Способы повышения усиливающей целлюлолитической активности полипептида

Иллюстрации

Показать все

Настоящее изобретение относится к области биотехнологии. Предложен способ повышения активности полипептида GH61, обладающего усиливающей целлюлолитическую активность деятельностью, предусматривающий добавление растворимого активирующего катиона двухвалентного металла, выбранного из Mn++, Co++, Mg++, Ca++ и их сочетания, к композиции, содержащей полипептид GH61 и целлюлолитический фермент, где наличие указанного растворимого активирующего катиона двухвалентного металла повышает уровень разложения или преобразования содержащего целлюлозу сырья. Также рассмотрены способ разложения или преобразования содержащего целлюлозу сырья, способ получения продукта ферментации и композиции для разложения содержащего целлюлозу сырья. 5 н. и 15 з.п. ф-лы, 18 ил., 4 табл., 24 пр.

Реферат

Ссылка на перечень последовательностей

Настоящая заявка содержит список последовательностей в машиночитаемой форме. Указанная машиночитаемая форма включена в настоящее описание в качестве ссылочного материала.

Ссылка на документ о депонировании биологического материала

Настоящая заявка содержит ссылку на документ о депонировании биологического материала, при этом документ о депонировании включен в настоящее описание в качестве ссылки.

Предпосылки создания изобретения

Область техники, к которой относится изобретение

Настоящее изобретение относится к способам и к композициям, повышающим активность полипептида, усиливающего целлюлолитическую активность.

Уровень техники

Целлюлоза представляет собой полимер простого сахара, глюкозы, ковалентно связанного бета-1,4-связями. Большое число микроорганизмов продуцируют ферменты, которые гидролизуют бета-связанные глюканы. К этим ферментам относятся эндоглюканазы, целлобиогидролазы и бета-глюкозидазы. Эгдоглюканазы расщепляют целлюлозный полимер в случайных положениях, делая его доступным для воздействия целлобиогидролаз. Целлобиогидролазы последовательно высвобождают молекулы целлобиозы с концов целлюлозного полимера. Целлобиоза представляет собой водоростворимый димер глюкозных остатков, связанных бета-1,4-связью. Бета-глюкозидазы гидролизуют целлобиозу до глюкозы.

Преимуществами преобразования целлюлозного сырья до этанола является возможность использования большого количества сырья, предотвращение сжигания или захоронения отходов, что желательно, и чистота топливного этанола. Древесина, отходы сельхозпроизводства, зеленые культуры и коммунально-бытовые твердые отходы рассматриваются в качестве источников получения этанола. Указанные материалы прежде всего состоят из целлюлозы, гемицеллюлозы и лигнина. После преобразования целлюлозы в глюкозу, глюкозу легко ферментировать дрожжами до этанола.

В документе WO 2005/074647 описаны выделенные полипептиды, повышающие целлюлолитическую активность, и соответствующие полинуклеотиды, полученные из Thielavia terrestris. В WO 2005/074656 описан выделенный полипептид, повышающий целлюлолитическую активность, и соответствующий полинуклеотид, полученные из Thermoascus aurantiacus. В опубликованной заявке США No. 2007/0077630 описан выделенный полипептид, повышающий целлюлолитическую активность, и соответствующий полинуклеотид, полученные из Trichoderma reesei.

В данной области было бы желательно улучшить активность полипептидов, повышающих целлюлолитическую активность.

Настоящее изобретение относится к способам и композициям, повышающим активность полипептида, усиливающего целлюлолитическую активность.

Сущность изобретения

Настоящее изобретение относится к способам повышения активности полипептида, усиливающего целлюлолитическую активность, включающим: добавление растворимого активирующего катиона двухвалентного металла в композицию, содержащую полипептид, усиливающий целлюлолитическую активность, где указанный растворимый активирующий катион двухвалентного металла находится в эффективной концентрации, равной от примерно 0,001 мМ до примерно 50 мМ в процессе деградации или преобразования содержащего целлюлозу сырья, и наличие растворимого активирующего катиона двухвалентного металла и полипептида, усиливающего целлюлолитическую активность, увеличивает деградацию или преобразование содержащего целлюлозу сырья с помощью композиции целлюлолитического фермента, по сравнению с полипептидом, усиливающим целлюлолитическую активность без растворимого активирующего катиона двухвалентного металла.

Настоящее изобретение также относится к способам деградации или преобразования содержащего целлюлозу сырья, включающим: обработку содержащего целлюлозу сырья эффективным количеством композиции целлюлолитического фермента, содержащей эффективное количество полипептида, усиливающего целлюлолитическую активность, и растворимый активирующий катион двухвалентного металла, причем указанный растворимый активирующий катион двухвалентного металла находится в эффективной концентрации, равной от примерно 0,001 мМ до примерно 50 мМ.

Настоящее изобретение также относится к способам получения продукта ферментации, включающим: (a) осахаривание содержащего целлюлозу сырья эффективным количеством композиции целлюлолитического фермента, содержащей эффективное количество полипептида, усиливающего целлюлолитическую активность, и растворимый активирующий катион двухвалентного металла, причем указанный растворимый активирующий катион двухвалентного металла находится в эффективной концентрации, равной от примерно 0,001 мМ до примерно 50 мМ; (b) ферментацию осахаренного содержащего целлюлозу сырья стадии (а) одним или несколькими ферментирующими микроорганизмами с получением продукта ферментации; и (с) восстановление продукта ферментации из ферментационной смеси.

Настоящее изобретение также относится к композициям, содержащим полипептид, усиливающий целлюлолитическую активность, и растворимый активирующий катион двухвалентного металла, причем указанный растворимый активирующий катион двухвалентного металла находится в эффективной концентрации, равной от примерно 0,001 мМ до примерно 50 мМ, в процессе разложения или преобразования содержащего целлюлозу сырья, и при этом присутствие растворимого активирующего катиона двухвалентного металла и полипептида, усиливающего целлюлолитическую активность, повышает разложение или преобразование содержащего целлюлозу сырья благодаря композиции целлюлолитического фермента, по сравнению с полипептидом, усиливающим целлюлолитическую активность, но в отсутствие растворимого активирующего катиона двухвалентного металла.

Настоящее изобретение также относится к композициям целлюлолитического фермента, содержащим эффективное количество полипептида, усиливающего целлюлолитическую активность, и растворимый активирующий катион двухвалентного металла, причем указанный растворимый активирующий катион двухвалентного металла находится в эффективной концентрации, равной от примерно 0,001 мМ до примерно 50 мМ, в процессе разложения или преобразования содержащего целлюлозу сырья, и при этом наличие растворимого активирующего катиона двухвалентного металла и полипептида, усиливающего целлюлолитическую активность, повышает разложение или преобразование содержащего целлюлозу сырья благодаря композиции целлюлолитического фермента, по сравнению с полипептидом, усиливающим целлюлолитическую активность, но в отсутствие растворимого активирующего катиона двухвалентного металла.

Краткое описание чертежей

На фиг. 1 показана рестрикционная карта pMJ04.

На фиг. 2 показана рестрикционная карта pCaHj527.

На фиг. 3 показана рестрикционная карта pMT2188.

На фиг. 4 показана рестрикционная карта pCaHj568.

На фиг. 5 показана рестрикционная карта pMJ05.

На фиг. 6 показана рестрикционная карта pSMai130.

На фиг. 7 приведена последовательность ДНК и аминокислотная последовательность нативной сигнальной последовательности бета-глюкозидазы Aspergillus oryzae (SEQ ID NO:57 и 58).

На фиг. 8 приведена последовательность ДНК и аминокислотная последовательность сигнальной последовательности эндоглюканазы V Humicola insolens (SEQ ID NO:61 и 62).

На фиг. 9 показана рестрикционная карта pSMai135.

На фиг. 10 показана рестрикционная карта pSMai140.

На фиг. 11 показана рестрикционная карта pSaMe-F1.

На фиг. 12A, 12B, 12C и 12D приведена последовательность ДНК и рассчитанная на ее основе аминокислотная последовательность бета-глюкозидазы варианта BG слитого белка на основе бета-глюкозидазы Aspergillus oryzae (SEQ ID NO:25 и 26, соответственно).

На фиг. 13 показана рестрикционная карта pSaMe-FX.

На фиг. 14A, 14B, 14C и 14D приведена последовательность ДНК и рассчитанная на ее основе аминокислотная последовательность слитого белка на основе бета-глюкозидазы Aspergillus oryzae (SEQ ID NO:27 и 28, соответственно).

На фиг. 15 показана рестрикционная карта pAILo47.

На фиг. 16 проиллюстрирован процесс преобразования целлюлозы предварительно обработанной кукурузной соломы в глюкозу и целлобиозу при добавлении различных растворимых ионов двухвалентного металла до конечной концентрации 10 мМ в смеси, включающие ферментативный бульон, который содержит целлюлолитические ферменты Trichoderma reesei, слитый белок бета-глюкозидазы Aspergillus oryzae и полипептид GH61A Thermoascus aurantiacus, усиливающий целлюлолитическую активность.

На фиг. 17 проиллюстрирован процесс преобразования целлюлозы предварительно обработанной кукурузной соломы в глюкозу и целлобиозу при добавлении различных ионов двухвалентного металла до конечной концентрации 1 мМ в смеси, включающие ферментативный бульон, который содержит целлюлолитические ферменты Trichoderma reesei и бета-глюкозидазу Aspergillus oryzae при добавлении и без добавления полипептида GH61A Thermoascus aurantiacus, усиливающего целлюлолитическую активность.

На фиг. 18 проиллюстрирован процесс преобразования целлюлозы предварительно обработанной кукурузной соломы в глюкозу и целлобиозу при добавлении MgCl2 и MnSO4 до конечной концентрации 0,0001-10 мМ в смеси, содержащие обессоленный или необессоленный ферментативный бульон, который содержит целлюлолитические ферменты Trichoderma reesei, слитый белок бета-глюкозидазы Aspergillus oryzae и полипептид GH61A Thermoascus aurantiacus, усиливающий целлюлолитическую активность.

Определения

Активность, усиливающая целлюлолитическую активность: Термин «активность, усиливающая целлюлолитическую активность», как используется в настоящей заявке, обозначает биологическую активность, которая усиливает гидролиз содержащего целлюлозу сырья, происходящий под действием белков, обладающих целлюлолитической активностью. Для целей настоящего изобретения, активность, усиливающая целлюлолитическую активность определяется путем измерения повышения восстанавливающихся сахаров или повышения общего количества целлобиозы или глюкозы при гидролизе содержащего целлюлозу сырья под действием целлюлолитического белка при следующих условиях: 1-50 мг общего белка, содержащего 80-99,5 масс.% целлюлолитического белка/г целлюлозы в PCS и 0,5-20 масс.% белка с активностью, усиливающей целлюлолитическую активность в течение 1-7 дней при температуре 50°C, по сравнению с контрольным гидролизом под действием эквивалентного количества белка, но без активности, усиливающей целлюлолитическую активность (1-50 мг целлюлолитического белка/г целлюлозы в PCS). В предпочтительном аспекте настоящего изобретения в качестве стандарта целлюлолитической активности используют смесь целлюлазного белка CELLUCLAST® 1,5 л (Novozymes A/S, Baqsværd, Дания) в присутствии 3% бета-глюкозидазы Aspergillus oryzae (полученной рекомбинантными методами в Aspergillus oryzae в соответствии с процедурой, описанной в WO 02/095014) или 3% бета-глюкозидазы Aspergillus fumigatus (полученной рекомбинантными методами в Aspergillus oryzae в соответствии WO 02/095014, пример 22).

Активность, усиливающая целлюлолитическую активность у полипептидов, усиливающих целлюлолитическую активность, составляет, по меньшей мере на 20%, предпочтительно, по меньшей мере на 40%, более предпочтительно, по меньшей мере на 50%, более предпочтительно, по меньшей мере на 60%, более предпочтительно, по меньшей мере на 70%, более предпочтительно, по меньшей мере на 80%, и еще более предпочтительно, по меньшей мере на 90%, наиболее предпочтительно, по меньшей мере на 95% и, также наиболее предпочтительно, по меньшей мере на 100% от активности зрелого полипептида с последовательностью SEQ ID NO: 2, 4, 6, 8, 10, 12 или 14.

Полипептиды, усиливающие целлюлолитическую активность, повышают гидролиз содержащего целлюлозу сырья, катализируемого белками с целлюлолитической активностью, за счет снижения количества целлюлолитического фермента, необходимого для достижения той же степени гидролиза, предпочтительно, по меньшей мере в 0,1, более предпочтительно, по меньшей мере в 0,2, более предпочтительно, по меньшей мере в 0,3, более предпочтительно, по меньшей мере в 0,4, более предпочтительно, по меньшей мере в 0,5, более предпочтительно, по меньшей мере в 1, более предпочтительно, по меньшей мере в 3, более предпочтительно, по меньшей мере в 4, более предпочтительно, по меньшей мере в 5, более предпочтительно, по меньшей мере в 10, более предпочтительно, по меньшей мере в 20, еще более предпочтительно, по меньшей мере в 30, наиболее предпочтительно, по меньшей мере в 50 и, еще наиболее предпочтительно, по меньшей мере в 100.

Целлюлолитическая активность: Термин «целлюлолитическая активность», как определено в настоящей заявке, относится к активности целлюлазы (например, эндоглюканаз(ы), целлобиогидролаз(ы), бета-глюкозидаз(ы) или их комбинаций), благодаря которой происходит гидролиз содержащего целлюлозу сырья. Целлюлолитический белок может гидролизовать карбоксиметилцеллюлозу (СМС), таким образом уменьшая вязкость инкубационной смеси. Полученное снижение вязкости можно определить с помощью вибрационного вискозиметра (например, MIVI 3000 от компании Sofraser, Франция). При установлении целлюлазной активности, выражаемой в единицах целлюлазной вязкости (CEVU), определяют количество каталитической активности, присутствующей в образце, за счет измерения способности образца снижать вязкость раствора карбоксиметилцеллюлозы (СМС). Анализ проводят при температуре и pH, подходящих для целлюлолитического белка и субстрата.

Для целей настоящего изобретения, целлюлолитическую активность определяют путем измерения повышения гидролиза содержащего целлюлозу сырья под действием целлюлолитической композиции при следующих условиях: 1-50 мг целлюлолитического белка/г целлюлозы в PCS в течение 1-7 дней при температуре 50°C, по сравнению с контрольным гидролизом без добавления целлюлолитического белка.

Эндоглюканаза: Термин «эндоглюканаза», как определено в настоящей заявке, обозначает эндо-1,4-(1,3;1,4)-бета-D-глюкан 4-глюканогидролазу (E.C. No. 3.2.1.4), которая катализирует эндогидролиз 1,4-бета-D-глюкозидных связей в целлюлозе, производных целлюлозы (таких как карбоксиметилцеллюлоза и гидроксиэтилцеллюлоза), лихенине, бета-1,4 связей в смешанных бета-1,3 глюканах, таких как бета-D-глюканы или ксилоглюканы злаков, и другого растительного сырья, содержащего целлюлозные компоненты. Для целей настоящего изобретения, эндоглюканазную активность определяют с помощью гидролиза карбоксиметилцеллюлозы (СМС), в соответствии с работой Ghose, 1987, Pure and Appl. Chem., 59:257-268.

Целлобиогидролаза: термин «целлобиогидролаза», как определено в настоящей заявке, обозначает 1,4-бета-D-глюкан-целлобиогидролазу (E.C. 3.2.1.91), которая катализирует гидролиз 1,4-бета-D-глюкозидных связей в целлюлозе, целлоолигосахаридах или любом полимере, содержащем бета-1,4-связанную глюкозу, высвобождая целлобиозу из восстановленных или невосстановленных концов цепи. Для целей настоящего изобретения, целлобиогидролазную активность определяют в соответствии с процедурами, описанными Lever et al., 1972, Anal. Biochem. 47: 273-279; и van Tilbeurgh et al., 1982, FEBS Letters 149: 152-156; van Tilbeurgh and Claeyssens, 1985, FEBS Letters 187: 283-288. В настоящем изобретении использовался метод Lever et al. для оценки гидролиза целлюлозы в кукурузной соломе, тогда метод van Tilbeurgh et al. использовался для определения целлобиогидролазной активности флуоресцентного дисахаридного производного.

Бета-глюкозидаза: Термин «бета-глюкозидаза», как определено в настоящей заявке, означает бета-D-глюкозид глюкогидролазу (E.C. 3.2.1.21), которая катализирует гидролиз концевых невосстановленных остатков бета-D-глюкозы с высвобождением бета-D-глюкозы. Для целей настоящего изобретения, бета-глюкозидазную активность определяли в соответствии с основной процедурой, описанной Venturi et al., 2002, J. Basic Microbiol. 42: 55-66, за исключением использования отличающихся условий, как описано в настоящей заявке. Одна единица бета-глюкозидазной активности определяется как 1,0 мкмоль п-нитрофенола, продуцируемого в минуту при температуре 50°C, pH 5 из 4 мМ п-нитрофенил-бета-D-глюкопиранозида, используемого в качестве субстрата, в 100 мМ цитрата натрия, 0,01% TWEEN®20.

Гликозидгидролаза семейства 7, 12, 45 или 61: Термин «гликозидгидролаза семейства 7» или «семейства GH7», «гликозидгидролаза семейства 12» или «семейства GH12», «гликозидгидролаза семейства 45» или «семейства GH45» и «гликозидгидролаза семейства 61» или «семейства GH61», как определено в настоящем изобретении, обозначает полипептид, относящийся к гликозидгидролазе семейства 7, семейства 12, семейства 45 и семейства 61, соответственно, согласно Henrissat, 1991, A classification of glycosyl hydrolases based on amino-acid sequence similarities, Biochem. J. 280: 309-316, and Henrissat В., and Bairoch A., 1996, Updating the sequence-based classification of glycosyl hydrolases, Biochem. J. 316: 695-696. В настоящее время Henrissat определяет семейство GH61 как неклассифицируемое, указывая, что свойства, такие как механизм, каталитический нуклеофил/основание, доноры каталитического протона и 3-D структура неизвестны для полипептидов, принадлежащих этому семейству. Белок GH7, GH12 или GH45 также обозначает как белок CEL7, CEL12 или CEL45, соответственно.

Содержащее целлюлозу сырье: Преобладающим полисахаридом в первичной клеточной стенке биомассы является целлюлоза, вторым по распространенности является гемицеллюлоза, а третьим - пектин. Вторичная клеточная стенка, продуцируемая клетками после остановки роста, также содержит полисахариды и ее прочность усиливается полимерным лигнином, ковалентно связанным с гемицеллюлозой. Целлюлоза представляет собой гомополимер ангидроцеллобиозы, и, таким образом, линейный бета-(1-4)-D-глюкан, тогда как гемицеллюлозы включают различные соединения, такие как ксиланы, ксилоглюканы, арабиноксиланы и маннаны, в виде сложных разветвленных структур с разнообразными заместителями. В основном являясь полиморфной, целлюлоза обнаруживается в ткани растений, прежде всего в виде нерастворимого кристаллического матрикса из параллельных цепей глюкана. Гемицеллюлозы обычно связаны водородными связями с целлюлозой, а также с другими гемицеллюлозами, что способствует стабилизации матрикса клеточной стенки.

Содержащее целлюлозу сырье может представлять собой любое сырье, содержащее целлюлозу. Целлюлоза, как правило, обнаруживается, например, в стеблях, листьях, шелухе, пленке и початках растений или в листьях, ветвях или древесине деревьев. Содержащее целлюлозу сырье может представлять собой, но этим не ограничиваясь, травянистое сырье, отходы сельхозпроизводства, отходы лесного производства, коммунально-бытовые твердые отходы, отходы бумажного производства, а также шлам и бумажную крошку. Содержащее целлюлозу сырье может представлять собой биомассу любого типа, включая, но ими не ограничиваясь, источники древесины, коммунально-бытовые твердые отходы, отходы бумажного производства, зерновые культуры и их остатки (см., например, Wiselogel et al., 1995, Handbook on Bioethanol (под редакцией Charles E. Wyman), pp. 105-118, Taylor & Francis, Washington D.C.; Wyman, 1994, Bioresource Technology 50: 3-16; Lynd. 1990, Applied Biochemistry and Biotechnology 24/25: 695-719; Mosier et al., 1999, Recent Progress in Bioconversion of Lignocellulosics, Advances in Biochemical Engineering/Biotechnology, T. Scheper, главный редактор, Volume 65, pp.23-40, Springer-Verlag, New York). Следует понимать, что в контексте настоящего изобретения содержащее целлюлозу сырье предпочтительно находится в форме лигноцеллюлозы, например, материала клеточной стенки растений, содержащего лигнин, целлюлозу и гемицеллюлозу в составе смешанного матрикса.

В предпочтительном аспекте содержащее целлюлозу сырье представляет собой кукурузную солому. В другом предпочтительном аспекте содержащее целлюлозу сырье представляет собой кукурузные волокна. В другом предпочтительном аспекте содержащее целлюлозу сырье представляет собой кукурузу в початках. В другом предпочтительном аспекте содержащее целлюлозу сырье представляет собой траву. В другом предпочтительном аспекте содержащее целлюлозу сырье представляет собой рисовую солому. В другом предпочтительном аспекте содержащее целлюлозу сырье представляет собой отходы и шлам бумажного производства. В другом предпочтительном аспекте содержащее целлюлозу сырье представляет собой древесные или травянистые растения. В другом предпочтительном аспекте содержащее целлюлозу сырье представляет собой багассу.

Содержащее целлюлозу сырье может использоваться как таковое или может быть подвергнуто предварительной обработке с использованием обычных методов, известных в данной области. Например, методы физической предварительной обработки могут включать различные типы помола, облучения, обработки паром/паровым взрывом и гидротермолиз; методы химической предварительной обработки могут включать обработку разбавленной кислотой, основанием, органическим растворителем, аммиаком, диоксидом серы, диоксидом углерода, а также метод pH-контролируемого гидротермолиза; и методы биологической предварительной обработки могут включать использование солюбилизирующих лигнин микроорганизмов (см., например, Hsu, T.-A., 1996, Pretreatment of biomass, Handbook on Bioethanol: Production and Utilization, Wyman, С. Е., ed., Taylor & Francis, Washington, DC, 179-212; Ghosh, P., and Singh, A., 1993, Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass, Adv. Appl. Microbiol. 39: 295-333; McMillan, J. D., 1994, Pretreating lignocellulosic biomass: краткий обзор в Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. P., eds., ACS Symposium Series 566, American Chemical Society, Washington, DC, chapter 15; Gong, С. S., Cao, N. J., Du, J., and Tsao, G, Т., 1999, Ethanol production from renewable resources, Advances in Biochemical Engineering/Biotechnology, Scheper, Т., ed., Springer-Verlag Berlin Heidelberg, Germany, 65: 207-241; Olsson, L., and Hahn-Hagerdal, В., 1996, Fermentation of lignocellulosic hydrolysates for ethanol production, Enz. Microb. Tech. 18: 312-331; and Vallander, L, and Eriksson, K.-E. L., 1990, Production of ethanol from lignocellulosic materials: State of the art, Adv. Biochem. Eng./Biotecnnol. 42:63-95).

Предварительная обработка кукурузной соломы: Термин «PCS» или «предварительно обработанная кукурузная солома», как определено в настоящей заявке, обозначает содержащее целлюлозу сырье, полученное из кукурузной соломы путем тепловой обработки и разбавленной кислотой. Для целей настоящего изобретения PCS получают методом, описанным в примере 20 или его вариантами, с изменением времени, температуры и количества кислоты.

Выделенный полипептид: Термин «выделенный полипептид», как используется в настоящей заявке, обозначает полипептид, который был выделен из некоего источника. В предпочтительном аспекте чистота полипептида по результатам анализов SDS-PAGE, составляет по меньшей мере 1%, предпочтительно 5%, более предпочтительно, по меньшей мере 10%, более предпочтительно, по меньшей мере 20%, более предпочтительно, по меньшей мере 40%, более предпочтительно, по меньшей мере 50%, еще более предпочтительно, по меньшей мере 80% и, наиболее предпочтительно, по меньшей мере 90%.

По существу чистый полипептид: Термин «по существу чистый полипептид», как используется в настоящей заявке, обозначает полипептидный препарат, который содержит не менее чем 10%, предпочтительно, не менее чем 8%, более предпочтительно, не менее чем 6%, более предпочтительно, не менее чем 5%, более предпочтительно, не менее чем 4%, более предпочтительно, не менее чем 3% и еще более предпочтительно, не менее чем 2%, наиболее предпочтительно, не менее чем 1% и, еще наиболее предпочтительно, не менее чем 0,5% по массе относительно другого полипептидного сырья, с которым он связан в нативной или рекомбинантной форме. Таким образом, предпочтительно, чтобы по существу чистый полипептид имел чистоту, составляющую по меньшей мере 92%, предпочтительно, по меньшей мере 94%, более предпочтительно, по меньшей мере 95%, более предпочтительно, по меньшей мере 96%, более предпочтительно, по меньшей мере 96%, более предпочтительно, по меньшей мере 97%, более предпочтительно, по меньшей мере 98%, еще более предпочтительно, по меньшей мере 99%, наиболее предпочтительно, по меньшей мере 99,5% и, еще наиболее предпочтительно, по меньшей мере 100% по массе всего полипептидного сырья, присутствующего в препарате. Полипептиды по настоящему изобретению предпочтительно находятся по существу в чистой форме, то есть полипептидный препарат по существу свободен от другого полипептидного сырья, с которым он связан в нативной или рекомбинантной форме. Такая чистота может быть достигнута, например, путем получения полипептида хорошо известными рекомбинантными методами или путем классических методов очистки.

Зрелый полипептид: Термин «зрелый полипептид», как используется в настоящей заявке, обозначает полипептид с биологической активностью, такой как, ферментативная активность, которая сохраняется в его окончательной форме после трансляции и после любой пост-трансляционной модификации, такой как N-концевой процессинг, С-концевое усечение, гликозилирование, фосфорилирование и т.п.

Последовательность, кодирующая зрелый полипептид: Термин «последовательность, кодирующая зрелый полипептид», как используется в настоящем описании, обозначает нуклеотидную последовательность, которая кодирует зрелый полипептид с биологической активностью.

Идентичность: Связь двух аминокислотных последовательностей или двух нуклеотидных последовательностей описывается параметром «идентичность».

Для целей настоящего изобретения степень идентичности двух аминокислотных последовательностей определяется с помощью алгоритма Needleman-Wunsch (Needleman and Wunsch, 1970, J. Mol. Biol. 48:443-453), встроенного в программу Needle в пакете прикладных программ EMBOSS (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends in Genetics 16: 276-277), предпочтительно, версия 3.0.0 или более поздняя версия. Используемыми оптимальными параметрами являются штраф за пропуск, равный 10, штраф за удлинение, равный 0,5, и матрицу замещения EBLOSUM62 (EMBOSS версия, BLOSUM62). Результат в программе Needle как «самая длинная идентичность» (получаемая с помощью параметра “-nobrief”), выражают как процент идентичности и рассчитывают следующим образом:

(идентичные остатки×100)/(длина выравнивания - общее число пропусков при выравнивании).

Для целей настоящего изобретения степень идентичности двух дезоксирибонуклеотидных последовательностей определяют, используя алгоритм Needleman-Wunsch (Needleman and Wunsch, 1970, supra), встроенного в программу Needle в пакете прикладных программ EMBOSS (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, supra), предпочтительно, версия 3.0.0 или более поздняя версия. Используемые оптимальные параметры включают штраф за пропуск, равный 10, штраф за удлинение, равный 0,5, и матрицу замещения EDNAFULL (EMBOSS версия NCBI NUC4.4). Результат в программе Needle как «самая длинная идентичность» (получаемая с помощью параметра “-nobrief”), выражают как процент идентичности и рассчитывают следующим образом:

(идентичные дезоксирибонуклеотиды×100)/(длина выравнивания - общее число пропусков при выравнивании).

Гомологичная последовательность: Термин «гомологичная последовательность», как используется в настоящей заявке, обозначает последовательность со значением E (или ожидаемое количество баллов) менее 0,001, используя “blastp” (для белковых баз данных), или “tblastn” (для баз данных нуклеиновых кислот) в качестве алгоритмов с матрицей BLOSUM62, с размером слова 3, штрафом за пропуск, равным 11, штрафом за удлинение, равным 1, без фильтрации низкой сложности и при использовании в качестве запроса последовательности зрелого белка. См., Altschul et al., 1997, Nucleic Acids Res. 25: 3389-3402.

Полипептидный фрагмент: Термин «полипептидный фрагмент», как определено в настоящей заявке, обозначает полипептид с одной или несколькими аминокислотами, делетированными на амино- и/или карбоксильном конце зрелого полипептида или его гомологичной последовательности; где указанный фрагмент обладает активностью соответствующего зрелого полипептида.

Субпоследовательность: Термин «субпоследовательность», как используется в настоящем описании, обозначает нуклеотидную последовательность с одним или несколькими нуклеотидами, делетированными с 5'- и/или 3'- конца последовательности, кодирующей зрелый полипептид или гомологичной ей последовательности; где указанная субпоследовательность кодирует фрагмент полипептида с активностью соответствующего зрелого полипептида.

Аллельный вариант: Термин «аллельный вариант», как используется в настоящей заявке, обозначает любые две или несколько альтернативных форм гена, занимающего один и тот же хромосомальный локус. Аллельный вариант возникает естественным образом в ходе мутации и может быть результатом полиморфизма в пределах популяции. Генные мутации могут быть молчащими (без изменения кодируемого полипептида) или могут кодировать полипептиды с измененной аминокислотной последовательностью. Аллельный вариант полипептида представляет собой полипептид, кодируемый алелльным вариантом гена.

Выделенный полинуклеотид: Термин «выделенный полинуклеотид», как используется в настоящей заявке, обозначает полинуклеотид, выделенный из источника. В предпочтительном аспекте чистота полинуклеотида по результатам электрофореза в агарозном геле составляет по меньшей мере 1%, предпочтительно, по меньшей мере 5%, более предпочтительно, по меньшей мере 10%, более предпочтительно, по меньшей мере 20%, более предпочтительно, по меньшей мере 40%, более предпочтительно, по меньшей мере 60%, еще более предпочтительно, по меньшей мере 80%, и, наиболее предпочтительно, по меньшей мере 90%.

По существу чистый полинуклеотид: Термин «по существу чистый полинуклеотид», как используется в настоящей заявке, относится к полинуклеотидному препарату, свободному от других чужеродных или нежелательных нуклеотидов, который находится в форме, подходящей для применения в системах получения белка методами генной инженерии. Таким образом, по существу чистый полинуклеотид содержит не менее чем 10%, предпочтительно, не менее чем 8%, более предпочтительно, не менее чем 6%, более предпочтительно, не менее чем 5%, более предпочтительно, не менее чем 4%, более предпочтительно, не менее чем 3%, еще более предпочтительно, не менее чем 2%, наиболее предпочтительно, не менее чем 1% и еще наиболее предпочтительно, не менее чем 0,5% по массе относительно другого полинуклеотидного материала, с которым он связан в нативной или рекомбинантной форме. Тем не менее, по существу чистый полинуклеотид может включать природные 5'- и 3'-нетранслируемые участки, такие как промоторы и терминаторы. Предпочтительно чистота по существу чистого полинуклеотида составляла по меньшей мере 90%, предпочтительно по меньшей мере 92%, более предпочтительно, по меньшей мере 94%, более предпочтительно по меньшей мере 95%, более предпочтительно, по меньшей мере 96%, более предпочтительно, по меньшей мере 97%, еще более предпочтительно, по меньшей мере 98%, наиболее предпочтительно, по меньшей мере 99% и, еще наиболее предпочтительно, по меньшей мере 99,5% по массе. Полинуклеотиды по настоящему изобретению предпочтительно находятся в по существу чистой форме, то есть, нуклеотидный препарат по существу свободен от другого полинуклеотидного материала, с которым он связан в нативной или рекомбинантной форме. Полинуклеотиды могут быть геномными, получены из кДНК, РНК, полусинтетическими или синтетическими, или представляют собой любую их комбинацию.

кДНК: Термин «кДНК», как определено в настоящем описании, обозначает молекулу ДНК, которая может быть получена путем обратной транскрипции из зрелой, сплайсированной, молекулы мРНК, полученной из эукариотической клетки. Молекула кДНК лишена интронных последовательностей, которые обычно присутствуют в соответствующей геномной ДНК. Исходный первичный транскрипт РНК представляет собой предшественник мРНК, который процессируется в серии стадий с образованием зрелой сплайсинговой мРНК. Указанные стадии включают удаление интронных последовательностей процессом, называемого сплайсинг. Таким образом, кДНК, полученная из мРНК, утрачивает любые интронные последовательности.

Конструкция нуклеиновой кислоты: Термин «конструкция нуклеиновой кислоты», как используется в настоящем описании, обозначает молекулу нуклеиновой кислоты, которая может быть одноцепочечной или двуцепочечной, и которая выделена из природного гена или модифицирована так, что содержит сегменты нуклеиновых кислот, не существующим в природе образом, или которая является синтетической. Термин «конструкция нуклеиновой кислоты» является синонимом термину «кассета экспрессии», если конструкция нуклеиновой кислоты содержит контрольные последовательности, требуемые для экспрессии кодирующей последовательности по настоящему изобретению.

Контрольные последовательности: Термин «контрольные последовательности», как описано в настоящей заявке, обозначает все компоненты, необходимые для экспрессии полинуклеотида, кодирующего полипептид по настоящему изобретению. Каждая контрольная последовательность может быть нативной или чужеродной относительно нуклеотидной последовательности, кодирующей полипептид, или они могут быть нативными или чужеродными относительно друг друга. Такие контрольные последовательности включают, но ими не ограничиваясь, лидерную последовательность, последовательность полиаденилирования, пропептидную последовательность, промоторную, сигнальную пептидную последовательность и терминатор транскрипции. В качестве минимальной формы, контрольные последовательности включают промотор и сигналы остановки транскрипции и трансляции. Указанные контрольные последовательности могут существовать в сочетании с линкерами, с тем чтобы можно было встраивать специфические сайты рестрикции, облегчающие лигирование контрольных последовательностей с кодирующим участком нуклеотидной последовательности, кодирующей полипептид.

Функционально связанный: Термин «функционально связанный», как используется в настоящей заявке, обозначает конфигурацию, в случае которой контрольная последовательность находится в соответствующем положении относительно кодирующей последовательности полинуклеотидной последовательности, так что контрольная последовательность направляет экспрессию кодирующей последовательности для данного полипептида.

Кодирующая последовательность: Термин «кодирующая последовательность», как используется в настоящей заявке, обозначает нуклеотидную последовательность, которая непосредственно определяет аминокислотную последовательность своего белкового продукта. Границы кодирующей последовательности в основном определяются открытой рамкой считывания, которая обычно начинается от ATG старт-кодона или от альтернативных старт-кодонов, таких как GTG и TTG, и заканчивается таким стоп-кодоном, как TAA, TAG и TGA. Кодирующая последовательность может представлять собой нуклеотидную последовательность ДНК, кДНК, синтетическую иди рекомбинантную нуклеотидную последовательность.

Экспрессия: Термин «экспрессия», как используется в настоящей заявке, означает любую стадию, относящуюся к получению полипептида, и включает, но ими не ограничивается, транскрипцию, пост-транскрипционную модификацию, трансляцию, пост-трансляционную модификацию и секрецию.

Вектор экспрессии: Термин «вектор экспрессии», как используется в настоящей заявке, обозначает линейную или кольцевую молекулу ДНК, которая содержит полинуклеотид, кодирующий полипептид по настоящему изобретению и который функционально связанный с дополнительными нуклеотидами, необходимыми для его экспрессии.

Клетка-хозяин: Термин «клетка-хозяин», как используется в настоящей заявке, обозначает клетку любого типа, которая является чувствительной к трансформации, трансфекции, трансдукции и т.п., содержащую конструкцию нуклеиновой кислоты или вектор экспрессии, содержащий полинуклеотид.

Модификация: Термин «модификация», как используется в настоящей заявке, обозначает любую химическую модификацию зрелого полипептида или гомологичной последовательности, а также генетическую манипуляцию ДНК, кодирующей такой полипептид. Модификация может представлять собой замену, делецию и/или вставку одной или нескольких аминокислот, а также замену одной или нескольких аминокислот боковых цепей.

Искусственный вариант: Как используется в настоящем изобретении, термин «искусственный вариант» обозначает полипептид, продуцируемый организмом, экспрессирующим модифицированную нуклеотидную последовательность последова