Теплопередающие составы

Иллюстрации

Показать все

Изобретение относится к теплопередающим составам, используемым в системах охлаждения и теплопередающих устройствах. Теплопередающий состав содержит транс-1,3,3,3-тетрафторпропен (R-1234ze(E)), дифторметан (R-32) и 1,1-дифторэтан (R-152a) в качестве хладагентов. Предложенный теплопередающий состав обладает сочетанием улучшенных свойств производительности охлаждения и смешиваемости со смазочными материалами при низкой воспламеняемости и низком потенциале глобального потепления (ПГП) по сравнению с отдельно взятым хладагентом и известными теплопередающими составами и позволяет заменить существующие хладагенты, имеющие значительный ПГП. 20 н. и 34 з.п. ф-лы, 5 ил., 45 табл.

Реферат

Изобретение относится к теплопередающим составам, и, в частности, к теплопередающим составам, которые могут быть пригодны в качестве замены существующих хладагентов, таких как R-134a, R-152a, R-1234yf, R-22, R-410A, R-407A, R-407B, R-407C, R507 и R-404a.

Перечисление или обсуждение любого ранее опубликованного документа или уровня техники в данном описании не обязательно должны восприниматься как признание того, что документ или уровень техники характеризуют состояние данной области техники или являются общим знанием.

Механические системы охлаждения и связанные с ними теплопередающие устройства, такие как тепловые насосы и системы кондиционирования воздуха, хорошо известны. В таких системах охлаждающая жидкость испаряется при низком давлении, забирая тепло из окружающей зоны. Образовавшийся пар после этого сжимается и передается в конденсатор, где он конденсируется и отдает тепло во вторую зону, причем конденсат возвращается через расширительный клапан в испаритель, таким образом завершая цикл. Механическая энергия, необходимая для сжатия пара и накачивания жидкости, обеспечивается, например, электродвигателем или двигателем внутреннего сгорания.

Кроме подходящей температуры кипения и высокой скрытой теплоты испарения, предпочтительные свойства хладагента включают в себя низкую токсичность, невоспламеняемость, некоррозионность, высокую стабильность и отсутствие нежелательного запаха. Другими полезными свойствами являются готовность к сжимаемости при давлениях ниже 25 бар, низкая температура разряда на сжатии, высокая холодопроизводительность, высокая эффективность (высокий коэффициент полезного действия) и давление испарителя, превышающее 1 бар при желаемой температуре испарения.

Дихлордифторметан (хладагент R-12) обладает подходящей комбинацией свойств и являлся в течение многих лет наиболее широко используемым хладагентом. Благодаря международной обеспокоенности тем, что полностью и частично галогенированные хлорфторуглероды повреждали защитный озоновый слой Земли, было достигнуто общее соглашение, что их производство и использование должно быть строго ограничено и, в конечном итоге, полностью прекращено. Использование дихлордифторметана было прекращено в 1990-х.

Хлордифторметан (R-22) был введен в качестве замены R-12 из-за его низкого потенциала разрушения озонового слоя. После опасений, что R-22 является мощным парниковым газом, его использование также постепенно сокращается.

В то время как теплопередающие устройства того типа, к которому относится данное изобретение, представляют собой, в основном, закрытые системы, потеря хладагента в атмосфере может происходить из-за утечки в процессе эксплуатации оборудования или во время технического обслуживания. Важно, таким образом, заменить полностью и частично галогенированные хлорфторуглеродные хладагенты материалами с нулевым потенциалом разрушения озонового слоя.

В дополнение к возможности разрушения озонового слоя было высказано предположение, что значительные концентрации галоидоуглеводородных хладагентов в атмосфере могут способствовать глобальному потеплению (так называемый парниковый эффект). Желательно, таким образом, использовать хладагенты, которые имеют сравнительно короткий срок жизни в атмосфере в результате их способности вступать в реакцию с другими атмосферными компонентами, такими как гидроксильные радикалы, или в результате деградации вследствие фотолитических процессов.

Хладагенты R-410A и R-407 (в том числе R-407A, R-407B и R-407C) были введены в качестве замены для хладагента R-22. Однако, хладагенты R-22, R-410A и R-407 имеют высокий потенциал глобального потепления (ПГП, также известный как потенциал парникового потепления).

1,1,1,2-тетрафторэтан (хладагент R-134a) был введен в качестве замены для хладагента R-12. Однако, несмотря на отсутствие значительного потенциала разрушения озона, R-134a имеет значение ПГП, равное 1300. Было бы желательно найти замены для R-134a, которые имеют более низкое значение ПГП.

R-152a (1,1-дифторэтан) был определен в качестве альтернативы для R-134a. Он является несколько более эффективным, чем R-134a, и имеет величину потенциала парникового потепления, равную 120. Однако воспламеняемость R-152a оценивается слишком высоко, например, для того чтобы разрешить его безопасное использование в мобильных системах кондиционирования воздуха. В частности, считается, что его нижний предел воспламенения в воздухе слишком мал, его скорости распространения пламени являются слишком высокими, и его энергия воспламенения слишком низка.

Таким образом, существует необходимость обеспечения альтернативных хладагентов с улучшенными свойствами, такими как низкая воспламеняемость. Химия горения фторуглеродов является сложной и непредсказуемой. Это не всегда так, что смешивание негорючего фторуглерода с легковоспламеняющимся фторуглеродом снижает воспламеняемость жидкости или снижает диапазон горючих композиций в воздухе. Например, изобретатели обнаружили, что если невоспламеняющийся R-134a смешивается с легковоспламеняющимся R-152a, то нижний предел воспламенения смеси изменяется непредсказуемым образом. Ситуация оказывается еще более сложной и меньше предсказуемой, если рассматриваются тройные или четвертичные композиции.

Существует также необходимость обеспечить альтернативные хладагенты, которые могут использоваться практически без модификации в существующих устройствах, таких как холодильные устройства.

R-1234yf (2,3,3,3-тетрафторпропен) был определен в качестве альтернативного кандидата-хладагента для замены R-134a в некоторых применениях, в частности, в мобильных системах кондиционирования воздуха или тепловых насосных установках. Величина его ПГП составляет около 4. R-1234yf легко воспламеняется, но его характеристики воспламеняемости, как правило, считаются приемлемыми для некоторых применений, в том числе, для мобильных систем кондиционирования воздуха или тепловых насосов. В частности, по сравнению с R-152a, его нижний предел воспламенения выше, его минимальная энергия зажигания выше, а скорость распространения пламени в воздухе значительно ниже, чем у R-152a.

Воздействие на окружающую среду операционной системы кондиционирования воздуха или системы охлаждения, с точки зрения выбросов парниковых газов, следует рассматривать с учетом не только так называемого "прямого" ПГП хладагента, но и со ссылкой на так называемые "косвенные" эмиссии, то есть эмиссии двуокиси углерода в результате потребления электроэнергии или топлива для работы системы. Было разработано несколько критериев такого общего влияния ПГП, в том числе критерий, известный как общий коэффициент эквивалентного потепления Total Equivalent Warming Impact (TEWI), или коэффициент климатического воздействия за весь жизненный цикл низкотемпературной системы Life-Cycle Carbon Production (LCCP). Оба эти критерия включают в себя оценку эффекта ПГП хладагента и энергоэффективности на общее воздействие на потепление.

Было обнаружено, что энергоэффективность и холодопроизводительность R-1234yf значительно ниже, чем у R-134a, и, кроме того, было установлено, что жидкость обладает повышенным падением давления в системе трубопроводов и теплообменников. Вследствие этого для использования R-1234yf и достижения энергоэффективности и производительности охлаждения, эквивалентной R-134a, требуются повышенная сложность оборудования и увеличение размеров трубопроводов, что приводит к увеличению косвенных выбросов, связанных с оборудованием. Кроме того, производство R-1234yf считается более сложным и менее эффективным с точки зрения использования сырья (фторированного и хлорированного), чем R-134a. Так, принятие R-1234yf для замены R-134a потребует большее потребление сырья и приведет к большим косвенным выбросам парниковых газов, чем R-134a.

Некоторые из существующих технологий, предназначенных для R-134a, невозможно принять даже при сниженной воспламеняемости некоторых теплопередающих составов (полагают, что любой состав, имеющий величину ПГП меньше 150, является до некоторой степени легковоспламеняющимся).

Основной задачей настоящего изобретения является, поэтому, создание теплопередающего состава, который может использоваться сам по себе или подходить в качестве замены существующих холодильных составов, который должен иметь уменьшенное значение ПГП, при этом имеет емкость и энергоэффективность (что можно удобно выразить как «коэффициент полезного действия» или «холодильный коэффициент»), в идеальном случае, в пределах 10% от значений, например, тех, которые достигаются с использованием существующих хладагентов (например, R-134a, R-152a, R-1234yf, R-22, R-410A, R-407A, R-407B, R-407C, R507 и R-404a), и, желательно, меньше чем 10% (например, около 5%) данных значений. В данной области техники известно, что различия подобного рода между жидкостями, как правило, разрешимы путем изменения конструкции оборудования и эксплуатационных характеристик системы. Состав должен также иметь, в идеальном случае, пониженную токсичность и приемлемую воспламеняемость.

Настоящее изобретение устраняет упомянутые выше недостатки предоставлением теплопередающего состава, содержащего транс-1,3,3,3-тетрафторпропен (R-1234ze(E)), дифторметан (R-32), и 1,1-дифторэтан (R-152a). Данный состав будет называться в дальнейшем состав по изобретению, если не указано иное.

Все химические вещества, описанные здесь, имеются в продаже. Например, фторсодержащие вещества могут быть получены от Apollo Scientific (Великобритания).

Как правило, составы по изобретению содержат до около 25% масс. R-32.

Удобно, составы по изобретению содержат до около 45% масс. R-152a.

В предпочтительном варианте осуществления составы по изобретению содержат от около 2 до около 25% масс. R-32, от около 5 до около 45% масс. R-152a и от около 60 до около 95% масс. (например, от около 70 до около 93%) R-1234ze(E).

Преимущественно, составы по изобретению содержат от около 4 до около 12% масс. R-32, от около 5 до около 10% масс. R-152a и от около 78 до около 91% масс. R-1234ze(E).

В предпочтительном варианте осуществления составы по изобретению содержат от около 8 до около 12% масс. R-32, от около 5 до около 10% масс. R-152a и от около 78 до около 87% масс. R-1234ze(E). Примерами таких составов являются тройные смеси, содержащие:

около 10% R-32, около 5% R-152a и около 85% R-1234ze(E);

около 11% R-32, около 6% R-152a и около 83% R-1234ze(E);

около 9% R-32, около 6% R-152a и около 85% R-1234ze(E);

около 8% R-32, около 5% R-152a и около 87% R-1234ze(E); или

около 8% R-32, около 6% R-152a и около 86% R-1234ze(E).

Удобно, составы по изобретению содержат от около 8 до около 12% масс. R-32, от около 3 до около 7% масс. R-152a и от около 81 до около 89% масс. R-1234ze(E).

В одном аспекте по изобретению составы по изобретению содержат от около 5 до около 12% масс. R-32, от около 10 до около 45% масс. R-152a и от около 43 до около 85% масс. R-1234ze(E).

В дополнительном предпочтительном аспекте составы по изобретению содержат от около 5 до около 12% масс. R-32, от около 10 до около 40% масс. R-152a и от около 48 до около 85% масс. R-1234ze(E).

В одном варианте осуществления составы по изобретению содержат от около 5 до около 11% масс. R-32, от около 10 до около 35% масс. R-152a и от около 54 до около 85% масс. R-1234ze(E).

Преимущественно, составы по изобретению содержат от около 5 до около 10% масс. R-32, от около 15 до около 30% масс. R-152a и от около 60 до около 80% масс. R-1234ze(E).

Используемые здесь все % величины, упомянутые здесь в составах, в том числе, в формуле по изобретению, являются процентами по массе в пересчете на общую массу составов, если не указано иное.

Во избежание сомнений должно быть понятно, что установленные верхние и нижние значения диапазонов количеств компонентов в составах по изобретению могут быть изменены тем или иным образом, при условии, что получаемые при этом диапазоны попадают в пределы широкого объема по изобретению. Например, состав по изобретению может содержать от около 5 до около 12% масс. R-32, от около 5 или от 10 до около 35% масс. R-152a и от около 53 до около 85 или 90% масс. R-1234ze(E).

Составы по изобретению, содержащие R-1234ze(E), R-32 и R-152a, могут состоять в основном из (или состоять из) данных компонентов.

Под термином "состоят в основном из" подразумевается, что составы по изобретению не содержат существенно никаких других компонентов, в частности, никаких дополнительных (гидро)(фтор)соединений (например, (гидро)(фтор)алканов или (гидро)(фтор)алкенов), которые, как известно, используются в теплопередающих составах. Термин "состоит из" включается в понятие "состоят, в основном из". Таким образом, составы по изобретению являются, предпочтительно, тройными смесями R-1234ze(E), R-32 и R-152a.

Во избежание сомнений, любой из составов по изобретению, описанных здесь, в том числе с конкретно определенным количеством компонентов, может состоять, в основном, из (или состоять из) компонентов, определенных в данных составах.

В дополнительном аспекте составы по изобретению, содержащие R-1234ze(E), R-32 и R-152a, могут дополнительно содержать 1,1,1,2-тетрафторэтан (R-134a). R-134a обычно вводят, чтобы снизить воспламеняемость составов по изобретению.

Если присутствует R-134a, то в результате составы обычно содержат до около 50% масс. R-134a, предпочтительно, от около 25% до около 45% масс. R-134a. Остальная часть состава будет содержать R32, R152a и R-1234ze(E) целесообразно в аналогичных предпочтительных пропорциях, как описано выше.

Подходящие смеси R32, R152a, R-1234ze(E) и R-134a содержат от около 2 до около 15% масс. R-32, от около 5 до около 45% масс. R-152a, от около 25 до около 50% R-134a и от около 5 до около 70% масс. R-1234ze(E).

Например, состав по изобретению может содержать от около 4 до около 12% масс. R-32, от около 5 до 35% масс. R-152a, от около 25 до около 45% R-134a и в качестве остатка R-1234ze(E).

Если доля R-134a в составе составляет около 25% масс., то оставшаяся часть состава обычно содержит от около 3 до около 12% (предпочтительно, от около 4 до около 10%) масс. R-32, от около 5 до около 45% (предпочтительно, от около 5 до около 40%) масс. R-152a, и от около 20 до около 70% (предпочтительно, от около 25 до около 65%) масс. R-1234ze(E).

Если доля R-134a в составе составляет около 35% масс., то оставшаяся часть состава обычно содержит от около 3 до около 11% (предпочтительно, от около 4 до около 10%) масс. R-32, от около 5 до около 45% (предпочтительно, от около 5 до около 40%) масс. R-152a и от около 10 до около 60% (предпочтительно, от около 15 до около 55%) масс. R-1234ze(E).

Если доля R-134a в составе составляет около 45% масс., то оставшаяся часть состава обычно содержит от около 3 до около 10% (предпочтительно, от около 3 до около 8%) масс. R-32, от около 5 до около 45% (предпочтительно, от около 5 до около 40%) масс. R-152a и от около 5 до около 50% (предпочтительно, от около 15 до около 45%) масс. R-1234ze(E).

Предпочтительно, составы по изобретению, содержащие R-134a, являются невоспламеняющимися при температуре испытаний 60°C с использованием методики ASHRAE 34. Преимущественно, смеси паров, которые существуют в равновесии с составом по изобретению при любой температуре около от -20°C до 60°C, также являются невоспламеняющимися.

Составы согласно изобретению преимущественно содержат незначительные количества R-1225 (пентафторпропен), преимущественно незначительные количества R-1225ye (1,2,3,3,3-пентафторпропен) или R-1225zc (1,1,3,3,3-пентафторпропен), поскольку эти соединения могут связывать токсичные вещества.

"Незначительные количества" означает, что составы по изобретению содержат 0,5% масс. или меньше установленного компонента, предпочтительно, 0,1% или меньше, в пересчете на общую массу состава.

Составы по изобретению могут содержать незначительные количества:

(I) 2,3,3,3-тетрафторпропен (R-1234yf),

(II) cis-1,3,3,3-тетрафторпропен (R-1234ze (Z)), и/или

(III) 3,3,3-трифторпропен (R-1243zf).

Составы по изобретению имеют нулевой потенциал разрушения озона.

Предпочтительно, составы по изобретению (например, те, которые подходят для замены хладагентов R-134a, R-1234yf или R-152a) имеют значение ПГП меньше, чем 1300, предпочтительно, меньше, чем 1000, более предпочтительно, меньше чем 500, 400, 300 или 200, особенно, меньше 150 или 100, даже меньше, чем 50 в некоторых случаях. Если не указано иное, значения ПГП из ТДО (Третий доклад об оценке) МГЭИК (Межправительственная группа экспертов по изменению климата) были использованы в настоящем документе.

Преимущественно, составы обладают уменьшенной опасностью воспламенения, по сравнению с отдельными воспламеняющимися компонентами составов, например, R-32 или R-152a. Предпочтительно, составы имеют уменьшенную опасность воспламенения, по сравнению с R-1234yf.

В одном аспекте составы имеют один или более из следующих показателей: (а) высокий нижний предел воспламенения, (б) большую энергию зажигания; или (с) скорость горения ниже, по сравнению с R-32, R-152a и R-1234yf. В предпочтительном варианте осуществления составы по изобретению являются невоспламеняющимися. Преимущественно, смеси паров, которые существуют в равновесии с составами по изобретению при любой температуре от около -20°C до 60°C, также являются невоспламеняющимися.

Воспламеняемость может быть определена в соответствии со стандартом ASHRAE Standard 34, включающим в себя стандарт ASTM E-681 с методикой испытаний в соответствии с Addendum 34p от 2004 года, все содержание которой включено здесь посредством ссылки.

В некоторых приложениях разработка не обязательно должна быть признана невоспламеняющейся по методике ASHRAE 34; возможно разработать жидкости, у которых пределы воспламенения в воздухе будут в достаточной мере уменьшены, для того чтобы сделать их безопасными для применения в приложении, например, если физически невозможно сделать легковоспламеняющуюся смесь утечкой заряда холодильного оборудования в окружающую среду. Обнаружено, что эффект от добавления дополнительных хладагентов R-32 и R-1234ze(E) к легковоспламеняющемуся хладагенту R-152a проявляется в изменении воспламеняемости в смеси с воздухом данным образом.

Известно, что воспламеняемость смесей гидрофторуглеродов (ГФУ) или гидрофторуглеродов плюс гидрофторолефинов связана с долей связей углерод-фтор по отношению к углерод-водородным связям. Это может быть выражено как отношение R=F/(F+H), где, на молярной основе, F представляет собой общее число атомов фтора и H представляет собой общее число атомов водорода в составе. Данное выражение называется здесь отношение фтора, если не указано иное.

Например, Takizawa et al, Reaction Stoichiometry for Combustion of Fluoroethane Blends, ASHRAE Transactions 112 (2) 2006 (включено здесь ссылкой), показывает, что существует почти линейная зависимость между данным отношением и скоростью распространения пламени смесей, содержащих R-152a, причем увеличение отношения фтора приводит к снижению скорости пламени. Данные в упомянутой ссылке показывают, что значение отношения фтора должно быть больше, чем около 0,65, чтобы скорость пламени упала до нуля, иными словами, для того чтобы смесь не воспламенялась.

Аналогично, данные по воспламеняемости многих гидрофторолефинов у Minor et al (патентная заявка Du Pont WO 2007/053697) показывают, что можно было бы ожидать, что такие соединения являются невоспламеняющимися, если значение отношения фтора составляет больше, чем около 0,7.

Можно ожидать, таким образом, исходя из известного уровня техники, что смеси, содержащие R-32 (значение отношение фтора, составляющее 0,5), R-152a (отношение фтора, составляющее 0,33) и R-1234ze(E) (значение отношение фтора, составляющее 0,67) могут быть легковоспламеняющимися, за исключением ограниченных диапазонов составов, содержащих почти 100% R-1234ze(E), так как любое количество R-152a, добавленное к олефинам, приведет к уменьшению отношение фтора смеси до величины ниже 0,67.

Неожиданно было обнаружено, что это не так. В частности, было обнаружено, что существуют смеси, содержащие R-32, R-152a и R-1234ze(E), имеющие значение отношение фтора, составляющее меньше 0,7, которые не являются легковоспламеняющимися при 23°C. Как показано на примерах ниже, некоторые смеси R-32, R-152a и R-1234ze(E) не являются легковоспламеняющимися вплоть до значений отношения фтора, составляющих около 0,57.

Более того, опять же, как показано на примерах ниже, имеются дополнительно идентифицированные смеси R-32, R-152a и R-1234ze(E), имеющие более низкий предел воспламенения в воздухе, соответствующий величине 7% об./об. или выше (что делает их безопасными для применения в большинстве приложений), и имеющие такую низкую величину отношения фтора, как около 0,46. Это особенно удивительно, учитывая, что легковоспламеняющийся 2,3,3,3-тетрафторпропен (R-1234yf) имеет значение отношения фтора, равное 0,67, и измеряемый нижний предел воспламеняемости в воздухе при 23°C, равный от 6 до 6,5% об./об..

В одном варианте осуществления составы по изобретению имеют значение отношения фтора от около 0,42 до около 0,7, такие, как от около 0,44 до около 0,67, например, от около 0,57 до около 0,65. Во избежание сомнений, должно быть понятно, что верхние и нижние значения данных диапазонов отношения фтора могут быть изменены любым способом, при условии, что в результате диапазоны попадают в пределы широкого объема по изобретению.

При производстве низко- или невоспламеняющихся R-32/R-152a/R-1234ze(E) смесей, содержащих неожиданно низкие количества R-1234ze(E), количества R-32 и/или R-152a в таких составах увеличиваются. Считается, что это приводит к теплопередающим составам, проявляющим увеличенную холодопроизводительность, сниженное температурное скольжение и/или уменьшенное падение давления, по сравнению с эквивалентными составами, содержащими большие количества (например, почти 100%) R-1234ze(E).

Таким образом, составы по изобретению демонстрируют совершенно неожиданное сочетание низкой-/невоспламеняемости, низкое значение ПГП и улучшенные эксплуатационные свойства охлаждения. Некоторые из таких эксплуатационных свойств охлаждения объясняются более подробно ниже.

Температурный гистерезис, который можно рассматривать как разницу между температурами точки кипения и точки росы азеотропной (неазеотропной) смеси при постоянном давлении, является характеристикой хладагента; если желательно заменить жидкость смесью, то тогда часто предпочтительнее иметь аналогичное или уменьшенный температурный сдвиг в альтернативной жидкости. В варианте осуществления составы по изобретению являются азеотропными.

В испарителе цикла пара-сжатия эффективный температурный сдвиг меньше, чем разница между температурами точек росы и кипения, так как рабочая жидкость поступает в испаритель как двухфазная смесь жидкости и парового интермедиата между точками кипения и росы.

Обычно температурный сдвиг (в испарителе) составов по изобретению составляет меньше, чем около 10 K, предпочтительно, меньше, чем около 5 K.

Преимущественно, объемная холодопроизводительность составов по изобретению составляет, по меньшей мере, 85% существующей хладагентной жидкости, которую он заменяет, предпочтительно, по меньшей мере, 90% или даже меньше 95%.

Составы по изобретению обычно имеют объемную холодопроизводительность, которая составляет, по меньшей мере, 90% соответствующей величины P-1234yf. Предпочтительно, составы по изобретению имеют объемную холодопроизводительность, которая составляет, по меньшей мере, 95% соответствующей величины P-1234yf, например, от около 95% до около 120% соответствующей величины P-1234yf.

В одном варианте осуществления КПД цикла (коэффициент полезного действия, COP) составов по изобретению находится в пределах около 5% или даже лучше, чем у существующей хладагентной жидкости, которую он заменяет.

Обычно температура разрядки компрессора составов по изобретению находится в пределах около 15 K существующей хладагентной жидкости, которую он заменяет, предпочтительно около 10 K или даже около 5 K.

Составы по изобретению, предпочтительно, имеют энергоэффективность, по меньшей мере, 95% (желательно, по меньшей мере, 98%) R-134a при эквивалентных условиях, имея при этом уменьшенные или эквивалентные характеристики падения давления и хладопроизводительности при 95% или выше значений R-134a. Преимущественно, составы имеют более высокую энергоэффективность и меньшие характеристики падения давления, чем у R-134a, при эквивалентных условиях. Составы имеют также, преимущественно, лучшую энергоэффективность и характеристики падения давления, чем у одного R-1234yf.

Теплопередающие составы по изобретению являются подходящими для применения в существующих конструкциях оборудования, а также совместимыми со всеми классами смазочного материала, применяемого в настоящее время с признанными хладагентами HFC. Они могут быть при желании стабилизированы или совмещены с минеральными маслами при применении соответствующих добавок.

Предпочтительно, при использовании в теплопередающем оборудовании состав по изобретению комбинируется со смазочным материалом.

Обычно смазочный материал выбирается из группы, состоящей из минерального масла, силиконового масла, полиалкилбензолов (PAB), сложных эфиров полиолов (POE), полиалкиленгликолей (PAG), полиалкиленгликольных эфиров (PAG-эфиров), поливиниловых эфиров (PVE), поли(альфа-олефинов) и их комбинаций.

Преимущественно, смазочный материал дополнительно содержит стабилизатор.

Предпочтительно, стабилизатор выбирается из группы, состоящей из соединений на основе диенов, фосфатов, соединений фенола и эпоксидов, и их смесей.

Обычно состав по изобретению может быть объединен с огнезащитным составом.

Преимущественно, огнезащитный состав выбирается из группы, состоящей из три(2-хлорэтил)фосфат(хлорпропил)фосфата, три(2,3-дибромпропил)фосфата, три(1,3-дихлорпропил)фосфата, диаммонийфосфата, различных галогенированных ароматических соединений, оксида сурьмы, тригидрата алюминия, поливинилхлорида, фторированного иодоуглерода, фторированного бромуглерода, трифториодометана, перфторалкиламинов, бром-фторалкиламинов и их смесей.

Предпочтительно, теплопередающий состав является хладагентным составом.

В одном варианте осуществления изобретение относится к теплопередающему устройству, содержащему состав по изобретению.

Предпочтительно, теплопередающее устройство является холодильным устройством.

Обычно теплопередающее устройство выбирают из группы, состоящей из автомобильных систем кондиционирования воздуха, жилых систем кондиционирования воздуха, коммерческих систем кондиционирования воздуха, жилых холодильных систем, жилых морозильных систем, коммерческих холодильных систем, коммерческих морозильных систем, охладительных систем кондиционирования воздуха, охладительных холодильных систем и коммерческих или жилых теплонасосных систем. Предпочтительно, теплопередающее устройство является холодильным устройством или системой кондиционирования воздуха.

Преимущественно, теплопередающее устройство содержит компрессор центробежного типа.

Изобретение также относится к применению состава по изобретению в теплопередающем устройстве, как описано здесь.

В соответствии с дополнительным аспектом изобретения предусмотрен пенообразователь, содержащий состав по изобретению.

Согласно другому аспекту изобретения предусмотрен вспениваемый состав, содержащий один или более компонентов, способных образовывать пену, и состав по изобретению.

Предпочтительно, один или более компонентов, способных образовывать пену, выбирают из полиуретанов, термопластичных полимеров и смол, таких как полистирол, и эпоксидных смол.

В соответствии с дополнительным аспектом изобретения предусмотрено, что пену получают из вспениваемого состава по изобретению.

Предпочтительно, пена содержит состав по изобретению.

Согласно другому аспекту изобретения предусмотрен распыляемый состав, содержащий материал для распыления, и пропеллент, содержащий состав по изобретению.

В соответствии с дополнительным аспектом изобретения предложен способ для охлаждения изделия, который содержит конденсацию состава по изобретению и после этого испарение упомянутого состава в непосредственной близости от охлаждаемого изделия.

Согласно другому аспекту изобретения предложен способ для нагревания изделия, который содержит конденсацию состава по изобретению в непосредственной близости от нагреваемого изделия и после этого испарение упомянутого состава.

Согласно дополнительному аспекту изобретения предложен способ для извлечения веществ из биомассы, содержащий контактирование биомассы с растворителем, содержащим состав по изобретению, и отделение вещества от растворителя.

Согласно другому аспекту изобретения предложен способ очистки изделия, содержащий контактирование изделия с растворителем, содержащим состав по изобретению.

Согласно дополнительному аспекту изобретения предложен способ для извлечения материала из водного раствора, содержащий контактирование водного раствора с растворителем, содержащим состав по изобретению, и отделение материала от растворителя.

Согласно другому аспекту изобретения предложен способ для извлечения материала из матрицы из частиц твердого вещества, содержащий контактирование матрицы из частиц твердого вещества с растворителем, содержащим состав по изобретению, и отделение материала от растворителя.

Согласно дополнительному аспекту изобретения предложено устройство для получения механической энергии, содержащее состав по изобретению.

Предпочтительно, устройство для получения механической энергии адаптировано для применения цикла Ренкина или его модификации для получения работы из тепла.

Согласно другому аспекту изобретения предложен способ модернизации теплопередающего устройства, содержащий стадию удаления существующего теплоносителя и введение состава по изобретению. Предпочтительно, теплопередающее устройство является охладительным устройством или (статической) системой кондиционирования воздуха. Преимущественно, способ дополнительно содержит стадию получения распределения кредита эмиссии парниковых газов (например, углекислого газа).

В соответствии со способом модернизации, описанным выше, существующий жидкий теплоноситель может быть полностью удален из теплопередающего устройства до введения состава по изобретению. Существующий жидкий теплоноситель может быть также частично удален из теплопередающего устройства после введения состава по изобретению.

В другом варианте осуществления, в котором существующий жидкий теплоноситель является R-134a и состав по изобретению содержит R134a, R-1234ze(E), R-32 и R-152a (и дополнительные компоненты, такие как смазочный материал, стабилизатор или дополнительный огнезащитный состав), R-1234ze(E), R-32 и R-152a и т.д. могут быть добавлены в R-134a в теплопередающем устройстве, тем самым образуя состав по изобретению и теплопередающее устройство по изобретению in situ. Некоторые из существующих R-134a могут быть удалены из теплопередающего устройства перед добавлением R-1234ze(E), R-32, R-152a и т.д., чтобы облегчить предоставление компонентов составов по изобретению в желаемых пропорциях.

Таким образом, изобретение относится к способу получения состава и/или теплопередающего устройства по изобретению, содержащему введение R-1234ze(E), R-32 и R-152a, а также дополнительных компонентов, таких как смазочный материал, стабилизатор или дополнительный огнезащитный состав, в теплопередающее устройство, содержащее существующий жидкий теплоноситель, который является R-134a. При желании, по меньшей мере, часть R-134a удаляется из теплопередающего устройства до введения R-1234ze(E), R-32, R-152a и т.д.

Конечно, составы по изобретению также могут быть получены только смешиванием R-1234ze(E), P-32, R-152a, не обязательно, R-134a (и дополнительных компонентов, таких как смазочный материал, стабилизатор или дополнительный огнезащитный состав) в желаемых пропорциях. Составы могут быть тогда добавлены к теплопередающему устройству (или применены любым другим способом, как это определено в настоящем документе), который не содержит R-134a или любой другой существующий жидкий теплоноситель, например, устройство, из которого R-134a или любой другой существующий жидкий теплоноситель были удалены.

В дополнительном аспекте по изобретению предложен способ для снижения воздействия на окружающую среду, возникающего в результате эксплуатации изделия, содержащего существующее соединение или состав, причем способ содержит, по меньшей мере, частичную замену существующих соединений или составов составом по изобретению. Предпочтительно, данный способ содержит стадию получения распределения кредита эмиссии парниковых газов.

Под воздействием на окружающую среду понимают образование и эмиссию парниковых нагревающих газов в рамках работы продукта.

Как уже упоминалось выше, данное воздействие на окружающую среду можно рассматривать как включающее в себя не только эмиссии соединений или составов, имеющие значительное воздействие на окружающую среду, от утечки или других потерь, но и, в том числе, эмиссию углекислого газа, происходящую за счет энергии, потребляемой устройством за его рабочую жизнь. Такое воздействие на окружающую среду может быть количественно оценено критерием, известным как общий коэффициент эквивалентного потепления (TEWI). Данный критерий был использован в количественной оценке воздействия на окружающую среду определенных стационарных холодильных установок и оборудования для кондиционирования воздуха, в том числе, например, супермаркетных холодильных систем (см., например, http://en.wikipedia.org/wiki/Total_equivalent_warming_impact).

Можно дополнительно считать, что воздействие на окружающую среду может включать в себя эмиссию парниковых газов, происходящих из синтеза и производства соединений или составов. В данном случае производственные выбросы добавляют к потреблению энергии и эффектам прямой потери, чтобы получить критерий, известный как коэффициент климатического воздействия за весь жизненный цикл низкотемпературной системы (LCCP, см., например, http://www.sae.org/events/aars/presentations/2007papasavva.pdf). Применение LCCP является обычным при оценке воздействия на окружающую среду автомобильных систем кондиционирования воздуха.

Кредит(ы) на эмиссию присуждаются за сокращение вредных выбросов, которые способствуют глобальному потеплению и их можно, например, вкладывать в банки, ими можно торговать или их можно продавать. Они обычно выражаются в эквивалентном количестве углекислого газа. Таким образом, если можно избежать выброса 1 кг R-134a, то может быть присужден кредит на эмиссию, соответствующий 1×1300 = эквиваленту 1300 кг CO2.

В другом варианте осуществления по изобретению предложен способ для производства кредита(ов) на эмиссию парниковых газов, содержащий (I) замену существующего соединения или состава составом по изобретению, где состав по изобретению обладает более низким значением ПГП, чем имеющиеся соединение или состав, и (II) получение кредита на эмиссию парниковых газов для упомянутого заменяющего шага.

В предпочтительном варианте осуществления в результате применения состава по изобретению оборудование имеет более низкий общий коэффициент эквивалентного потепления и/или коэффициент климатического воздействия за весь жизненный цикл низкотемпературной системы, чем тот, который будет достигнут за счет использования имеющегося соединения или состава.

Данные способы можно осуществлять с любым подходящим продуктом, например, в областях кондиционирования, охлаждения (например, охлаждения при низкой и средней температуре охлаждения), теплопередачи, пенообразователей, аэрозолей или распыляемых пропеллентов, газообразных диэлектриков, криохирургии, ветеринарных процедур, стоматологических процедур, пожаротушений, подавлении пламени, растворителей (например, носители для приправ и ароматов), чистящих средств, сигнальных рожков, неогнестрельного оружия, местных анестетиков, а также расширенных применений. Предпочтительно, область применения является кондиционирование воздуха или охлаждение.

Примеры подходящих продуктов включают в себя теплопередающие устройства, пенообразователи, вспениваемые составы, распыляемые составы, растворители и механические устройства производства электроэнергии. В предпочтительном варианте осуществления, продукт представляет собой теплопередающее устройство, такое как охлаждающее устройство или единица кондиционирования воздуха.

Существующее соединение или состав оказывает воздействие на окружающую среду, определяемое ПГП и/или TEWI и/или LCCP, что выше, чем состав по изобретению, который заменяет его. Существующее соединение или состав может содержать фторуглеродное соединение, такое как перфтор-, гидрофтор-, хлорфтор- или гидрохлорфторуглеродно