Способ получения l-аминокислоты

Иллюстрации

Показать все

Изобретение относится к области биохимии и представляет собой способ получения L-аминокислоты - L-лизина, L-треонина, L-аспарагина, L-аспарагиновой кислоты, L-метионина или L-изолейцина - предусматривающий культивирование бактерии Escherichia coli в среде для получения и накопления L-аминокислоты и сбор L-аминокислоты. Бактерию модифицируют таким образом, чтобы повысить экспрессию ее гена gltP или гена gltS. Изобретение позволяет повысить выход целевой L-аминокислоты. 11 з.п. ф-лы, 5 табл., 5 пр.

Реферат

Область техники изобретения

Настоящее изобретение относится к способу получения L-аминокислоты с использованием бактерии. В промышленном отношении L-аминокислоты полезны в качестве кормовых добавок, компонентов лечебного питания, аминокислотных инфузионных форм и т.д.

Уровень техники

Способы получения путем ферментации с использованием микроорганизма целевого вещества, такого как L-аминокислота, включают в себя способы с использованием микроорганизма дикого типа (штамм дикого типа), способы с использованием полученного из штамма дикого типа ауксотрофного штамма, способы с использованием в качестве штамма, устойчивого к различным лекарственным препаратам, мутантного по регуляции метаболизма штамма, который получен из штамма дикого типа, способы с использованием штамма со свойствами и ауксотрофного штамма и штамма, мутантного по регуляции метаболизма и т.д.

В последние годы для получения целевых веществ путем ферментации применяют технологии рекомбинантных ДНК. Например, L-аминокислотную продуктивность микроорганизма улучшают путем увеличения экспрессии гена, кодирующего фермент биосинтеза L-аминокислот (патентные документы 1 и 2), или путем увеличения захвата источника углерода в систему биосинтеза L-аминокислоты (патентный документ 3).

Таким образом, в настоящем изобретении раскрыт способ использования ионов карбоната и ионов бикарбоната в качестве противоанионов основной аминокислоты, в целях замещения части ионов сульфата или ионов хлорида, для получения основной аминокислоты путем ферментации. В указанных ссылках в качестве способа добавления в среду ионов карбоната и ионов бикарбоната описан способ регуляции и поддержания положительного внутреннего давления в ферментационном чане во время ферментации, или введение в среду углекислого газа или смешанного газа, содержащего углекислый газ (патентные документы 4 и 5).

Недостатком общепринятой аминокислотной ферментации L-аминокислот семейства аспарагиновой кислоты, таких как L-лизин, является проблема побочной продукции L-глутаминовой кислоты, и в частности, в условиях высокого уровня pH такое описанное выше ферментативное производство страдает проблемой особенно значительной продукции L-глутаминовой кислоты. Поскольку во многих случаях после ферментативного получения в ходе L-аминокислотного производства требуется очистка L-аминокислоты до высокой степени чистоты, является нежелательным присутствие побочных продуктов, которое может вызывать проблемы усложнения способа очистки и уменьшения чистоты продукта.

В настоящее время известно, что белки GltP, GltS (непатентные документы 1 и 2), GadC (непатентный документ 3) и GltIJKL, обнаруженные в энтеробактериях, например Escherichia coli, вовлечены в захват Gluтаминовой кислоты.

Известно, что повышение продуктивности L-лизина, L-треонина и L-триптофана у штамма, который модифицировали таким образом, чтобы увеличить активность Gluтаматдекарбоксилазы, происходит путем увеличения антипортерной активности Gluтамата/ГАМК (гамма-аминомасляной кислоты (патентный документ 6). Вместе с тем, отсутствуют сообщения о получении L-аминокислоты с использованием микроорганизма, в котором амплифицированы ген gltP или ген gltS.

Ссылки предшествующего уровня техники

Патентные документы

Патентный документ 1: патент США № 5168056.

Патентный документ 2: патент США № 5776736.

Патентный документ 3: патент США № 5906925.

Патентный документ 4: опубликованная патентная заявка № 2002/0025564.

Патентный документ 5: международная патентная публикация WO 2006/038695.

Патентный документ 6: международная патентная публикация WO 2008/044453.

Непатентные документы

Непатентный документ 1: J. Bacteriol., 1992 Apr; 174 (7):2391-3.

Непатентный документ 2: J. Biol. Chem., 1990 Dec; 15; 265 (35):21704-8.

Непатентный документ 3: J. Bacteriol., 2006 Dec; 188 (23):8118-27.

Сущность изобретения

Задача, достигаемая изобретением

Задача по настоящему изобретению состоит в получении микроорганизма, принадлежащего семейству Enterobacteriaceae, который способен уменьшить продукцию L-глутаминовой кислоты как побочного продукта при производстве аминокислоты, выбираемой из L-лизина, L-треонина, L-аспарагина, L-аспарагиновой кислоты, L-метионина, L-аланина, L-изолейцина и L-гомосерина, и в предоставлении способа получения L-аминокислоты, описание которой приведено выше, посредством использования микроорганизма, описанного выше, который способен уменьшить продукцию L-глутаминовой кислоты в качестве побочного продукта при получении аминокислоты.

Способы решения задач

Авторы по настоящему изобретению провели ряд исследований для решения вышеупомянутой задачи, и в результате выявили, что можно уменьшить количество L-глутаминовой кислоты, получаемой при ферментативном производстве L-аминокислот, путем модификации бактерии, которая увеличивает экспрессию gltP или/и gltS, и таким образом, достигли осуществления по настоящему изобретению.

Таким образом, настоящее изобретение относится к следующим аспектам:

(1) Способ получения L-аминокислоты, предусматривающий культивирование бактерии, принадлежащей семейству Enterobacteriaceae и способной продуцировать L-аминокислоту в среде, который включает продукцию и накопление L-аминокислоты в среде, и сбор L-аминокислоты из среды, где указанная бактерия была модифицирована так, чтобы увеличить экспрессию гена gltP и/или гена gltS, при этом L-аминокислоту выбирают из группы, состоящей из L-лизина, L-треонина, L-аспарагина, L-аспарагиновой кислоты, L-метионина, L-аланина, L-изолейцина и L-гомосерина.

(2) Способ, описанный выше, в котором ген gltP кодирует белок, показанный ниже в абзацах (A) или (B):

(A) белок с аминокислотной последовательностью, показанной в SEQ ID No: 12,

(B) белок с аминокислотной последовательностью, показанной в SEQ ID No: 12, который включает в себя замены, делеции, вставки, добавления или инверсии одного или нескольких аминокислотных остатков и обладает активностью L-глутаматного транспортера.

(3) Способ, описанный выше, в котором ген gltP кодирует белок, показанный ниже в абзацах (A1) или (B1):

(A1) белок с аминокислотной последовательностью, показанной в SEQ ID No: 2,

(B1) белок с аминокислотной последовательностью, показанной в SEQ ID No: 2, включающий в себя замены, делеции, вставки, добавления или инверсии одного или нескольких аминокислотных остатков и обладающий активностью L-глутаматного транспортера.

(4) Способ, описанный выше, в котором ген gltP представляет собой ДНК, показанную в следующих абзацах(a) или (b):

(a) ДНК с нуклеотидной последовательность, показанной в SEQ ID No: 1,

(b) ДНК, способную к гибридизации с последовательностью, которая комплиментарна нуклеотидной последовательности, показанной в SEQ ID No: 1, или зондом, который можно изготовить из нуклеотидной последовательности при жестких условиях, и которая кодирует белок, обладающий активностью L-глутаматного транспортера.

(5) Способ, описанный выше, в котором ген gltS кодирует белок, показанный в следующих абзацах (C) или (D):

(C) белок с аминокислотной последовательностью, показанной в SEQ ID No: 13 и обладающий активностью L-глутаматного транспортера,

(D) белок с аминокислотной последовательностью, показанной в SEQ ID No: 13, включающий в себя замены, делеции, вставки, добавления или инверсии одного или нескольких аминокислотных остатков и обладающий активностью L-глутаматного транспортера.

(6) Способ, описанный выше, в котором ген gltS кодирует белок, показанный в следующих абзацах (C1) или (D1):

(C1) белок с аминокислотной последовательностью, показанной в SEQ ID No: 4,

(D1) белок с аминокислотной последовательностью, показанной в SEQ ID No: 4, включающий в себя замены, делеции, вставки, добавления или инверсии одного или нескольких аминокислотных остатков и обладающий активностью L-глутаматного транспортера.

(7) Способ, описанный выше, в котором ген gltS представляет собой ДНК, показанную в следующих абзацах (c) или (d):

(c) ДНК с нуклеотидной последовательностью, показанной в SEQ ID No: 3,

(d) ДНК, способную к гибридизации с последовательностью, которая комплиментарна нуклеотидной последовательности, показанной в SEQ ID No: 3 или с зондом, который можно изготовить из нуклеотидной последовательности при жестких условиях, и кодирующую белок, обладающий активностью L-глутаматного транспортера.

(8) Способ, описанный выше, в котором повышают экспрессию гена путем увеличения числа копий гена, или путем модификации экспрессии контрольной последовательности гена.

(9) Способ, описанный выше, в котором L-аминокислота представляет собой L-лизин, и у бактерии повышена экспрессия гена ybjE.

(10) Способ, описанный выше, в котором ген ybjE кодирует белок, показанный в следующих пп. (E) или (F):

(E) белок с аминокислотной последовательностью, показанной в SEQ ID No: 6, или аминокислотная последовательность аминокислот от №№ 17 до 315 в SEQ ID No: 6,

(F) белок с аминокислотной последовательностью, показанной в SEQ ID No: 6, или аминокислотная последовательность аминокислот от №№ 17 до 315 в SEQ ID No: 6, включающая в себя замены, делеции, вставки, добавления или инверсии одного или нескольких аминокислотных остатков и обладающая активностью экскреции L-лизина.

(11) Способ, описанный выше, в котором ген ybjE представляет собой ДНК, показанную в следующих абзацах (e) или (f):

(e) ДНК с нуклеотидной последовательностью, показанной в SEQ ID No: 5, или нуклеотидная последовательность нуклеотидов от №№ 49 до 948 в SEQ ID No: 5,

(f) ДНК, способную к гибридизации с последовательностью, которая комплиментарна нуклеотидной последовательности, показанной в SEQ ID No: 5, или нуклеотидной последовательностью нуклеотидов от №№ 49 до 948 в SEQ ID No: 5, или зондом, который можно изготовить из нуклеотидной последовательности при жестких условиях, кодирующая белок, обладающий активностью экскреции L-лизина.

(12) Способ согласно описанию выше, в котором L-аминокислота представляет собой L-лизин, уровень pH среды регулируют таким образом, чтобы он составлял от 6,0 до 9,0 во время культивирования для ее получения, и от 7,2 до 9,0 в конце культивирования, и таким образом обеспечивается период культивирования, когда в среде присутствуют ионы бикарбоната и/или ионы карбоната в количестве 20 мМ или больше, с тем, чтобы ионы бикарбоната и/или ионы карбоната служили противоионами основной аминокислоты.

(13) Способ, описанный выше, в котором бактерией является бактерия Escherichia.

Варианты осуществления настоящего изобретения

Далее приведено подробное объяснение по настоящему изобретению.

<1> Бактерия, используемая в настоящем изобретении

Бактерия согласно настоящему изобретению относится к бактериям, принадлежащим семейству Enterobacteriaceae, обладает способностью продуцировать L-аминокислоту, и была модифицирована таким образом, чтобы увеличить экспрессию гена gltP и/или гена gltS. L-аминокислоту выбирают из группы, состоящей из L-лизина, L-треонина, L-аспарагиновой кислоты, L-аспарагина, L-метионина, L-аланина, L-изолейцина и L-гомосерина. При получении указанных L-аминокислот путем ферментации с использованием микроорганизма часто вырабатывается L-глутаминовая кислота в качестве побочного продукта. Что касается побочной продукции L-глутаминовой кислоты, является достаточным уменьшение указанной побочной продукции по сравнению с наблюдаемой у немодифицированного штамма, посредством модификации, повышающей экспрессию гена gltP и/или гена gltS, при этом желательное уменьшение составляет 40% или больше, предпочтительно 50% или больше, более предпочтительно 60% или больше.

Упомянутая в изобретении способность продуцировать L-аминокислоту означает способность бактерии по настоящему изобретению вырабатывать L-аминокислоту в среде или клетках и накапливать L-аминокислоту в таком количестве, что при культивировании бактерий в среде L-аминокислоту можно собирать из среды или клеток. Бактерия по настоящему изобретению может представлять собой бактерию, способную продуцировать одно из следующего: L-лизин, L-треонин, L-аспарагиновую кислоту, L-аспарагин, L-метионин, L-аланин, L-изолейцин и L-гомосерин, или может представлять собой бактерию, способную продуцировать два или три вида аминокислот. Бактерия, обладающая способностью продуцировать L-аминокислоту, может представлять собой бактерию, способную по своей природе продуцировать L-аминокислоту, или может представлять собой описанную ниже бактерию, которая была модифицирована для получения способности продуцировать L-аминокислоту посредством мутационного способа или технологии рекомбинантных ДНК.

"Увеличение экспрессии гена" означает увеличение транскрипции и/или трансляции гена.

<1-1> Наделение способностью продуцировать L-аминокислоту

Ниже в качестве примеров будут приведены способы наделения бактерий способностью продуцировать L-аминокислоту, выбираемую из L-лизина, L-треонина, L-аспарагиновой кислоты, L-аспарагина, L-метионина, L-изолейцина, L-аланина и L-гомосерина, и примеры бактерий, наделенных способностью продуцировать описанные выше L-аминокислоты, которые можно использовать по настоящему изобретению. Вместе с тем, при использовании бактерий, способных продуцировать L-аминокислоту, бактерии не ограничены указанными.

Перечень бактерий, используемых по настоящему изобретению, не имеет конкретных ограничений, поскольку выбираются бактерии, принадлежащие семейству Enterobacteriaceae, например бактерии из родов Escherichia, Enterobacter, Pantoea, Klebsiella, Serratia, Erwinia, Трансляция и Morganella, и имеющие вышеупомянутую способность продуцировать L-аминокислоты. Более конкретно, можно использовать бактерии по классификации из семества Enterobacteriaceae согласно таксономии, применяемой в базе данных NCBI (Национального центра биотехнологической информации) (http://www.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg? mode=Tree&id=1236&lvl=3&keep=1&srchmode=1&unlock). В качестве родительского штамма из семейства Enterobacteriaceae, который используют для модификации, желательно использовать, в частности, бактерии рода Escherichia, Enterobacter или Pantoea.

Родительские штаммы бактерий Escherichia, используемые для получения бактерий Escherichia, которые задействованы в настоящем изобретении, не имеют конкретных ограничений, вместе с тем, можно использовать штаммы, в частности, описанные в работе Neidhardt et al. (Backmann B.J., 1996, Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p.2460-2488, Table 1, In F.D. Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C.). Из указанных бактерий Escherichia предпочтительными являются E.coli. Конкретные примеры Escherichia coli включают в себя Escherichia coli W3110 (ATCC 27325), Escherichia coli МГ1655 (ATCC 47076) и т.д., полученные из штамма-прототипа дикого типа, штамма K12.

Указанные штаммы доступны, например, в Американской коллекции типовых культур (P.O.Box 1549, Manassas, VA 20108, Соединенные Штаты Америки). То есть, каждому из штаммов присвоены регистрационные номера, и посредством этих регистрационных номеров можно заказывать штаммы (ссылка http://www.atcc.org/). Регистрационные номера штаммов перечислены в каталоге Американской коллекции типовых культур.

Примеры бактерий Enterobacter включают в себя Enterobacter agglomerans, Enterobacter aerogenes и т.д., и примеры бактерий Pantoea включают в себя Pantoea ananatis. Некоторые штаммы Enterobacter agglomerans недавно были переклассифицированы в Pantoea agglomerans, Pantoea ananatis или Pantoea stewartii на основании анализа нуклеотидной последовательности 16S рРНК и т.д. В настоящем изобретении можно использовать бактерию, принадлежащую какому-либо роду из Enterobacter или Pantoea, если по классификации она представляет собой бактерию семейства Enterobacteriaceae. При воспроизведении штамма Pantoea ananatis посредством генноинженерной технологии можно использовать штамм Pantoea ananatis AJ13355 (FERM BP-6614), штамм AJ13356 (FERM BP-6615), штамм AJ13601 (FERM BP-7207) и их производные. Указанные штаммы были идентифицированы как Enterobacter agglomerans, затем выделены и депонированы как штаммы Enterobacter agglomerans. Вместе с тем, недавно они были переклассифицированы как штаммы Pantoea ananatis на основании нуклеотидной последовательности 16S рРНК и т.д., как описано выше.

Ниже описаны способы наделения бактерий семейства Enterobacteriaceae способностью продуцировать L-аминокислоту, выбираемую из L-лизина, L-треонина, L-аспарагиновой кислоты, L-аспарагина, L-метионина, L-аланина, L-изолейцина и L-гомосерина, и способы повышения способности бактерий, принадлежащих семейству Enterobacteriaceae, продуцировать вышеупомянутые L-аминокислоты.

Для передачи способности продуцировать L-аминокислоту можно применять общепринятые способы выведения коринеформных бактерий или бактерий рода Escherichia (см. "Amino Acid Fermentation", Gakkai Shuppan Center (Ltd). 1st Edition, опубликованную 30 мая 1986 г., стр. 77-100). Такие способы включают в себя приобретение свойств ауксотрофного мутанта, методики посредством штамма, резистентного к L-аминокислотному аналогу, или мутанта регуляции метаболизма, или путем конструирования рекомбинантного штамма с задачей сверхэкспрессии фермента L-аминокислотного биосинтеза. В этом случае при выращивании бактерий, продуцирующих L-аминкислоту, может передаваться одно или больше из вышеописанных свойств, таких как ауксотрофность, резистентность к аналогам и мутантная регуляция метаболизма. Можно увеличивать экспрессию фермента (ферментов) биосинтеза L-аминокислоты единственного или в комбинации из двух или больше. Кроме того, можно объединять способы передачи свойств, таких как ауксотрофность, резистентность к аналогам и мутантная регуляция метаболизма, с повышением ферментов биосинтеза.

Можно получать штамм ауксотрофного мутанта, штамм с резистентностью к L-аминокислотным аналогам или штамм с мутантной регуляцией метаболизма, обладающий способностью продуцировать L-аминокислоту, путем общепринятого мутагенного воздействия на родительский штамм или штамм дикого типа, например, подвергая их рентгеновскому или ультрафиолетовому (УФ) облучению, или посредством обработки мутагеном, таким как N-метил-N'-нитро-N-нитрозогуанидин (НТГ) и этилметансульфонат (ЭМС), и после этого проводить отбор штаммов, проявляющих ауксотрофность, резистентность к аналогам или мутантную регуляцию метаболизма, которые при этом также обладают способностью продуцировать L-аминокислоту из полученных мутантных штаммов.

L-лизин-продуцирующие бактерии

Ниже описаны в качестве примеров L-лизин-продуцирующие бактерии и способы их создания.

Примеры штаммов, обладающих способностью продуцировать L-лизин, включают в себя, например, штаммы, резистентные к аналогу L-лизина, и штаммы с мутантной регуляцией метаболизма. Примеры L-лизиновых аналогов включают в себя без ограничения оксолизин, гидроксамат лизина, S-(2-аминоэтил)-цистеин (АЭЦ), γ-метиллизин, α-хлоркапролактам и т.д. Мутантные штаммы с резистентностью к указанным лизиновым аналогам можно получать путем воздействия на бактерию, принадлежащую семейству Enterobacteriaceae, общепринятой искусственной мутагенной обработкой. Конкретные примеры L-лизин-продуцирующих бактерий включают в себя штаммы Escherichia coli AJ11442 (FERM BP-1543, NRRL B-12185, см. опубликованный японский патент № 56-18596, и патент США № 4346170), штамм Escherichia coli VL611 (опубликованный японский патент № 2000-189180), и т.д. В качестве L-лизин-продуцирующих Escherichia coli также можно использовать штамм WC196 (см. международную патентную публикацию WO 96/17930).

Кроме того, также можно создавать L-лизин-продуцирующие бактерии путем повышения активности фермента системы биосинтеза L-лизина. Повышение активности такого фермента может быть достигнуто путем увеличения числа копий гена, кодирующего фермент в клетках, или путем модификации экспрессии его контрольной последовательности. Можно достигать увеличения числа копий гена, кодирующего фермент системы биосинтеза L-лизина, и модификации экспрессии его контрольной последовательности тем же способом, как описано далее для генов gltP и gltS.

Примеры генов, кодирующих ферменты биосинтеза L-лизина, включают в себя гены, кодирующие ферменты пути диаминоимелата, такие как ген дигидродипиколинатсинтазы (dapA), ген аспартокиназы (lysC), ген дигидропиколинатредуктазы (dapB), ген диаминопимелатдекарбоксилазы (lysA), ген диаминопимелатдегидрогеназы (ddh) (WO 96/40934 для всех вышеупомянутых генов), ген фосфоэнолпируваткарбоксилазы (ppc) (японский опубликованный патент № 60-87788), ген аспартатаминотрансферазы (aspC) (японская патентная публикация (Kokoku) № 6-102028), и ген семиальдегидаспартатдегидрогеназы (asd) (WO 00/61723), и гены, кодирующие ферменты пути аминоадипиновой кислоты, такие как ген гомоаконитатгидратазы (японский опубликованный патент № 2000-157276). Дополнительно, в родительском штамме может выявляться повышенный уровень экспрессии гена, вовлеченного в энергетическую эффективность (cyo) (европейский опубликованный патент № 1170376), гена, кодирующего никотинамиднуклеотидтрансгидрогеназу (pntAB) (патент США № 5830716), гена ybjE, кодирующего белок, обладающий активностью экскреции L-лизина (WO 2005/073390), гена, кодирующего Gluтаматдегидрогеназу (gdhA) (Gene 23:199-209, 1983), или их произвольной комбинации. Сокращения для обозначения генов показаны в круглых скобках.

Среди вышеупомянутых генов предпочтительным является ген ybjE. Примеры гена ybjE включают в себя ген ybjE Escherichia coli и его гомологи. Примеры гена ybjE Escherichia coli включают в себя ген, кодирующий аминокислотную последовательность аминокислот от №№ 17 до 315 в SEQ ID No: 6, конкретно, ген с нуклеотидной последовательностью нуклеотидов от №№ 49 до 948 в SEQ ID No: 5. Установлено, что в SEQ ID No: 5 стартовый кодон представлен нуклеотидами с номерами нуклеотидов от 49 до 51. Нуклеотиды с нуклеотидными номерами от 1 до 3 в SEQ ID No: 5 составляют кодон, кодирующий валин (Val), gtg, но вместе с тем при трансляции стартовым кодоном может стать метионин (Met), и белок, кодируемый геном ybjE, может представлять собой белок с аминокислотной последовательностью SEQ ID No: 6 (1-315). В таком случае предпочтительно использовать ДНК, имеющую нуклеотидную последовательность нуклеотидов от №№ 1 до 948 в SEQ ID No: 5. Вместе с тем, из примеров очевидно, что независимо от того, какой аминокислотный остаток представлен в стартовом кодоне, применимый для способа получения согласно настоящему изобретению микроорганизм можно получать путем использования ДНК, содержащей нуклеотидную последовательность нуклеотидов от №№ 49 до 948 в SEQ ID No: 1.

Известно, что дигидропиколинатсинтаза дикого типа, полученная из Escherichia coli, подвергается ингибированию L-лизином по типу обратной связи, также известно, что аспартокиназа дикого типа, полученная из Escherichia coli, подвергается супрессии и ингибированию L-лизином по типу обратной связи. Поэтому указанные используемые ген dapA и ген lysC предпочтительно являются генами, кодирующими мутантные ферменты с десенситизацией ингибирования L-лизином по типу обратной связи.

Примеры ДНК, кодирующей мутантную дигидропиколинатсинтетазу, которая десенситизирована к ингибированию L-лизином по типу обратной связи, включают в себя ДНК, кодирующую такой белок с аминокислотной последовательностью, в которой гистидиновый остаток в положении 118 заменен тирозиновым остатком. Примеры ДНК, кодирующей мутантную аспартокиназу, которая десенситизирована к ингибированию L-лизином по типу обратной связи, включают в себя ДНК, кодирующую AKIII с аминокислотной последовательностью, в которой остаток треонина в положении 352, остаток глицина в положении 323 и остаток метионина в положении 318 заменены на остатки изолейцина, аспарагина и изолейцина соответственно (в отношении указанных мутантов см. патенты США №№ 5661012 и 6040160). Такие мутантные ДНК можно получать путем сайт-специфичного мутагенеза посредством полимеразной цепной реакции (ПЦР) или подобным образом.

Плазмиды с широким кругом хозяев RSFD80, pCAB1 и pCABD2 известны как плазмиды, содержащие мутантный ген dapA, кодирующий мутантную дигидропиколинатсинтазу, и мутантный ген lysC, кодирующий мутантную аспартокиназу (патент США № 6040160). Штамм Escherichia coli JM109, трансформированный плазмидой, получил наименование AJ12396 (патент США № 6040160), и этот штамм был депонирован в Национальном институте National Institute of Bioscience and Human Technology, Агентства промышленной науки и техники, Министерства международной торговли и промышленности (в настоящее время Национальный институт National Institute of Advanced Industrial Science and Technology, Международный патентный депозитарий организмов) 28 октября 1993 года и получил инвентарный номер FERM P-13936, и затем указанное депонирование перевели в международное депонирование согласно условиям Будапештского договора 1 ноября 1994 года, с присвоением инвентарного номера FERM BP-4859. RSFD80 может быть получен из штамма AJ12396 общепринятым способом.

Кроме того, у продуцирующих L-аминокислоты бактерий может быть снижена активность фермента, который катализирует реакцию, отклоняющуюся от пути биосинтеза L-аминокислоты и продуцирующую другое соединение, или может отсутствовать такая активность, или у них может быть снижена активность фермента, который отрицательно действует на синтез или накопление L-аминокислоты, или отсутствует такая активность. Примеры таких ферментов, вовлеченных в выработку L-лизина, включают в себя гомосериндегидрогеназу, лизиндекарбоксилазу (cadA, ldcC), яблочный фермент и т.д., и в патентах WO 95/23864, WO 96/17930, WO 2005/010175 и т.д. раскрыты штаммы, в которых активность указанных ферментов снижена или отсутствует.

Является предпочтительным уменьшение экспрессии обоих генов cadA и ldcC, кодирующих лизиндекарбоксилазу, для снижения или устранения активности лизиндекарбоксилазы. Экспрессию обоих генов можно уменьшить, например, посредством способа, описанного в WO 2006/078039.

Для уменьшения или устранения активности упомянутых ферментов можно в геноме ферментов внедрять мутацию в гены общепринятым способом мутагенеза или технологией рекомбинации генов с тем, чтобы уменьшить или устранить внутриклеточное действие ферментов. Такое внедрение мутации можно осуществлять, например, посредством генетической рекомбинации для устранения генов, кодирующих ферменты в геноме, или для модификации экспрессии контрольной последовательности, такой как промотерная последовательность или последовательность Шайн-Дальгарно (SD). Это может также достигаться путем внедрения мутации для аминокислотной замены (миссенс-мутация), стоп-кодона (нонсенс-мутация) или мутации со сдвигом рамки, для добавления или делеции одного или двух нуклеотидов в области, которые кодируют ферменты в геноме, или путем частичного или полного удаления генов (J. Biol. Chem., 272:8611-8617, 1997). Ферментативная активность также может быть уменьшена или устранена путем конструирования гена, кодирующего мутантный фермент, в котором полностью или частично удалены кодирующие области, и замещение этим геном нормального гена в геноме посредством гомологичной рекомбинации или подобным образом, или путем вставки в ген транспозона или IS-фактора.

Например, применяют следующие способы вставки мутации, которая уменьшает или устраняет активность вышеупомянутых ферментов посредством генетической рекомбинации. Создают мутантный ген путем модификации части последовательности гена-мишени, таким образом, чтобы он не кодировал фермент, способный нормально функционировать, и затем бактерию семейства Enterobacteriaceae можно трансформировать с ДНК, содержащей мутантный ген, чтобы вызвать мутантным геном рекомбинацию соответствующего гена в геноме для замены мутантным геном гена-мишени в геноме. Примеры такой генной замены с применением гомологичной рекомбинации включают в себя способы использования линейной ДНК, такие как способ под названием Red-зависимая интеграция (Datsenko, K.A, and Wanner, B.L., 2000, Proc. Natl. Acad. Sci. USA, 97:6640-6645), и способ, задействующий Red-зависимую интеграцию в комбинации с системой вырезания, полученной из λ-фага (Cho, E.H., Gumport, R.I. Gardner, J.F., 2002, J. Bacteriol., 184:5200-5203) (см. WO 2005/010175), способ с использованием плазмиды, содержащей термочувствительную точку начала репликации (патент США № 6303383, японский опубликованный патент № 05-007491), и т.д. Кроме того, такой сайт-специфичный мутагенез, основанный на замене генов посредством гомологичной комбинации, как описано выше, также можно проводить с использованием плазмиды, которая не может реплицироваться в хозяине.

Предпочтительные примеры L-лизин-продуцирующих бактерий включают в себя Escherichia coli WC196ΔcadAΔldcC/pCABD2 (WO 2006/078039). Штамм был сконструирован путем введения плазмиды pCABD2, содержащий гены биосинтеза лизина (патент США № 6040160) в штамм WC196 с разорванными генами cadA и ldcC, которые кодируют лизиндекарбоксилазу. Штамм WC196 был создан из штамма W3110, который происходит из Escherichia coli K-12, путем замены гена дикого типа lysC в хромосоме штамма W3110 мутантным геном lysC, кодирующим мутантную аспартокиназу III, в котором треонин в положении 352 был заменен на изолейцин, что приводит к десенситизации ингибирования L-лизином по типу обратной связи (патент США № 5661012), и наделение AEC резистентностью к полученному штамму (патент США № 5827698). Штамм WC196 имеет наименование Escherichia coli AJ13069, был депонирован в Национальном институте National Institute of Bioscience and Human Technology (в настоящее время независимое административное агентство Национальный институт National Institute of Advanced Industrial Science and Technology, Международный патентный депозитарий организмов, Tsukuba-central 6, 1-1, Higashi 1-Chome, Tsukuba-shi, 305-8566, Япония) 6 декабря 1994 года, и получил инвентарный номер FERM P-14690. затем он был переведен в международное депонирование согласно условиям Будапештского договора 29 сентября 1995 года с присвоением инвентарного номера FERM BP-5252 (патент США № 5827698). Сам штамм WC196ΔcadAΔldcC представляет собой также предпочтительную L-лизин-продуцирующую бактерию. Штамм WC196ΔcadAΔldcC был определен как AJ110692, депонирован в Национальном институте National Institute of Bioscience and Human Technology (в настоящее время независимое административное агентство Национальный институт National Institute of Advanced Industrial Science and Technology, Международный патентный депозитарий организмов, Tsukuba-central 6, 1-1, Higashi 1-Chome, Tsukuba-shi, 305-8566, Япония) 7 октября 2008 года как международное депонирование, с присвоением инвентарного номера FERM BP-11027.

Плазмида pCABD2 включает мутантный ген dapA, полученный из Escherichia coli и кодирующий дигидропиколинатсинтазу (DDPS), несущую мутацию для десенситизации к ингибированию L-лизином по типу обратной связи, мутантный ген lysC, полученный из Escherichia coli и кодирующий аспартокиназу III с мутацией для десенситизации к ингибированию L-лизином по типу обратной связи, ген dapB, полученный из Escherichia coli и кодирующий дигидропиколинатредуктазу, и ген ddh, полученный из Brevibacterium lactofermentum и кодирующий диаминопимелатдегидрогеназу.

L-треонин-продуцирующие бактерии

Предпочтительные примеры L-треонин-продуцирующих бактерий, используемых в настоящем изобретении, включают в себя бактерии, принадлежащие семейству Enterobacteriaceae, у которых усилены одно или больше действий ферментов системы биосинтеза L-треонина. Примеры генов, кодирующих ферменты биосинтеза L-треонина, включают в себя ген аспартокиназы III (lysC), ген аспартат-семиальдегиддегидрогеназы (asd), ген аспартокиназы I (thrA), ген гомосеринкиназы (thrB), и ген треонинсинтазы (thrC), кодируемый опероном thr. Можно вводить два или больше вида указанных генов. Гены, кодирующие ферменты биосинтеза L-треонина, можно вводить в бактерию Enterobacteriaceae с уменьшенным расщеплением треонина. Примеры бактерии Escherichia с уменьшенным расщеплением треонина включают в себя, например, штамм TDH6, который не обладает треониндегидрогеназной активностью (японский опубликованный патент № 2001-346578) и т.д.

Ферментная активность ферментов биосинтеза L-треонина ингибируется конечным продуктом, L-треонином. Поэтому для конструирования L-треонин-продуцирующего штамма желательно, чтобы гены для ферментов биосинтеза L-треонина были модифицированы таким образом, чтобы ферменты в L-треонин-продуцирующих штаммах были десенситизированы к ингибированию L-треонином по типу обратной связи. Вышеупомянутые гены thrA, thrB и thrC составляют треониновый оперон, который формирует структуру аттенуатора. Экспрессия треонинового оперона ингибируется изолейцином и треонином в культуральной среде и также подавляется аттенуированием. Поэтому можно модифицировать треониновый оперон путем удаления лидерной последовательности в аттенуирующей области или в аттенуаторе (см. Lynn, S.P., Burton, W.S., Donohue, T.J., Gould, R.M., Gumport, R.L, and Gardner, J.F., J. Mol. Biol. 194:59-69 (1987); WO 02/26993; WO 2005/049808).

Нативный промотер треонинового оперона находится слева (выше) от треонинового оперона, и может быть заменен ненативным промотором (см. WO 98/04715), или треониновым опероном, который был модифицирован таким образом, чтобы экспрессию гена биосинтеза треонина регулировал ген-репрессор, также можно конструировать промотор λ-фага (см. европейский патент № 0593792). Кроме того, можно выбирать штамм, резистентный к α-амино-β-гидроксиизовалериановой кислоте (AHV) для такой модификации бактерии Escherichia, которая приводит к десенситизации к ингибированию L-треонином по типу обратной связи,

Предпочтительно увеличивать число копий треонинового оперона, который модифицирован до десенситизации к ингибированию L-треонином по типу обратной связи, или увеличивать экспрессию треонинового оперона путем лигирования его к мощному промотору. Число копий также можно увеличивать, помимо амплификации, посредством плазмиды, переносом треонинового оперона в геном, используя транспозон, Mu-фаг или подобные методики.

В отношении гена аспартокиназы III (lysC) желательно использовать ген, модифицированный до десенситизации фермента к ингибированию L-лизином по типу обратной связи. Такой ген lysC модифицированный до десенситизации фермента к ингибированию по типу обратной связи, можно получать способом, описанным в патенте США № 5932453.

Кроме увеличения экспрессии генов биосинтеза L-треонина, экспрессии генов, вовлеченных в гликолитический путь, цикл трикарбоновых кислот (ТКК), или дыхательную цепь, также можно предпочтительно увеличивать гены, которые регулируют экспрессию упомянутых генов, или генов, вовлеченных в усвоение сахара. Примеры таких генов, эффективных для продукции L-треонина, включают в себя гены, кодирующие трансгидрогеназу (pntAB, европейский патент № 7337l2), фосфоэнолпируваткарбоксилазу (pepC, WO 95/06114), фосфоэнолпируватсинтазу (pps, европейский патент № 877090), и ген, кодирующий пируваткарбоксилазу из коринеформных бактерий или бактерий Bacillus (WO 99/18228, европейский опубликованный патент № 1092776).

L-треонин-продуцирующие бактерии также можно предпочтительно получать путем повышения экспрессии гена, который придает L-треониновую резистентность и/или гена, который придает L-гомосериновую резистентность, или посредством наделения бактерии-хозяина L-треониновой резистентностью и/или L-гомосериновой резистентностью. Примеры генов, которые придают вышеупомянутую резистентность, включают в себя ген rhtA (Res. Microbiol. 154:123-135 (2003)), ген rhtB (европейский опубликованный патент № 0994190), ген rhtC (европейский опубликованный патент № 1013765), ген yfiK и ген yeaS (европейский опубликованный патент № 1016710). Примеры способов наделения L-треониновой резистентностью бактерии-хозяина включают в себя способы, описанные в европейском опубликованном патенте № 0994190 или WO 90/04636.

Штамм E. coli ВКПМ B-3996 (патент США № 5175107) может быть примером L-треонин-продуцирующей бактерии. Штамм ВКПМ B-3996 был депонирован 7 апреля 1987 года во Всероссийской коллекции промышленных микроорганизмов (ВКПМ), ГНИИ Генетика (Россия, 117545 Москва 1, Дорожный проезд, 1) под регистрационным номером ВКПМ B-3996. Штамм ВКПМ B-3996 включает плазмиду pVIC40 (WO 90/04636), которая была получена путем вставки генов биосинтеза треонина (треониновый оперон, thrABC) в плазмидный вектор с широким кругом хозяев pAYC32, содержащий маркер резистентности к стрептомицину (Chistorerdov, A.Y., and Tsygankov, Y.D., Plasmid, 16, 161-167 (1986)). В pVIC40 аспартокиназа I-гомосериндегидрогеназа I, кодируемая геном thrA в треониновом опероне, является десенситизированной к ингибированию L-треонином по типу обратной связи.

Штамм E. coli ВКПМ B-5318 (см. европейский патент № 0593792) может также служить примером предпочтительной L-треонин-продуцирующей бактерии. Штамм ВКПМ B-5318 был депонирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ) ГНИИ Генетика 3 мая 1990 года под регистрационным номером ВКПМ B-5318. Штамм ВКПМ B-5318 является прототрофным относительно L-изолейцина, и скрывает в себе рекомбинантную плазмидную ДНК, сконструированную так, чтобы треониновый оперон, то есть гены биосинтеза треонина, не имеющие область аттенуатора, которая исходно включает область регуляции транскрипции, были расположены справа (ниже) от термочувствительного С1 репрессора, полученного из λ-фага, PR-промотора и гена, кодирующего N-конец белка Cro, и экспресси