поверхности получают различные оптические функциональности.

Кроме того, следует отметить, что настоящее изобретение относится ко всем возможным комбинациям пунктов формулы изобретения.

Эти и другие варианты воплощения описаны более подробно в подробном описании.

Краткое описание чертежей

Указанный и другие аспекты настоящего изобретения будут теперь описаны более подробно со ссылкой на прилагаемые чертежи, показывающие предпочтительные в настоящее время варианты воплощения изобретения. В качестве примера, чертежи показывают отражательные слои покрытия. Однако, слой покрытия может быть также люминесцентным, окрашенным, рассеивающим и поглощающим. Чертежи не являются обязательно соответствующими масштабу.

Фигура 1 схематически иллюстрирует поперечное сечение одного варианта воплощения излучающего вверх светоизлучающего устройства по настоящему изобретению, имеющего люминофорное тело Lumiramic, при этом боковая периферийная поверхность покрыта отражательным слоем покрытия.

Фигура 2 схематически иллюстрирует поперечное сечение другого варианта воплощения излучающего вверх светоизлучающего устройства по настоящему изобретению, имеющего люминофорное тело Lumiramic, которое является изогнутым, при этом боковая периферийная поверхность покрыта отражательным слоем покрытия.

Фигура 3 схематически иллюстрирует поперечное сечение другого варианта воплощения излучающего вверх светоизлучающего устройства по настоящему изобретению, имеющего люминофорное тело Lumiramic, при этом боковая периферийная поверхность покрыта двумя слоями покрытия.

Фигура 4 схематически иллюстрирует поперечное сечение другого варианта воплощения излучающего вверх светоизлучающего устройства по настоящему изобретению, имеющего подложку, при этом боковая периферийная поверхность покрыта отражательным слоем покрытия.

Фигура 5 схематически иллюстрирует поперечное сечение одного варианта воплощения излучающего вбок светоизлучающего устройства по настоящему изобретению, при этом часть боковой периферийной поверхности покрыта отражательным слоем покрытия.

Фигура 6 схематически иллюстрирует поперечное сечение одного варианта воплощения излучающего вбок светоизлучающего устройства по настоящему изобретению, имеющего подложку и люминофорное тело, при этом часть боковой периферийной поверхности покрыта отражательным слоем покрытия.

Фигура 7 схематически иллюстрирует поперечное сечение одного варианта воплощения массива светоизлучающих устройств по настоящему изобретению, при этом часть боковой периферийной поверхности покрыта отражательным слоем покрытия.

Фигура 8а-с схематически иллюстрирует вид в перспективе способа нанесения покрытия на боковую периферийную поверхность светоизлучающего устройства.

Фигура 9 иллюстрирует вид в перспективе варианта воплощения светоизлучающего устройства по настоящему изобретению, при этом часть боковой периферийной поверхности покрыта отражательным слоем покрытия.

Подробное описание

Далее варианты воплощения светоизлучающих устройств согласно настоящему изобретению описываются более подробно.

Соответственно, один вариант воплощения устройства по настоящему изобретению проиллюстрирован на фигуре 1.

Так, в данном варианте воплощения светоизлучающее устройство 1, содержащее СИД 2 с перевернутым чипом, размещено на монтажной подложке 3. На СИД 2 размещен оптический элемент 4, в данном варианте воплощения - люминофорное тело 4а, т.е. Lumiramic, для приема света, излучаемого СИД 2. Для соединения люминофорного тела 4а и СИД 2 использован связующий слой 5. На боковой поверхности, или боковой периферийной поверхности, 6 светоизлучающего устройства 1 размещен слой покрытия 7, имеющий отражательную функциональность, так что свет по существу не выходит через боковую поверхность 6 светоизлучающего устройства 1. Вместо этого он отражается, в итоге выходя через верхнюю поверхность 8 люминофорного тела 4а.

Использованные здесь термины «боковая поверхность», «боковой край», «боковая сторона» и «боковая периферийная поверхность» все относятся к площади боковой поверхности вокруг светоизлучающего диода, но не включая площадь верхней поверхности.

В группе лучей I синий свет, сгенерированный на p,n-переходе, пропускается к связующему слою и падает на боковое покрытие, давая в результате диффузное обратное рассеяние к связке, люминофору или СИД.

В группе лучей II синий свет не преобразуется в люминофоре и отражается обратно в люминофор. Часть отраженного света выводится через верхнюю поверхность.

В группе лучей III сгенерированный свет волноводно распространяется в материале InGaN с высоким показателем преломления (n=2,7) и падает на края, где он отражается обратно боковым покрытием. Угловое перераспределение в процессе обратного рассеяния способствует преодолению улавливания света при его волноводном распространении. Поэтому часть света выводится из СИД к слоям связки и люминофора.

В группе лучей IV синий свет поглощается в люминофоре и преобразовывается, например, в красный свет. Красный свет перемещается в таком направлении, что сталкивается с боковой поверхностью, и рассеивается обратно и частично выводится через верхнюю поверхность. Поскольку эти группы лучей являются подобными в вариантах воплощения, которые подобны друг другу, не все варианты воплощения содержат специальную ссылку на эти группы лучей.

Могут быть усмотрены многие вариации варианта 1. Например, может использоваться люминофорный верхний излучатель с полным преобразованием или частичным преобразованием. В случае полного преобразования люминофор поглощает синий свет и превращает его в большой степени в другой цвет с большей длиной волны. Та степень, в которой это происходит, зависит от толщины Lumiramic и коэффициентов концентрации и поглощения люминесцентных центров в люминофоре. Стараются добиться достаточно больших длин пути в люминофоре для преобразования почти всего синего света в большие длины волн, такие как зеленый, янтарный или красный. Благодаря боковому покрытию цветовая характеристика по углу является очень хорошей, т.е. отсутствует утечка синего света под большими углами.

Другой вариант воплощения устройства по настоящему изобретению проиллюстрирован на фигуре 2.

Данный вариант воплощения подобен варианту 1, за исключением того, что боковые стороны люминофорного тела 4а являются изогнутыми, имея нависание по сравнению с СИД. Отражательное покрытие присутствует на правой и левой боковых сторонах, но с различными углами.

В данном случае размер люминофора является больше, чем размер СИД. Слой связки между СИД и люминофором может покрывать либо по существу всю площадь СИД, либо большую площадь люминофора. Если площадь связки меньше, чем площадь люминофора, то только зона нависания может быть заполнена покрытием, например, чтобы блокировать боковое излучение СИД и/или связки, не перекрывая боковую сторону люминофора. Альтернативно, могут быть покрыты как зона нависания, так и стороны люминофора. Кроме того, нависание может иметь различную форму, такую как изогнутая или квадратная.

Люминофор также может быть выполнен с меньшим размером по отношению к площади СИД, или размещение люминофора может быть неточным, не полностью покрывая площадь СИД, но показывая как нависание, так и наклон в конкретном направлении. Боковое покрытие обеспечивает средство перекрытия и экранирования прямо излучающих частей СИД. Выполненный с меньшим размером Lumiramic может иметь лучшие связывание и точность размещения в производстве.

Площадь связки может простираться за пределы площади СИД и площади люминофора, и часть материала связки может покрывать боковые стороны СИД и люминофора.

Покрытие может простираться только на часть боковой поверхности или на всю поверхность, при условии, что оно простирается от монтажной подложки до верхней поверхности, но не включая верхнюю поверхность. Можно только покрывать Lumiramic или покрывать СИД. Это достигается регулировкой характеристики смачивания монтажной подложки и боковой поверхности светоизлучающего устройства.

В другом варианте воплощения можно также покрывать под СИД, где осуществляется электрический контакт с монтажной подложкой. Из-за формирования электродов с рисунком некоторая часть света будет утекать через зазоры между электродами или зеркалами. Этот свет может проходить на тыльную часть СИД, где он будет, вероятно, поглощаться. Если используется отражательное боковое покрытие, этот свет будет рассеиваться обратно к СИД для повторного использования.

Когда используется отражательный слой покрытия, он также может распространиться на окружения монтажной подложки так, чтобы увеличить отражательную способность монтажной подложки и тем самым снизить световую потерю любого света, направленного обратно к СИД.

В другом варианте воплощения светоизлучающее устройство может быть куполообразным.

Еще один вариант воплощения устройства по настоящему изобретению проиллюстрирован на фигуре 3.

Данный вариант воплощения подобен варианту 1, но имеет два слоя покрытия 7а и 7b. Первый слой покрытия 7b является прозрачным, а второй слой покрытия 7а является отражательным. Осуществимы также и другие комбинации функциональностей и числа слоев. Однако, преимуществом такой комбинации покрытий может быть возможность заполнять часть связующего слоя или зону герметика под кристаллом, который присутствует неполностью. Например, отклонения в процессе соединения связкой могут привести в результате к незавершенным связующим слоям, которые неполностью перекрывают зазор между кристаллом и СИД. Он может быть сначала заполнен прозрачным слоем, а затем покрыт, например, отражательным слоем. В противном случае отражательный слой заполнял бы зазоры и приводил к экранированию части потока света, что приводило бы в результате к потерям света. Конечно, возможны другие комбинации слоев покрытия.

Другой вариант воплощения устройства по настоящему изобретению проиллюстрирован на фигуре 4.

Так, в данном варианте воплощения светоизлучающее устройство 1, содержащее СИД 2 с перевернутым чипом, размещено на монтажной подложке 3. На СИД 2 все еще присутствует подложка 4b. На боковой поверхности 6 светоизлучающего устройства 1 размещен слой покрытия 7, имеющий отражательную функциональность, так что свет по существу не выходит через боковые поверхности 6 светоизлучающего устройства. Вместо этого он отражается, в итоге выходя через верхнюю поверхность 8 подложки 4b. На фигуре 4 показаны три пути (траектории) лучей. Путь I лучей указывает на волноводное распространение света в СИД к краям, который отражается обратно покрытием. Путь II лучей показывает путь света через сапфировую подложку с отражением на боковой стороне. Путь III лучей показывает путь прямого излучения лучей без взаимодействия с боковыми сторонами.

Соответственно, на боковой поверхности могут присутствовать различные отражательные, поглощающие, окрашенные, дифузионные и люминесцентные слои покрытия, а также комбинации слоев покрытия. Также возможно, что покрывается только часть поверхности. Также возможна комбинация СИД с такой подложкой, такой как сапфир, и люминофорным телом.

В диффузном слое покрытия падающий свет главным образом пропускается с незначительными отклонениями от своего пути света (незначительное количество падающего света может претерпеть множественные события рассеивания и все еще быть отраженным). Эта диффузионная способность помогает бороться с зависящими от угла цветовыми эффектами, т.е. свет различных положений и углов смешивается. Предпочтительно, боковое покрытие имеет ограниченную оптическую толщину, такую как 10-100 мкм, но это не строго необходимо. В таком случае площадь источника света незначительно увеличивается как следствие событий рассеяния, при которых центры рассеяния могут рассматриваться как новые точечные источники для лучей света.

В другом варианте воплощения боковое покрытие является окрашенным так, чтобы поглощать синий свет и пропускать желтый или янтарный или красный свет. Благодаря такому боковому покрытию утечка синего света под большими углами подавляется, тогда как преобразованный свет все еще пропускается. Поглощение синего света приведет в результате к более низкой эффективности по сравнению с отражательным боковым покрытием. Однако, преобразованный свет будет использоваться более эффективно, так как он может легко выводиться из покрытого люминофором СИД (рсСИД), а также из боковых сторон.

В другом варианте воплощения предусмотрено поглощающее боковое покрытие для рассматриваемых длин волн, что обычно означает, что покрытие является поглощающим для видимого света, т.е. покрытие является черным. Данный случай менее предпочтителен по вполне понятным причинам эффективности. Однако, утечка света из боковых сторон эффективно подавляется, но это справедливо как для синего света, так и преобразованного света (если только преобразованный свет не находится в инфракрасной области, при условии, что черное покрытие является прозрачным в ИК области).

В другом варианте воплощения светоизлучающее устройство имеет люминесцентное боковое покрытие, в котором синий свет (частично) поглощается и преобразуется в более высокие длины волн и переизлучается. Такое боковое покрытие может содержать частицы похожего люминофора, как и люминофорный материал Lumiramic (например, YAG:Ce для частичного превращения в белый). Боковое покрытие может также содержать частицы люминофора, которые отличаются от материала Lumiramic, например, содержащее красный люминофор боковое покрытие для того, чтобы сделать излучение белого света из люминофора Lumiramic теплее по цвету, т.е. тепло-белую конфигурацию.

Другой вариант воплощения устройства по настоящему изобретению проиллюстрирован на фигуре 5.

Так, в данном варианте воплощения излучающее вбок светоизлучающее устройство 1, содержащее СИД 2 с перевернутым чипом, размещено на монтажной подложке 3. На СИД 2 размещено люминофорное тело 4а Lumiramic. На люминофорном теле размещено отражающее тело 4с, отражающее свет. Покрытие боковой поверхности 6 предотвращает пропускание света через одну или более боковых сторон и отражает и рециклирует этот свет для того, чтобы пропустить его через непокрытую сторону. В случае квадратного Lumiramic может быть покрыта только одна боковая поверхность, или две поверхности, или три поверхности, или части каждой из этих поверхностей. Например, также может быть оставлен открытым угол Lumiramic для излучения света из зоны данного угла. Боковое отражательное покрытие и верхнее отражательное покрытие могут образовать один единственный слой, такой как отражательный слой покрытия с высоким рассеянием.

В одном варианте воплощения конфигурации 1×1 мм с толщиной люминофора 250 мкм и люмен-эффективностью непокрытого бокового излучателя 100% люмен-эффективность составила 95% у СИД с покрытой первой боковой поверхностью, 78% - для СИД с покрытой второй боковой поверхностью, и 50% - для СИД с покрытой третьей боковой поверхностью. Часть света поэтому теряется в СИД, но остальной поток вынужден проходить через меньшую площадь и в конкретные стороны. Яркость боковых поверхностей поэтому увеличивается. Это важно, например, в применениях для фоновой подсветки или в конструкциях световодных источников света, в которых свет должен эффективно сопрягаться в тонкие световоды для того, чтобы разместить источники света на сторонах световодной платы.

Еще один вариант воплощения устройства по настоящему изобретению проиллюстрирован на фигуре 6.

В данном варианте воплощения излучающего вбок светоизлучающего устройства, подобного варианту 5, на СИД под люминофорным телом все еще присутствует подложка. Слой покрытия присутствует только на СИД и подложке, но не на люминофорном теле.

В качестве альтернативы отражающее тело может быть размещено прямо на подложке. Покрытие может присутствовать на боковой поверхности подложки, без значительной утечки синего света из боковой стороны подложки СИД за счет использования отражательного бокового покрытия. Люминофор может также простираться за пределы площади подложки СИД (быть выполненным с большим размером).

Однако, излучающие вбок светоизлучающие устройства могут также иметь и другие типы слоев покрытия, такие как диффузные или люминесцентные слои покрытия. При использовании диффузного бокового покрытия можно влиять на угловое и спектральное распределение бокового излучения, например, чтобы сделать его более однородным.

При использовании бокового покрытия, которое поглощает синий свет и пропускает преобразованный свет (например, янтарный свет), боковой излучатель полного преобразования может быть получен с высокой чистотой цвета.

При распределении на двух боковых сторонах, на разных боковых поверхностях могут быть реализованы различные оптические функциональности, например, отражательное покрытие может быть введено на первой, второй или третьей боковых поверхностях, а окрашенное покрытие, поглощающее синий и излучающее преобразованный свет, - на других сторонах.

Так, в другом варианте воплощения, на по меньшей мере одну сторону СИД наносят отражательное боковое покрытие, а на другие стороны - окрашенное боковое покрытие. Это может быть использовано для получения излучающего вбок СИД полного преобразования высокой чистоты цвета с одной, двумя или тремя излучающими боковыми поверхностями.

Покрытые люминофоро