Система мобильной связи

Иллюстрации

Показать все

Изобретение относится к системе мобильной связи. Технический результат состоит в устранении повышенного энергопотребления в пользовательском оборудовании. Для этого сота Закрытой Абонентской Группы (Closed Subscriber Group, CSG) представляет собой соту, которая обеспечивает возможность использования абонентов. Для того чтобы получать службу от соты CSG, пользовательскому оборудованию требуется сообщить идентификатор CSG-ID, который невозможно получить в месте вне доступа радиоволн от соты, отличной от CSG. В системе мобильной связи, включающей в себя базовые станции, соответственно, предоставленные в соте CSG и в соте, отличной от CSG, где доступ в соту CSG осуществляется с использованием CSG-ID, изданного в случае, когда использование соты CSG разрешено, базовая станция, предоставленная в соте CSG, ссылается на сообщенную идентификационную информацию пользовательского оборудования и, далее, передает запрос обновления отслеживаемой области из пользовательского оборудования в базовую сеть, и базовая сеть определяет, разрешено ли пользовательскому оборудованию использовать соту CSG, и в случае если использование разрешено, она передает сигнал для разрешения назначения радиоресурсов пользовательскому оборудованию и CSG-ID. Пользовательское оборудование выполняет доступ в соту CSG с использованием CSG-ID. 51 ил.

Реферат

Область техники

Настоящее изобретение относится к системе мобильной связи, в которой базовая станция осуществляет радиосвязь с множеством единиц пользовательского оборудования.

Уровень техники

В 2001 г. в Японии началось коммерческое использование систем Широкополосного Множественного Доступа с Кодовым Разделением (Wideband Code Division Multiple Access, W-CDMA), которые входят в число так называемых систем связи третьего поколения. Кроме того, была предложена служба Высокоскоростного Пакетного Доступа по Нисходящей Линии Связи (High Speed Downlink Packet Access, HSDPA) для обеспечения более высоких скоростей передачи с использованием нисходящей линии связи, причем это было реализовано путем добавления канала для пакетной передачи (Общего Высокоскоростного Канала Нисходящей Линии Связи (High Speed-Downlink Shared Channel, HS-DSCH)) в нисходящую линию связи (выделенный канал передачи данных, выделенный канал управления). Сверх того, чтобы повысить скорость передачи данных по восходящей линии связи, была предложена служба Высокоскоростного Пакетного Доступа по Восходящей Линии Связи (High Speed Uplink Packet Access, HSUPA). W-CDMA представляет собой систему связи, определенную в рамках Проекта Партнерства 3-го Поколения (3rd Generation Partnership Project, 3GPP), который представляет собой организацию по стандартизации систем мобильной связи, где были сформированы спецификации версии 8-го Релиза.

Кроме того, 3GPP исследует новые системы связи, которые обозначаются термином "долгосрочная эволюция" (Long Term Evolution, LTE) относительно области радио и термином "эволюция системной архитектуры" (System Architecture Evolution, SAE) относительно общей конфигурации системы, включающей в себя базовую сеть (которую также обозначают просто термином "сеть"), как системы связи, которые не зависят от W-CDMA. В LTE схема доступа, конфигурация радиоканала и протокол полностью отличаются от текущего стандарта W-CDMA (HSDPA/HSUPA). Например, в части схемы доступа в W-CDMA используется множественный доступ с кодовым разделением, тогда как в LTE в направлении нисходящей линии связи используется Мультиплексирование с Ортогональным Частотным Разделением (Orthogonal Frequency Division Multiplexing, OFDM), а в направлении восходящей линии связи используется Множественный Доступ с Частотным Разделением по Одной Несущей (Single Career Frequency Division Multiple Access, SC-FDMA). В добавление, в W-CDMA полоса пропускания составляет 5 МГц, тогда как в LTE полоса пропускания может быть выбрана из значений 1,4 МГц, 3 МГц, 5 МГц, 10 МГц, 15 МГц и 20 МГц для каждой базовой станции. Кроме того, в отличие от W-CDMA в LTE отсутствует коммутация каналов, и предоставлена только система пакетной связи.

LTE определена как сеть радиодоступа, которая не зависит от сети W-CDMA, поскольку ее система связи сконфигурирована на основе новой базовой сети, которая отличается от базовой сети (GPRS) стандарта W-CDMA. Следовательно, для различения от системы связи W-CDMA в системе связи LTE базовая станция, которая осуществляет связь с Пользовательским Оборудованием (User Equipment, UE), и контроллер радиосети, который передает/принимает управляющие данные и пользовательские данные в/от множества базовых станций, обозначаются как E-UTRAN NodeB (eNB) и Усовершенствованное Ядро Пакетной Передачи (Evolved Packet Core, EPC) (которое также обозначают как Шлюз Доступа (Access Gateway, aGW)) соответственно. В системе связи LTE предоставлена служба одноадресной рассылки и Усовершенствованная Служба Широковещательной Многоадресной Рассылки (Evolved Multimedia Broadcast Multicast Service, E-MBMS). Служба E-MBMS представляет собой широковещательную мультимедийную службу, которая в некоторых случаях обозначается просто термином "MBMS". Широковещательное содержимое, такое как новости, прогноз погоды и мобильное широковещание передаются множеству UE. Это также называют службой точка-многоточка.

В Непатентном Документе 1 описаны текущие решения 3GPP относительной общей архитектуры в системе LTE. Общая архитектура (Глава 4 Непатентного Документа 1) описана со ссылкой на фиг.1. Фиг.1 представляет собой схему, иллюстрирующую конфигурацию системы связи LTE. Усовершенствованная Универсальная Сеть Наземного Радио Доступа (Evolved Universal Terrestrial Radio Access, E-UTRAN) состоит из одной или множества базовых станций 102, при условии что в базовой станции 102 заложены протокол управления (например, Управление Радио Ресурсами (Radio Resource Management, RRC) и пользовательская плоскость (например, Протокол Сходимости Пакетных Данных (Packet Data Convergence Protocol, PDCP), Управление Радио Линией (Radio Link Control, RLC), Управление Средой Передачи (Medium Access Control, MAC) и Физический Уровень (Physical Layer, PHY)) для UE 101. Базовые станции 102 выполняют планирование и передачу сигналов поискового вызова (которые также называют сообщениями поискового вызова), сообщаемых из Объекта Управления Мобильностью (Mobility Management Entity, MME) 103. Базовые станции 102 соединены друг с другом посредством интерфейса X2. В добавление, базовые станции 102 соединены с Усовершенствованным Ядром Пакетной Передачи (Evolved Packet Core, EPC) посредством интерфейса S1. Более конкретно, они соединены с Объектом Управления Мобильностью (Mobility Management Entity, MME) 103 посредством интерфейса S1_MME и с Обслуживающим Шлюзом (Serving Gateway, S-GW) 104 посредством интерфейса S1_U. MME 103 распределяет сигналы поискового вызова множеству или одной базовой станции 102. В добавление, MME 103 выполняет управление мобильностью в состоянии простоя. Когда UE находится в состоянии простоя и активном состоянии, MME 103 управляет списком отслеживаемых областей. S-GW 104 передает/принимает пользовательские данные в/от одной или множества базовых станций 102. S-GW 104 действует как локальная якорная точка мобильности при эстафетном переключении между базовыми станциями. Более того, предоставлен шлюз PDN (P-GW), который выполняет фильтрацию пакетов по каждому пользователю и назначение адресов UE-ID.

Текущие решения 3GPP относительно конфигурации кадра в системе LTE описаны в Непатентном Документе 1 (Глава 5). В настоящем документе описание этих решений приведено со ссылкой на фиг.2. Фиг.2 - схема, иллюстрирующая конфигурацию радиокадра, используемого в системе связи LTE; один радиокадр имеет длительность 10 мс. Один радиокадр разделен на десять подкадров одинаковых размеров. Каждый подкадр разделен на два слота равных размеров. Первый (№0) и шестой (№5) подкадры содержат Сигнал Синхронизации Нисходящей Линии Связи (Downlink Synchronization Signal, SS) для каждого кадра. Сигналы синхронизации классифицируются на Первичный Сигнал Синхронизации (Primary Synchronization Signal, P-SS) и Вторичный Сигнал Синхронизации (Secondary Synchronization Signal, S-SS). Мультиплексирование каналов для Сети с Одной Частотой Службы Широковещательной Многоадресной Рассылки (Multimedia Broadcast Multicast Service Single Frequency Network, MBSFN) и не для MBSFN осуществляется по каждому подкадру. В дальнейшем подкадр для передачи MBSFN обозначается как подкадр MBSFN. В Непатентном Документе 2 описан пример сигнализации при назначении подкадров MBSFN. Фиг.3 представляет собой схему, иллюстрирующую конфигурацию кадра MBSFN. Подкадры MBSFN назначаются для каждого кадра MBSFN. Осуществляется планирование кластера кадров MBSFN. Назначается период повторения кластера кадров MBSFN.

В Непатентном Документе 1 описаны текущие решения 3GPP относительной конфигурации канала в системе LTE. Предполагается, что в соте Закрытой Абонентной Группы (Closed Subscriber Group, CSG) и соте другого типа используется одинаковая конфигурация канала. Физический канал (Глава 5 Непатентного Документа 1) описан со ссылкой на фиг.4. Фиг.4 - схема, иллюстрирующая физические каналы в системе связи LTE; Физический Широковещательный Канал (Physical Broadcast Channel, PBCH) 401 представляет собой канал нисходящей линии связи, передаваемый из базовой станции 102 в UE 101. Транспортный блок BCH сопоставляется четырем подкадрам в интервале 40 мс. Явный сигнал, указывающий тайминг 40 мс, не используется. Физический Канал Индикатора Формата Управления (Physical Control Format Indicator Channel, PCFICH) 402 передается из базовой станции 102 в UE 101. PCFICH сообщает количество OFDM-символов, используемых для каналов PDCCH, из базовой станции 102 в UE 101. PCFICH передается в каждом подкадре. Физический Канал Управления Нисходящей Линии Связи (Physical Downlink Control Channel, PDCCH) 403 представляет собой канал нисходящей линии связи, передаваемый из базовой станции 102 в UE 101. PDCCH сообщает о назначении ресурсов, информацию HARQ, относящуюся к DL-SCH (общему каналу нисходящей линии связи, который является одним из транспортных каналов, показанных на фиг.5) и к PCH (каналу поискового вызова, который является одним из транспортных каналов, показанных на фиг.5). PDCCH несет грант планирования восходящей линии связи. PDCCH несет Ack/Nack, который является ответным сигналом для передачи восходящей линии связи. PDCCH также обозначается как сигнал управления L1/L2. Физический Общий Канал Нисходящей Линии Связи (Physical Shared Downlink Channel, PDSCH) 404 представляет собой канал нисходящей линии связи, передаваемый из базовой станции 102 в UE 101. Общий Канал Нисходящей Линии Связи (Downlink Shared Channel, DL-SCH), который является транспортным каналом, и PCH, который является транспортным каналом, сопоставляются каналу PDSCH. Физический Канал Многоадресной Рассылки (Physical Multicast Channel, PMCH) 405 представляет собой канал нисходящей линии связи, передаваемый из базовой станции 102 в UE 101. Канал Многоадресной Рассылки (Multicast Channel, MCH), который является транспортным каналом, сопоставляется каналу PMCH.

Физический Канал Управления Восходящей Линии Связи (Physical Uplink Control Channel, PUCCH) 406 представляет собой канал восходящей линии связи, передаваемый из UE 101 в базовую станцию 102. PUCCH несет Ack/Nack, который является ответным сигналом для передачи нисходящей линии связи. PUCCH несет отчет Индикатора Качества Канала (Channel Quality Indicator, CQI). CQI представляет собой информацию качества, указывающую качество принимаемых данных или качество канала. В добавление, PUCCH несет Запрос Планирования (Scheduling Request, SR). Физический Общий Канал Восходящей Линии Связи (Physical Uplink Shared Channel, PUSCH) 407 представляет собой канал восходящей линии связи, передаваемый из UE 101 в базовую станцию 102. UL-SCH (общий канал восходящей линии связи, который является одним из транспортных каналов, показанных на фиг.5), сопоставляется каналу PUSCH. Физический Канал Индикатора Гибридного ARQ (Physical Hybrid ARQ Indicator Channel, PHICH) 408 представляет собой канал нисходящей линии связи, передаваемый из базовой станции 102 в UE 101. PHICH несет Ack/Nack, который является ответным сигналом для передачи восходящей линии связи. Физический Канал Произвольного Доступа (Physical Random Access Channel, PRACH) 409 представляет собой канал восходящей линии связи, передаваемый из UE 101 в базовую станцию 102. PRACH несет преамбулу произвольного доступа.

По нисходящей линии связи опорный сигнал, который является известным символом в системе мобильной связи, вставляется в первый, третий и последний OFDM-символы каждого слота. Объекты измерения физического уровня UE включают в себя, например, Принятую Мощность Опорного Символа (Reference Symbol Received Power, RSRP).

Транспортный канал (Глава 5 Непатентного Документа 1) описан со ссылкой на фиг.5. Фиг.5 представляет собой схему, иллюстрирующую транспортные каналы, используемые в системе связи LTE. Часть [A] фиг.5 иллюстрирует сопоставление между транспортным каналом нисходящей линии связи и физическим каналом нисходящей линии связи. Часть [B] фиг.5 иллюстрирует сопоставление между транспортным каналом восходящей линии связи и физическим каналом восходящей линии связи. Широковещательный канал (Broadcast Channel, BCH) рассылается по всей области покрытия базовой станции (соты) относительно транспортного канала нисходящей линии связи. BCH сопоставляется каналу PBCH. К Общему Каналу Нисходящей Линии Связи (Downlink Shared Channel, DL-SCH) применяется управление повторной передачи согласно схеме Гибридного ARQ (Hybrid ARQ, HARQ). Обеспечивается возможность широковещательной рассылки по всей области покрытия базовой станции (соты). DL-SCH поддерживает динамическое или полустатическое назначение ресурсов. Полустатическое назначение ресурсов также называют постоянным планированием. DL-SCH поддерживает Прерывистый Прием (Discontinuous Reception, DRX) UE для обеспечения возможности энергосбережения в UE. DL-SCH сопоставляется каналу PDSCH. Канал поискового вызова (Paging Channel, PCH) поддерживает DRX для UE, чтобы обеспечить возможность энергосбережения в UE. Требуется широковещательная рассылка по всей области покрытия базовой станции (соты). PCH сопоставляется физическим ресурсам, таким как PDSCH, которые могут быть динамически использованы для ресурсов потока обмена или физических ресурсов, например PDCCH другого канала управления. Канал Многоадресной Рассылки (Multicast Channel, MCH) используется для широковещательной рассылки по всей области покрытия базовой станции (соты). MCH поддерживает SFN, сочетающую в себе службу MBMS (MTCH и MCCH) в передаче по множеству ячеек. MCH поддерживает полустатическое назначение ресурсов. MCH сопоставляется каналу PMCH.

К Общему Каналу Восходящей Линии Связи (Uplink Shared Channel, UL-SCH) применяется управление повторной передачи согласно схеме Гибридного ARQ (Hybrid ARQ, HARQ). UL-SCH поддерживает динамическое или полустатическое назначение ресурсов. UL-SCH сопоставляется каналу PUSCH. Канал Произвольного Доступа (Random Access Channel, RACH), показанный в части [B] фиг.5, ограничивается информацией управления. Имеет место риск конфликта. RACH сопоставляется каналу PRACH. Ниже приведено описание HARQ.

HARQ представляет собой способ повышения качества связи канала путем сочетания автоматического запроса на повтор и прямой коррекции ошибок. Преимущество HARQ заключается в том, что коррекция ошибок эффективно действует путем повторной передачи для канала, качество связи которого изменяется. В частности, обеспечивается возможность обеспечить дополнительное повышение качества повторной передачи путем комбинирования результатов приема первой передачи и результатов приема повторной передачи. Ниже приведен пример способа повторной передачи. В случае когда приемнику не удается успешно декодировать принятые данные (то есть когда имеет место ошибка Циклического Контроля Избыточности (Cyclic Redundancy Check, CRC) (CRC=NG)), приемник передает в передатчик сигнал "Nack". Передатчик, который принял "Nack", повторно передает данные. В случае когда приемник успешно декодирует принятые данные (то есть когда нет ошибок CRC (CRC=OK)), приемник передает в передатчик сигнал "Ack". Передатчик, который принял "Ack", передает следующие данные. Примеры систем HARQ включают в себя "отслеживаемое комбинирование". В отслеживаемом комбинировании одинаковая последовательность данных передается в первой передаче и повторной передаче, и коэффициенты усиления улучшаются путем комбинирования последовательности данных первой передачи и последовательности данных повторной передачи. Это основано на идее, что корректные данные частично входят в состав первой передачи, даже если данные первой передачи содержат ошибку, и передача данных с высокой точностью реализуется путем комбинирования корректной части данных первой передачи и данных повторной передачи. Еще одним примером системы HARQ является инкрементальная избыточность (Incremental Redundancy, IR). Целью IR является увеличение избыточности, когда бит четности передается в повторной передаче, чтобы увеличить избыточность путем комбинирования первой передачи и повторной передачи и, следовательно, чтобы повысить качество посредством функции коррекции ошибок.

Логический канал (Глава 6 Непатентного Документа 1) описан со ссылкой на фиг.6. Фиг.6 представляет собой схему, иллюстрирующую логические каналы в системе связи LTE. Часть [A] фиг.6 иллюстрирует сопоставление между логическим каналом нисходящей линии связи и транспортным каналом нисходящей линии связи. Часть [B] фиг.6 иллюстрирует сопоставление между логическим каналом восходящей линии связи и транспортным каналом восходящей линии связи. Широковещательный Канал Управления (Broadcast Control Channel, BCCH) представляет собой канал нисходящей линии связи для широковещательной системной информации управления. BCCH, который представляет собой логический канал, сопоставляется каналу BCH или DL-SCH, который является транспортным каналом. Канал Управления поискового вызова (Paging Control Channel, PCCH) представляет собой канал нисходящей линии связи для передачи сигналов поискового вызова. PCCH используется, когда сети неизвестно местоположение соты UE. PCCH, который представляет собой логический канал, сопоставляется PCH, который является транспортным каналом. Общий Канал Управления (Common Control Channel, CCCH) представляет собой канал для передачи информации управления между единицами UE и базовой станцией. CCCH используется, когда единицы UE не имеют RRC-соединения с базовой станцией. В нисходящей линии связи CCCH сопоставляется каналу DL-SCH, который является транспортным каналом. В восходящей линии связи CCCH сопоставляется каналу UL-SCH, который является транспортным каналом.

Канал Управления Многоадресной Рассылки (Multicast Control Channel, MCCH) представляет собой канал нисходящей линии связи для передачи по схеме точка-многоточка. MCCH представляет собой канал, используемый для передачи управляющей информации MBMS для одного или нескольких каналов MTCH. MCCH представляет собой канал, используемый только UE в течение приема MBMS. MCCH сопоставляется каналу DL-SCH или MCH, который является транспортным каналом. Выделенный Канал Управления (Dedicated Control Channel, DCCH) представляет собой канал, который передает выделенную информацию управления между UE и сетью. DCCH сопоставляется каналу UL-SCH в восходящей линии связи и каналу DL-SCH в нисходящей линии связи. Выделенный канал потока обмена (Dedicate Traffic Channel, DTCH) представляет собой канал связи точка-точка для передачи пользовательской информации в выделенное UE. DTCH существует в восходящей линии связи, а также в нисходящей линии связи. DTCH сопоставляется каналу UL-SCH в восходящей линии связи и каналу DL-SCH в нисходящей линии связи. Канал Потока Обмена Многоадресной Рассылки (Multicast Traffic Channel, MTCH) представляет собой канал нисходящей линии связи для передачи данных потока обмена из сети в UE. MTCH представляет собой канал, используемый только UE в течение приема MBMS. MTCH сопоставляется каналу DL-SCH или MCH.

GCI представляет Глобальную Идентичность Соты. В LTE и Универсальной Системе Мобильной Связи (Universal Mobile Telecommunication System, UMTS) представлена сота Закрытой Абонентской Группы (Closed Subscriber Group, CSG). Ниже приведено описание CSG (Глава 3.1 Непатентного Документа 7). Закрытая Абонентская Группа (Closed Subscriber Group, CSG) представляет собой соту, в которой доступные абоненты идентифицируются оператором (сота для идентифицированных абонентов). Эти идентифицированные абоненты авторизуются для доступа в одну или более ячеек E-UTRAN Общественной Наземной Мобильной Сети (Public Land Mobile Network, PLMN). Одна или более ячеек E-UTRAN, в которых идентифицированным абонентам разрешен доступ, обозначаются как "соты CSG". Следует отметить, что доступ ограничивается в PLMN. Сота CSG является частью PLMN, которая рассылает заданную идентичность CSG (CSG ID, CSG-ID). Авторизованные члены абонентской группы, которые предварительно зарегистрировались, выполняют доступ в соты CSG, используя CSG-ID, который является информацией, обеспечивающей возможность доступа. CSG-ID рассылается по сотам CSG. В системе мобильной связи существует множество CSG-ID. CSG-ID используются единицами UE для реализации доступа со стороны членов, связанных с CSG. В рамках 3GPP обсуждается вопрос относительно того, что информация, которая должна быть разослана сотой или сотами CSG, меняется с CSG-ID на Код Обслуживаемой Области (Tracking Area Code, TAC). Местоположения UE отслеживаются на основании области, состоящей из одной или более ячеек. Эти местоположения отслеживаются для обеспечения возможности отслеживания местоположений UE и вызова (вызова UE) даже в том состоянии, когда связь не осуществляется (в состоянии простоя). Область для отслеживания местоположений UE обозначается как отслеживаемая область. Белый список CSG представляет собой список, который хранится в USIM и содержит все CSG ID ячеек CSG, в которые входят эти абоненты. Белый список UE предоставляется верхним уровнем. Таким образом, базовая станция соты CSG назначает радиоресурсы единицам UE.

Ниже приведено описание "подходящей соты" (Глава 4.3 Непатентного Документа 7). "Подходящей сотой" является сота, в которой UE остается, чтобы получать нормальную службу. Для такой соты должны выполняться все следующие требования. Для такой соты должны удовлетворяться следующие условия: (1) сота является частью выбранной PLMN или зарегистрированной PLMN, либо частью PLMN "списка эквивалентных PLMN"; и (2) согласно последней информации, предоставляемой Слоем Без Доступа (Non-Access Stratum, NAS), сота дополнительно должна удовлетворять следующим условиям: (a) сота не является блокированной сотой; и (b) сота является частью, по меньшей мере, одной Отслеживаемой Области (Tracking Area, TA) и не является частью "запрещенных LA для роуминга", причем сота должна удовлетворять вышеуказанному условию (1); (c) сота удовлетворяет критерию выбора соты; и (d) для соты, идентифицированной как сота CSG согласно Системной Информации (System Information, SI), CSG-ID является частью "белого списка CSG" для UE (содержащегося в белом списке CSG этого UE).

Ниже приведено описание "приемлемой соты" (Глава 4.3 Непатентного Документа 7). Это сота, в которой UE остается, чтобы получать ограниченную службу (экстренные вызовы). Для такой соты должны выполняться все следующие требования. То есть должны выполняться требования следующего набора минимальных требований для инициации экстренного вызова в сети E-UTRAN: (1) сота не является блокированной сотой; и (2) эта сота удовлетворяет требованиям критерия выбора соты.

Временное нахождение в соте соответствует состоянию, когда UE завершило процесс выбора/повторного выбора соты и UE выбрало соту для мониторинга системной информации и информации поискового вызова.

Документы предшествующего уровня техники

Непатентные Документы

Непатентный Документ 1: 3GPP TS36.300 V8.6.0

Непатентный Документ 2: 3GPP R1-072963

Непатентный Документ 3: 3GPP TR R3.020 V0.6.0

Непатентный Документ 4: 3GPP R2-082899

Непатентный Документ 5: 3GPP R2-083494

Непатентный Документ 6: 3GPP TS36.331 V8.3.0

Непатентный Документ 7: 3GPP TS36.304 V8.3.0

Непатентный Документ 8: 3GPP R2-084346

Непатентный Документ 9: 3GPP S1-083461

Непатентный Документ 10: 3GPP R2-093950

Непатентный Документ 11: 3GPP R2-093864

Непатентный Документ 12: 3GPP R2-093138

Непатентный Документ 13: 3GPP TS36.213

Непатентный Документ 14: 3GPP TS36.101

Сущность изобретения

Задачи, решаемые с помощью изобретения

В некоторых случаях требуется установить большое количество ячеек Закрытых Абонентских Групп (Closed Subscriber Group, CSG) в многоквартирных домах, школах, компаниях и т.п. Например, соты CSG требуется установить для каждой комнаты в многоквартирных домах, для каждого класса в школах и для каждой секции в компаниях, так чтобы этими сотами CSG могли пользоваться только те абоненты, которые зарегистрировались в соответствующих сотах CSG. Сверх того, соты CSG должны иметь портативный размер и вес, и часто требуется, чтобы эти соты CSG устанавливались или демонтировались часто и гибким образом. С учетом вышеуказанных требований часто возникает ситуация, когда радиоволны от большого количества ячеек CSG одновременно передаются в одном месте. То есть ситуация, в которой единицы UE расположены в точках, доступных для радиоволн от большого количества ячеек CSG, возникает в многоквартирных домах, школах, компаниях и т.п.

Альтернативно, соты CSG должны быть инсталлированы в местах вне доступа радиоволн ячеек, отличных от CSG, чтобы обеспечить связь с множеством UE через соты CSG. В настоящее время, например, комнаты в многоквартирных зданиях во многих случаях находятся вне доступа радиоволн из ячеек, отличных от CSG. В таких случаях соты CSG устанавливаются для каждой комнаты многоквартирных зданий, и CSG состоит из ячеек CSG для каждой комнаты, для которой должен быть предоставлен CSG-ID. Например, возможна ситуация, когда регистрация пользовательского доступа UE резидента в каждой комнате выполняется для соты CSG каждой комнаты. В такой ситуации UE располагается вне доступа радиоволн от ячеек, отличных от CSG, но в области доступа радиоволн от большого количества ячеек CSG. Сверх того, в таком случае в зависимости от окружения, в котором распространяются радиоволны, радиоволна от соты CSG, в которой была выполнена регистрация пользовательского доступа, не достигает UE, или если даже она достигает UE, то ее принятая мощность меньше по сравнению с другими сотами CSG во многих случаях.

Как описано выше, в случае расположения UE в области доступа радиоволн от большого количества ячеек CSG возникает ситуация, в которой поиск и выбор соты непрерывно повторяются для ячеек CSG, доступ к которым не может быть выполнен (то есть для ячеек CSG, в которых не была выполнена регистрация пользовательского доступа). Такая ситуация приводит к задержке управления в системе и сокращению эффективности использования радиоресурсов и эффективности сигнализации. Более того, возникает проблема повышенного энергопотребления в UE, которое повторяет поиск соты. С учетом ситуаций в будущем, когда соты CSG будут скомпонованы, как описано выше, эти проблемы станут критическими. Настоящее изобретение было сделано для решения вышеупомянутых проблем.

Средство для решения проблем

Система мобильной связи согласно настоящему изобретению включает в себя единицы пользовательского оборудования, базовые станции и контроллер радиосети, причем единицы пользовательского оборудования выполняют передачу/прием данных с использованием системы Мультиплексирования с Ортогональным Частотных Разделением (Orthogonal Frequency Devision Multiplexing, OFDM) в качестве системы доступа нисходящей линии связи и с использованием системы Множественного Доступа с Частотным Разделением по Одной Несущей (Single Career Frequency Division Multiple Access, SC-FDMA) в качестве системы доступа восходящей линии связи, причем базовые станции предоставлены, соответственно, в сотах для заданных абонентов, которые открыты только для заданных единиц пользовательского оборудования или заданных абонентов, и в сотах для незаданных пользователей, которые могут быть использованы незаданными единицами пользовательского оборудования и незаданными пользователями, причем эти базовые станции выполняют планирование назначения радиоресурсов единицам пользовательского оборудования, причем контроллер радиосети управляет целевой отслеживаемой областью, в которой находятся единицы пользовательского оборудования, через множество базовых станций и выполняет поисковый вызов единиц пользовательского оборудования, причем в этой системе единицы пользовательского оборудования выполняют доступ к сотам для заданных абонентов, используя информацию разрешения доступа, издаваемую при использовании ячеек для заданных абонентов, имеющих разрешение, причем: базовые станции, предоставленные в сотах для заданных абонентов, ссылаются на информацию идентификации единиц пользовательского оборудования, сообщаемую контроллером радиосети, и передают запрос обновления отслеживаемой области для контроллера радиосети от единиц пользовательского оборудования в контроллер радиосети;

контроллер радиосети определяет, разрешено ли единицам пользовательского оборудования, которые передали запрос обновления отслеживаемой области, использовать соты для заданных абонентов, и если использование разрешено, то контроллер радиосети передает сигнал для разрешения назначения радиоресурсов единицам пользовательского оборудования и информацию разрешения доступа в базовые станции, предоставленные в сотах для заданных абонентов; и

единицы пользовательского оборудования выполняют доступ в базовые станции, предоставленные в сотах для заданных абонентов, используя информацию разрешения доступа, принятую от базовых станций, предоставленных в сотах для заданных абонентов.

Положительные эффекты изобретения

Система мобильной связи согласно настоящему изобретению включает в себя единицы пользовательского оборудования, базовые станции и контроллер радиосети, причем единицы пользовательского оборудования выполняют передачу/прием данных с использованием системы Мультиплексирования с Ортогональным Частотным Разделением (Orthogonal Frequency Devision Multiplexing, OFDM) в качестве системы доступа нисходящей линии связи и с использованием системы Множественного Доступа с Частотным Разделением по Одной Несущей (Single Career Frequency Division Multiple Access, SC-FDMA) в качестве системы доступа восходящей линии связи, причем базовые станции предоставлены, соответственно, в сотах для заданных абонентов, которые открыты только для заданных единиц пользовательского оборудования или заданных абонентов, и в сотах для незаданных пользователей, которые могут быть использованы незаданными единицами пользовательского оборудования и незаданными пользователями, причем эти базовые станции выполняют планирование назначения радиоресурсов единицам пользовательского оборудования, причем контроллер радиосети управляет целевой отслеживаемой областью, в которой находятся единицы пользовательского оборудования, через множество базовых станций и выполняет поисковый вызов единиц пользовательского оборудования, причем в этой системе единицы пользовательского оборудования выполняют доступ к сотам для заданных абонентов, используя информацию разрешения доступа, издаваемую при использовании ячеек для заданных абонентов, имеющих разрешение, причем: базовые станции, предоставленные в сотах для заданных абонентов, ссылаются на информацию идентификации единиц пользовательского оборудования, сообщаемую контроллером радиосети, и передают запрос обновления отслеживаемой области для контроллера радиосети от единиц пользовательского оборудования в контроллер радиосети;

контроллер радиосети определяет, разрешено ли единицам пользовательского оборудования, которые передали запрос обновления отслеживаемой области, использовать соты для заданных абонентов, и если использование разрешено, то контроллер радиосети передает сигнал для разрешения назначения радиоресурсов единицам пользовательского оборудования и информацию разрешения доступа в базовые станции, предоставленные в сотах для заданных абонентов; и

единицы пользовательского оборудования выполняют доступ в базовые станции, предоставленные в сотах для заданных абонентов, используя информацию разрешения доступа, принятую от базовых станций, предоставленных в сотах для заданных абонентов. Соответственно, даже в состоянии, когда в белом списке отсутствует запись (информация разрешения доступа), UE может обновить отслеживаемую область для контроллера радиосети (базовой сети, MME) и получить белый список от базовой сети через соту CSG (соту для заданных единиц пользовательского оборудования).

Краткое описание чертежей

Фиг.1 - схема, иллюстрирующая конфигурацию системы связи LTE.

Фиг.2 - схема, иллюстрирующая конфигурацию радиокадра, используемого в системе связи LTE.

Фиг.3 - схема, иллюстрирующая конфигурацию кадра для Сети с Одной Частотой Службы Широковещательной Многоадресной Рассылки (Multimedia Broadcast Service Single Frequency Network, MBSFN).

Фиг.4 - схема, иллюстрирующая физические каналы в системе связи LTE.

Фиг.5 - схема, иллюстрирующая транспортные каналы, используемые в системе связи LTE.

Фиг.6 - схема, иллюстрирующая логические каналы в системе связи LTE.

Фиг.7 - структурная схема, иллюстрирующая общую конфигурацию системы мобильной связи, рассматриваемой в настоящее время в рамках 3GPP.

Фиг.8 - структурная схема, иллюстрирующая конфигурацию UE 71 согласно настоящему изобретению.

Фиг.9 - структурная схема, иллюстрирующая конфигурацию базовой станции 72 согласно настоящему изобретению.

Фиг.10 - структурная схема, иллюстрирующая конфигурацию MME согласно настоящему изобретению.

Фиг.11 - структурная схема, иллюстрирующая конфигурацию HeNBGW согласно настоящему изобретению.

Фиг.12 - схема последовательности операций, схематически иллюстрирующая поиск соты, выполняемый Пользовательским Оборудованием (User Equipment, UE) в системе связи LTE.

Фиг.13 - концептуальная схема для случая, когда присутствует большое количество ячеек CSG.

Фиг.14 - схема последовательности операций поиска соты UE, расположенного в области доступа радиоволн от большого количества узлов Home-eNB.

Фиг.15 - диаграмма последовательности для широковещательной рассылки информации разделения PCI согласно первому варианту осуществления.

Фиг.16 - схема последовательности операций поиска соты UE согласно первому варианту осуществления.

Фиг.17 - диаграмма последовательности для широковещательной рассылки информации разделения PCI согласно первому модифицированному примеру первого варианта осуществления.

Фиг.18 - диаграмма последовательности для широковещательной рассылки информации разделения PCI по другому частотному слою.

Фиг.19 - схема, иллюстрирующая случай, когда Home-eNB располагается в области eNB.

Фиг.20 - диаграмма последовательности способа сообщения белого списка через соту, отличную от CSG, который рассматривается в рамках проекта 3GPP.

Фиг.21 - схема, иллюстрирующая случай, где Home-eNB (сота CSG), в которой было зарегистрировано UE, находится вне области соты, отличной от CSG.

Фиг.22 - диаграмма последовательности в случае, когда UE, которое не имеет белого списка, согласно третьему варианту осуществления начинает ручной поиск.

Фиг.23 - схема, иллюстрирующая случай, когда UE обслуживается множеством ячеек CSG, а не сотой, отличной от CSG.

Фиг.24 - диаграмма последовательности в случае, когда выполняется ручной поиск согласно четвертому варианту осуществления.

Фиг.25 - диаграмма последовательности способа передачи сообщения белого списка до передачи сообщения отклонения TAU.

Фиг.26 - диаграмма последовательности способа, раскрытого в первом модифицированном примере пятого варианта осуществления.

Фиг.27 - диаграмма последовательности способа для запрета установления RRC-соединения с сотой пользовательским оборудованием UE в случае приема сообщения отклонения запроса TAU из той же соты.

Фиг.28 - схема, иллюстрирующая процесс, выполняемый пользовательским оборудованием UE в случае, когда предоставлен таймер.

Фиг.29 - диаграмма последовательности способа передачи зарегистрированного сообщения белого списка до передачи n-го сообщения отклонения TAU согласно седьмому варианту осуществления.

Фиг.30 - диаграмма последовательности способа запрета запроса RRC-соединения с сотой пользовательским оборудованием в случае приема сообщения отклонения RRC-соединения из той же соты.

Фиг.31 - диаграмма последовательности способа передачи белого списка до того, как сота CSG, принадлежащая идентификатору CSG-ID, с которым UE не выполнило регистрацию пользовательского доступа, передает сообщение отклонения RRC-соединения.

Фиг.32 - диаграмма последовательности способа для передачи Ack/Nack, указывающего успешный/неуспешный прием сообщения (обновленного) белого списка согласно одиннадцатому варианту осуществления.

Фиг.33 - схема последовательности операций, иллюстрирующая процесс UE относительно повторного установления RRC-соединения.

Фиг.34 - схема последовательности операций, иллюстрирующая процесс UE относительно повторного установления RRC-соединения, когда вводится сота CSG.

Фиг.35 - схема последовательности операций процесса UE относительно повторного установления RRC-соединения, когда таймер для допустимого времени до выбора соты внутри E-UTRA по отдельности предоставляется для каждого случая, когда предоставлен белый список, и для каждого случая, когда белый список не предоставлен.

Фиг.36 - схема последовательности операций, иллюстрирующая процесс UE относительно повторного установления RRC-соединения, когда таймер для случая предоставления белого списка сообщается сотой CSG.

Фиг.37 - еще одна схема последовательности операций, иллюстрирующая процесс UE относительно повторного установления RRC-соединения, когда таймер для случая предоставления белого списка сообщается сотой CSG.

Фиг.38 - схема последовательности операций, иллюстрирующая процесс UE относительно приоритета существующего уровня техники.

Фиг.39 - схема последовательности операций, иллюстрирующая процесс UE, когда приоритет индивидуально предоставляется для каждого случая, когда предоставлен белый список, и для каждого случая, когда белый список не предоставлен.

Фиг.40 - схема последовательности операций, иллюстрирующая процесс UE, когда приоритет индивидуально предоставляется для каждого случая, когда предоставлен белый список, и для каждого случая, когда белый список не предоставлен.

Фиг.41 - схема последовательн