Система мобильной связи

Иллюстрации

Показать все

Настоящее изобретение относится к системе мобильной связи. Технический результат изобретения заключается в уменьшении потребляемой мощности мобильного терминала при многократном поиске соты. Система связи включает в себя указанные абонентские соты (CSG), которые разрешают использование посредством указанного мобильного терминала, и неуказанные пользовательские соты (не-CSG), которые разрешают использование посредством неуказанных мобильных терминалов, в которой мобильный терминал выполняет выбор соты при приеме идентификационной информации соты (физического идентификатора соты), состоящей из информации, которая выделяется каждой соте связи. Идентификационная информация, которая идентифицирует CSG-соты, работающие в открытом режиме доступа, включается в идентификационную информацию соты. 4 н. и 5 з.п. ф-лы, 42 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к системе мобильной связи, в которой базовая станция выполняет радиосвязь с множеством мобильных терминалов.

Уровень техники

Коммерческие услуги, которые используют способ W-CDMA (широкополосный множественный доступ с кодовым разделением), который включается в способы связи, называемые третьим поколением, запущены в Японии с 2001 года. Кроме того, запущена услуга с HSDPA (высокоскоростной пакетный доступ по нисходящей линии связи), который реализует дополнительное повышение скорости передачи данных с помощью нисходящих линий связи (выделенного канала передачи данных и выделенного канала управления) посредством добавления канала для пакетной передачи (HS-DSCH: высокоскоростной совместно используемый канал нисходящей линии связи) к нисходящим линиям связи. Помимо этого, запущены услуги с использованием способа HSUPA (высокоскоростной пакетный доступ по восходящей линии связи), чтобы дополнительно ускорять передачу данных по восходящей линии связи. W-CDMA является способом связи, который определен посредством 3GPP (партнерский проект третьего поколения), являющегося организацией по стандартизации систем мобильной связи, и технические требования версии 8 систематизируются в настоящее время.

В 3GPP, в качестве способа связи, отличного от W-CDMA, также изучены новый способ связи, имеющий беспроводной сегмент, который упоминается как стандарт долгосрочного развития (LTE), и общая конфигурация системы, включающей в себя базовую сеть, которая упоминается как развитие архитектуры системы (SAE). LTE предоставляет способ доступа, конфигурацию радиоканалов и протоколы, которые полностью отличаются от текущего W-CDMA (HSDPA/HSUPA). Например, тогда как W-CDMA использует, в качестве своего способа доступа, множественный доступ с кодовым разделением каналов, LTE использует, в качестве своего способа доступа, OFDM (мультиплексирование с ортогональным частотным разделением) для направления нисходящей линии связи и использует SC-FDMA (множественный доступ с частотным разделением с одной несущей) для направления восходящей линии связи. Кроме того, тогда как W-CDMA имеет полосу пропускания в 5 МГц, LTE предоставляет возможность каждой базовой станции выбирать одну полосу пропускания из числа полос пропускания 1,25, 2,5, 5, 10, 15 и 20 МГц. Помимо этого, LTE не включает в себя способ связи с коммутацией каналов, в отличие от W-CDMA, а использует только способ связи с коммутацией пакетов.

Согласно LTE, поскольку система связи выполнена с использованием новой базовой сети, отличной от базовой сети (GPRS) в W-CDMA, система связи задается как независимая сеть радиодоступа, которая является отдельной от сети W-CDMA. Следовательно, чтобы отличать от системы связи, которая соответствует W-CDMA, в системе связи, которая соответствует LTE, базовая станция, которая обменивается данными с мобильным терминалом (UE: абонентское устройство), упоминается как eNB (узел B E-UTRAN), и устройство управления базовыми станциями (контроллер радиосети), которое выполняет обмен управляющими и пользовательскими данными с множеством базовых станций, упоминается как EPC (усовершенствованное ядро пакетной коммутации) (может называться aGW: шлюз доступа). Эта система связи, которая соответствует LTE, предоставляет услугу одноадресной передачи и E-MBMS-услугу (услугу усовершенствованной широковещательной и многоадресной передачи мультимедиа). E-MBMS-услуга является широковещательной мультимедийной услугой, и она может упоминаться просто как MBMS. Широковещательное содержимое с большим объемом данных, такое как прогноз погоды или мобильное широковещательное содержимое, передается во множество мобильных терминалов. Эта услуга также упоминается как услуга "точка-множество точек".

Вопросы, в настоящий момент определенные в 3GPP и касающиеся общей архитектуры в LTE-системе, описываются в непатентной ссылке 1. Общая архитектура (глава 4 непатентной ссылки 1) поясняется со ссылкой на фиг.1. Фиг.1 является пояснительным чертежом, показывающим конфигурацию системы связи с использованием LTE-способа. На фиг.1, если протокол управления (к примеру, RRC (управление радиоресурсами)) и пользовательская плоскость (к примеру, PDCP: протокол конвергенции пакетных данных, RLC: управление радиосвязью, MAC: управление доступом к среде, PHY: физический уровень) для мобильного терминала 101 завершаются в базовой станции 102, E-UTRAN (усовершенствованный универсальный наземный радиодоступ) состоит из одной или более базовых станций 102.

Каждая базовая станция 102 выполняет планирование и передачу сигнала поискового вызова (которая также упоминается как сообщения поисковых вызовов), который передается в нее из MME (объект управления мобильностью) 103. Базовые станции 102 соединяются друг с другом через X2-интерфейсы. Кроме того, каждая базовая станция 102 соединяется с EPC (усовершенствованное ядро пакетной коммутации) через S1-интерфейс. Более конкретно, каждая базовая станция 103 соединяется с MME 104 через S1_MME-интерфейс и соединяется с S-GW (обслуживающий шлюз) 104 через S1_U-интерфейс. Каждый MME 103 распространяет сигнал поискового вызова в одну или более базовых станций 102. Кроме того, каждый MME 103 выполняет управление мобильностью состояния бездействия. Когда мобильный терминал находится в любом из состояния бездействия и активного состояния, каждый MME 103 управляет списком зон отслеживания. Каждый S-GW 104 выполняет передачу и прием пользовательских данных в/из одной или более базовых станций 102. Каждый S-GW 104 становится локальной точкой привязки мобильности, когда передача обслуживания осуществляется между базовыми станциями. Кроме того, PGW (PDN-шлюз) существует и выполняет фильтрацию пакетов для каждого пользователя, выделение адреса UE-идентификатора и т.д.

Вопросы, в настоящий момент определенные в 3GPP и касающиеся конфигурации кадра в LTE-системе, описываются в непатентной ссылке 1 (глава 5). В настоящий момент определенные аспекты поясняются со ссылкой на фиг.2. Фиг.2 является пояснительным чертежом, показывающим конфигурацию радиокадра для использования в системе связи с использованием LTE-способа. На фиг.2, один радиокадр имеет продолжительность 10 мс. Каждый радиокадр делится на десять субкадров одинакового размера. Каждый субкадр делится на два временных кванта одинакового размера. Сигнал синхронизации в нисходящей линии связи (SS) включается в каждый из 1-го (#0) и 6-го субкадров (#5) каждого кадра. Сигналы синхронизации включают в себя сигнал основной синхронизации (P-SS) и сигнал дополнительной синхронизации (S-SS). Мультиплексирование канала, используемого для MBSFN (одночастотной сети для услуги широковещательной и многоадресной передачи мультимедиа), и канала, используемого для не MBSFN, выполняется для каждого субкадра. Далее, субкадр, используемый для MBSFN-передачи, упоминается как MBSFN-субкадр. В непатентной ссылке 2 описывается пример сигнализации во время выделения MBSFN-субкадров. Фиг.3 является пояснительным чертежом, показывающим конфигурацию MBSFN-кадра. На фиг.3, MBSFN-субкадры выделяются каждому MBSFN-кадру. Кластер MBSFN-кадров планируется. Период повторения кластеров MBSFN-кадров назначается.

Вопросы, в настоящее время определенные в 3GPP и касающиеся конфигурации каналов в LTE-системе, описываются в непатентной ссылке 1. Предполагается, что конфигурация каналов, идентичная конфигурации, используемой для не-CSG-сот, используется также для сот CSG (закрытая абонентская группа). Физические каналы (глава 15 непатентной ссылки 1) поясняются со ссылкой на фиг.4. Фиг.4 является пояснительным чертежом, поясняющим физические каналы для использования в системе связи с использованием LTE-способа. На фиг.4, физический широковещательный канал 401 (PBCH) - это канал нисходящей линии связи, который передается из базовой станции 102 в мобильный терминал 101. Транспортный блок BCH преобразуется в четыре субкадра в течение периода времени в 40 мс. Отсутствует открытая передача служебных сигналов, имеющая синхронизацию 40 мс. Физический канал 402 индикатора формата канала управления (PCFICH) передается из базовой станции 102 в мобильный терминал 101. PCFICH сообщает число OFDM-символов, используемых для PDCCH, из базовой станции 102 в мобильный терминал 101. PCFICH передается в каждом субкадре. Физический канал 403 управления нисходящей линии связи (PDCCH) - это канал нисходящей линии связи, передаваемый из базовой станции 102 в мобильный терминал 101. PDCCH сообщает выделение ресурсов, информацию HARQ о DL-SCH (совместно используемый канал нисходящей линии связи, который является одним из транспортных каналов, показанных на фиг.5) и PCH (канал поисковых вызовов, который является одним из транспортных каналов, показанных на фиг.5). PDCCH переносит разрешение на планирование в восходящей линии связи. PDCCH также переносит Ack/Nack, который является ответным сигналом, показывающим ответ на передачу по восходящей линии связи. PDCCH также называется управляющим сигналом L1/L2. Физический совместно используемый канал 404 нисходящей линии связи (PDSCH) - это канал нисходящей линии связи, передаваемый из базовой станции 102 в мобильный терминал 101. DL-SCH (совместно используемый канал нисходящей линии связи), который является транспортным каналом, и PCH, который является транспортным каналом, преобразуются в PDSCH. Физический канал 405 многоадресной передачи (PMCH) - это канал нисходящей линии связи, передаваемый из базовой станции 102 в мобильный терминал 101. MCH (канал многоадресной передачи), который является транспортным каналом, преобразуется в PMCH.

Физический канал 406 управления восходящей линии связи (PUCCH) - это канал восходящей линии связи, передаваемый из мобильного терминала 101 в базовую станцию 102. PUCCH переносит Ack/Nack, который является ответным сигналом на передачу по нисходящей линии связи. PUCCH переносит сообщение CQI (индикатор качества канала). CQI является информацией качества, показывающей либо качество принимаемых данных, либо качество канала связи. PUCCH также переносит запрос на планирование (SR). Физический совместно используемый канал 407 восходящей линии связи (PUSCH) - это канал восходящей линии связи, передаваемый из мобильного терминала 101 в базовую станцию 102. UL-SCH (совместно используемый канал восходящей линии связи, который является одним из транспортных каналов, показанных на фиг.5) преобразуется в PUSCH. Физический канал 408 индикатора HARQ (PHICH) - это канал нисходящей линии связи, передаваемый из базовой станции 102 в мобильный терминал 101. PHICH переносит Ack/Nack, который является ответом на передачу по восходящей линии связи. Физический канал 409 с произвольным доступом (PRACH) - это канал восходящей линии связи, передаваемый из мобильного терминала 101 в базовую станцию 102. PRACH переносит преамбулу произвольного доступа.

В опорном сигнале нисходящей линии связи символы, известные в системе мобильной связи, вставляются в первый, третий и последний OFDM-символы каждого временного кванта. В качестве измерения физического уровня каждого мобильного терминала, предусмотрена мощность принимаемых опорных символов (RSRP).

Транспортные каналы (глава 5 непатентной ссылки 1) поясняются со ссылкой на фиг.5. Фиг.5 поясняет транспортные каналы для использования в системе связи с использованием LTE-способа. Преобразование между транспортными каналами нисходящей линии связи и физическими каналами нисходящей линии связи показано на фиг.5A. Преобразование между транспортными каналами восходящей линии связи и физическими каналами восходящей линии связи показано на фиг.5B. В транспортных каналах нисходящей линии связи широковещательный канал (BCH) передается в широковещательном режиме во все базовые станции (соту). BCH преобразуется в физический широковещательный канал (PBCH). Управление повторной передачей с помощью HARQ (гибридного ARQ) применяется к совместно используемому каналу нисходящей линии связи (DL-SCH). Может выполняться широковещательная передача во все базовые станции (соту). Поддерживается динамическое или полустатическое выделение ресурсов. Полустатическое выделение ресурсов также упоминается как постоянное планирование. DRX (прерывистый прием) поддерживается мобильным терминалом, чтобы снижать потребление мощности мобильного терминала. DL-SCH преобразуется в физический совместно используемый канал нисходящей линии связи (PDSCH). Канал поисковых вызовов (PCH) поддерживает DRX посредством мобильного терминала, чтобы предоставлять возможность мобильному терминалу достигать низкого потребления мощности. Запрашивается передача в широковещательном режиме во все базовые станции (соту). Выполняется преобразование либо в такой физический ресурс, как физический совместно используемый канал нисходящей линии связи (PDSCH), который может динамически использоваться для трафика, либо в такой физический ресурс, как физический канал управления нисходящей линии связи (PDCCH), который является другим каналом управления. Канал многоадресной передачи (MCH) используется для передачи в широковещательном режиме во все базовые станции (соту). SFN-комбинирование MBMS-услуг (MTCH и MCCH) поддерживается при многосотовой передаче. Поддерживается полустатическое выделение ресурсов. MCH преобразуется в PMCH.

Управление повторной передачей с помощью HARQ применяется к совместно используемому каналу восходящей линии связи (UL-SCH). Поддерживается динамическое или полустатическое выделение ресурсов. UL-SCH преобразуется в физический совместно используемый канал восходящей линии связи (PUSCH). Канал с произвольным доступом (RACH), показанный на фиг.5B, ограничен управляющей информацией. Существует риск коллизий. RACH преобразуется в физический канал с произвольным доступом (PRACH). Далее поясняется HARQ.

HARQ является технологией повышения качества связи линии передачи посредством использования комбинации автоматической повторной передачи (автоматического запроса на повторную передачу) и коррекции ошибок (прямой коррекции ошибок). Повторная передача предоставляет преимущество задания функции коррекции ошибок так, что она является эффективной также для линии передачи, качество связи которой варьируется. В частности, при выполнении повторной передачи комбинирование результатов приема первоначальной передачи и результатов приема повторной передачи предоставляет дополнительное повышение качества. Пример способа повторной передачи поясняется далее. Когда приемная сторона не может декодировать принимаемые данные корректно (когда ошибка контроля циклическим избыточным кодом CRC возникает (CRC=NG)), приемная сторона передает "Nack" в передающую сторону. При приеме "Nack" передающая сторона повторно передает данные. Напротив, когда приемная сторона может декодировать принимаемые данные корректно (когда ошибки CRC не возникают (CRC=OK)), приемная сторона передает "Ack" в передающую сторону. При приеме "Ack" передающая сторона передает следующие данные. Предусматривается "отслеживаемое комбинирование" в качестве примера способа HARQ. Отслеживаемое комбинирование является способом передачи идентичной последовательности данных во время первоначальной передачи и во время повторной передачи и, при выполнении повторной передачи, комбинирования последовательности данных при первоначальной передаче и последовательности данных при повторной передаче, чтобы повышать усиление. Это основано на такой идее, что даже если первоначальные передаваемые данные содержат ошибку, первоначальные передаваемые данные частично включают в себя корректные данные, и, следовательно, данные могут быть переданы с более высокой степенью точности посредством комбинирования корректной части первоначальных передаваемых данных и данных для повторной передачи. Кроме того, предусматривается IR (нарастающая избыточность) в качестве еще одного примера способа HARQ. IR является способом увеличения степени резервирования с комбинацией с первоначальной передачей посредством передачи бита четности во время повторной передачи, чтобы повышать качество посредством использования функции коррекции ошибок.

Логические каналы (глава 6 непатентной ссылки 1) поясняются со ссылкой на фиг.6. Фиг.6 поясняет логические каналы для использования в системе связи с использованием LTE-способа. Преобразование между логическими каналами нисходящей линии связи и транспортными каналами нисходящей линии связи показывается на фиг.6A. Преобразование между логическими каналами восходящей линии связи и транспортными каналами восходящей линии связи показывается на фиг.6B. Широковещательный канал управления (BCCH) - это канал нисходящей линии связи для управляющей информации широковещательной системы. BCCH, который является логическим каналом, преобразуется либо в широковещательный канал (BCH), который является транспортным каналом, либо в совместно используемый канал нисходящей линии связи (DL-SCH). Канал управления поисковыми вызовами (PCCH) - это канал нисходящей линии связи для передачи сигнала поискового вызова. PCCH используется, когда сеть не знает местоположение в соте мобильного терминала. PCCH, который является логическим каналом, преобразуется в канал поисковых вызовов (PCH), который является транспортным каналом. Общий канал управления (CCCH) - это канал для управляющей информации передачи между мобильным терминалом и базовой станцией. CCCH используется, когда мобильный терминал не имеет RRC-соединения между мобильным терминалом и сетью. В направлении нисходящей линии связи, CCCH преобразуется в совместно используемый канал нисходящей линии связи (DL-SCH), который является транспортным каналом. В направлении восходящей линии связи, CCCH преобразуется в совместно используемый канал восходящей линии связи (UL-SCH), который является транспортным каналом.

Канал управления многоадресной передачей (MCCH) - это канал нисходящей линии связи для передачи типа "точка-множество точек". Канал используется для передачи управляющей информации MBMS для одного или нескольких MTCH из сети в мобильные терминалы. MCCH используется только для мобильного терминала, в настоящий момент принимающего MBMS. MCCH преобразуется либо в совместно используемый канал нисходящей линии связи (DL-SCH), который является транспортным каналом, либо в канал многоадресной передачи (MCH). Выделенный канал управления (DCCH) - это канал для передачи отдельной управляющей информации между мобильным терминалом и сетью. DCCH преобразуется в совместно используемый канал восходящей линии связи (UL-SCH) в восходящей линии связи и преобразуется в совместно используемый канал нисходящей линии связи (DL-SCH) в нисходящей линии связи. Выделенный канал трафика (DTCH) - это канал связи "точка-точка" для каждого мобильного терминала для передачи пользовательской информации. DTCH существует как для восходящей линии связи, так и для нисходящей линии связи. DTCH преобразуется в совместно используемый канал восходящей линии связи (UL-SCH) в восходящей линии связи и преобразуется в совместно используемый канал нисходящей линии связи (DL-SCH) в нисходящей линии связи. Канал трафика для многоадресной передачи (MTCH) - это канал нисходящей линии связи для передачи данных трафика из сети в мобильный терминал. MTCH используется только для мобильного терминала, в настоящий момент принимающего MBMS. MTCH преобразуется либо в совместно используемый канал нисходящей линии связи (DL-SCH), либо в канал многоадресной передачи (MCH).

GCI является глобальным идентификатором соты. В LTE и в UMTS (универсальная система мобильной связи) вводится CSG-сота (сота закрытой абонентской группы). CSG-сота поясняется далее (глава 43.1 непатентной ссылки). CSG (закрытая абонентская группа) является сотой (указанной абонентской сотой), в которой оператор указывает абонентов, которые могут использовать соту. Каждому указанному абоненту разрешается осуществлять доступ к одной или более E-UTRAN-сот в PLMN (наземной сети мобильной связи общего пользования). Одна или более E-UTRAN-сот, к которым каждому указанному абоненту разрешается доступ, упоминаются как "CSG-сота(ы)". Тем не менее, ограничение доступа накладывается на PLMN. CSG-сота является частью PLMN, которая передает в широковещательном режиме конкретный CSG-идентификатор (CSG-ID). Каждый член абонентской группы, который зарегистрирован ранее в CSG-соте и которому разрешается осуществлять доступ к этой CSG-соте, осуществляет доступ к CSG-соте посредством использования CSG-идентификатора, который является информацией разрешения доступа. CSG-идентификатор передается в широковещательном режиме посредством CSG-соты или соты. Два или более CSG-идентификаторов существуют для каждой CSG-соты в системе мобильной связи. CSG-идентификатор используется посредством каждого терминала (UE), чтобы упрощать доступ от ассоциированного с CSG члена. На конференции 3GPP обсуждено то, что в качестве информации, передаваемой в широковещательном режиме посредством CSG-соты или соты, код зоны отслеживания (TAC) используется вместо CSG-идентификатора. Отслеживание местоположения мобильного терминала выполняется в единицах каждой зоны, которая состоит из одной или более сот. Отслеживание местоположения выполняется для того, чтобы отслеживать положение мобильного терминала, даже если этот мобильный терминал находится в состоянии (состоянии бездействия), в котором он не выполняет обмен данными, иметь возможность вызывать мобильный терминал (предоставлять возможность мобильному терминалу принимать входящий вызов). Каждая зона для этого отслеживания местоположения мобильного терминала упоминается как зона отслеживания. Белый список CSG является списком, в который записываются все CSG-идентификаторы CSG-соты, которой принадлежат абоненты, и который сохраняется в USIM. Белый список в каждом мобильном терминале предоставляется посредством верхнего уровня. Как результат, базовая станция каждой CSG-соты назначает радиоресурсы каждому мобильному терминалу.

"Подходящая сота" поясняется далее (глава 4.3 непатентной ссылки 4). "Подходящая сота" закрепляется, чтобы UE принимало нормальную услугу. (1) Эта сота должна быть частью выбранной PLMN, зарегистрированной PLMN или PLMN в "списке эквивалентных PLMN", и дополнительно удовлетворяет следующему требованию (2) в последней информации, предоставленной посредством NAS (не связанного с предоставлением доступа уровня). (1) Сота не является игнорируемой сотой. (2) Сота не является частью "списка игнорируемых LA для роуминга", а является частью, по меньшей мере, одной зоны отслеживания (TA). В этом случае, сота должна удовлетворять вышеуказанному (1). (3) Сота удовлетворяет критерию оценки при выборе соты. (4) Когда сота указывается, в качестве CSG-соты, посредством системной информации (SI), CSG-идентификатор является частью "белого списка CSG" UE (CSG-идентификатор включается в белый список CSG UE).

"Допустимая сота" поясняется далее (глава 4.3 непатентной ссылки 4). Эта сота закрепляется, чтобы UE принимало ограниченную услугу (экстренные вызовы). Эта сота удовлетворяет всем следующим требованиям.

Более конкретно, далее показан минимальный набор требований, чтобы начинать экстренные вызовы в E-UTRAN-сети. (1) Сота не является игнорируемой сотой. (2) Сота удовлетворяет критерию оценки при выборе соты.

Патентная ссылка на документы предшествующего уровня техники

Непатентная ссылка 1: 3GPP TS3 6.300 V8.6.0

Непатентная ссылка 2: 3GPP R1-072963

Непатентная ссылка 3: TR R3.020V0.6.0

Непатентная ссылка 4: 3GPP TS36.304 V8.3.0

Непатентная ссылка 5: 3GPP R2-082899

Непатентная ссылка 6: 3GPP S1-083461

Непатентная ссылка 7: 3GPP R2-086246

Непатентная ссылка 8: 3GPP TS22.011

Непатентная ссылка 9: 3GPP R2-086281

Непатентная ссылка 10: 3GPP TS36.331

Непатентная ссылка 11: 3GPP R2-094808

Сущность изобретения

HeNB и HNB требуются для того, чтобы поддерживать различные услуги. Например, посредством регистрации мобильных терминалов в предварительно определенном HeNB и предварительно определенном HNB и затем предоставления возможности только каждому зарегистрированному мобильному терминалу осуществлять доступ к HeNB- и HNB-сотам, оператор может увеличивать объем радиоресурсов, которые может использовать этот мобильный терминал, так чтобы предоставлять возможность мобильному терминалу выполнять обмен данными на высокой скорости. Оператор задает более высокую плату, чем обычно, согласно увеличению. Тем самым предоставляется одна из услуг. Чтобы реализовывать такую услугу, вводится сота CSG (сота закрытой абонентской группы), к которой может осуществлять доступ только зарегистрированный мобильный терминал (мобильный терминал, который присоединен к соте, чтобы становиться членом). Существует требование устанавливать множество сот CSG (закрытой абонентской группы) в таком месте, как торговый центр, квартира, школа или здание компании. Например, CSG-сота устанавливается на каждом складе торгового центра, в каждой комнате квартиры, в каждом классе школы и в каждом отдельном помещении в здании компании. Требуется способ использования с предоставлением возможности только тем пользователям, которые зарегистрированы в каждой CSG-соте, использовать эту CSG-соту.

С другой стороны, в качестве другой услуги, может рассматриваться услуга, чтобы предоставлять возможность не только зарегистрированному мобильному терминалу, но также и не зарегистрированному мобильному терминалу использовать часть радиоресурсов такой CSG-соты, как указано выше. Например, CSG-сота, установленная на каждом складе торгового центра, требуется не только для того, чтобы давать возможность мобильному терминалу продавца регистрироваться в CSG, чтобы предоставлять высокоскоростной обмен данными, но также и давать возможность мобильному терминалу любого клиента, который не зарегистрирован в этой CSG, использовать CSG-соту. Чтобы поддерживать такое требование, предложено использование "гибридного режима доступа" в HeNB и HNB. "Гибридный режим доступа" показывает форму работы (третий рабочий режим) CSG-соты, которая одновременно обслуживает как "закрытый режим доступа", который является первым рабочим режимом, в котором только зарегистрированные мобильные терминалы могут осуществлять доступ к соте, так и "открытый режим доступа", который является вторым рабочим режимом и в котором незарегистрированные мобильные терминалы могут осуществлять доступ к соте. В этом случае, хотя определяется, давать или нет возможность каждому зарегистрированному мобильному терминалу осуществлять доступ к соте, всем мобильным терминалам, которые не зарегистрированы в соте, может разрешаться осуществлять доступ к соте. Следовательно, во многих HeNB и HNB, которые устанавливаются в таком месте, как торговый центр или квартира, сосуществуют CSG-соты, каждая из которых работает в открытом режиме доступа, и CSG-соты, каждая из которых работает в закрытом режиме доступа. Кроме того, предполагается, что каждый из HeNB и HNB имеет портативный размер и портативный вес, и также необходимо, чтобы установка и вывод из эксплуатации этих сот могли выполняться часто и гибко. Принимая эти требования во внимание, радиоволны из множества сот в различных рабочих режимах одновременно передаются в определенную точку. Более конкретно, случай, когда каждый мобильный терминал находится в положении, когда радиоволны из множества сот в различных рабочих режимах достигают мобильного терминала, может возникать в таком месте, как торговый центр или квартира.

В случае мобильного терминала, который находится в положении, когда радиоволны из множества сот, заданных в различных рабочих режимах, таких как открытый режим доступа, закрытый режим доступа и гибридный режим доступа, достигают мобильного терминала, возникает случай, когда мобильный терминал многократно выполняет поиск по множеству сот в закрытом режиме доступа, к которым мобильный терминал не может осуществлять доступ (CSG-сот), т.е. CSG-сот, в которых мобильный терминал не зарегистрирован для пользовательского доступа, и осуществляет выбор соты для такой CSG-соты в течение длительного времени. Кроме того, если даже сота, которую мобильный терминал выбрал посредством поиска соты, работает в гибридном режиме доступа, т.е. поддерживает как закрытый режим доступа, так и открытый режим доступа, мобильный терминал не зарегистрирован для пользовательского доступа к соте, возникает ситуация, когда мобильный терминал определяет, что мобильный терминал не может осуществить доступ к соте и многократно снова выполняет поиск сот и выбор соты в течение длительного времени. В таком случае вызывается задержка на управление в системе, снижение эффективности использования радиоресурсов и снижение эффективности сигнализации. Кроме того, возникает проблема в том, что потребляемая мощность мобильного терминала, который многократно выполняет поиск сот, становится большой. Эти проблемы являются значительными, когда предполагается планируемая в будущем компоновка HeNB и HNB, работающих в различных режимах, как упомянуто выше. Настоящее изобретение осуществлено, чтобы разрешать эти проблемы.

В соответствии с настоящим изобретением, предусмотрена система мобильной связи, включающая в себя мобильные терминалы, каждый из которых предназначен для передачи и приема данных с использованием способа OFDM (мультиплексирования с ортогональным частотным разделением) в качестве способа доступа по нисходящей линии связи и с использованием способа SC-FDMA (множественного доступа с частотным разделением с одной несущей) в качестве способа доступа в восходящей линии связи, базовую станцию, расположенную в указанной абонентской соте, которая является сотой связи, которая позволяет конкретному из упомянутых мобильных терминалов или конкретному абоненту использовать указанную абонентскую соту, и базовую станцию, расположенную в неуказанной пользовательской соте, которая является сотой связи, которую неуказанный один из упомянутых мобильных терминалов или неуказанный пользователь может использовать, и устройство управления базовыми станциями для управления требуемой зоной отслеживания, в которой находятся мобильные терминалы, через базовые станции и для выполнения процесса поискового вызова в мобильных терминалах, причем каждый из мобильных терминалов принимает идентификационную информацию соты (PCI), назначаемую каждой из сот связи, для идентификации каждой из сот связи из базовых станций, и выбора соты, с которой каждый из мобильных терминалов осуществляет связь, при этом указанная абонентская сота может одновременно использовать первый рабочий режим, в котором указанная абонентская сота позволяет упомянутому конкретному мобильному терминалу или упомянутому конкретному абоненту использовать указанную абонентскую соту, и второй рабочий режим, в котором указанная абонентская сота позволяет неуказанному мобильному терминалу или неуказанному пользователю использовать указанную абонентскую соту, и упомянутая идентификационная информация соты включает в себя идентификационную информацию для идентификации упомянутой указанной абонентской соты, работающей в упомянутом втором рабочем режиме.

В соответствии с настоящим изобретением, предусмотрена система мобильной связи, включающая в себя мобильные терминалы, каждый из которых предназначен для передачи и приема данных посредством использования способа OFDM (мультиплексирования с ортогональным частотным разделением) в качестве способа доступа по нисходящей линии связи и посредством использования способа SC-FDMA (множественного доступа с частотным разделением с одной несущей) в качестве способа доступа в восходящей линии связи, базовую станцию, расположенную в указанной абонентской соте, которая является сотой связи, которая дает возможность конкретному одному из упомянутых мобильных терминалов или конкретному абоненту использовать указанную абонентскую соту, и базовую станцию, расположенную в неуказанной пользовательской соте, которая является сотой связи, которую неуказанный один из упомянутых мобильных терминалов или неуказанный пользователь может использовать, и устройство управления базовыми станциями для управления требуемой зоной отслеживания, в которой находятся упомянутые мобильные терминалы, через упомянутые базовые станции, причем каждый из мобильных терминалов принимает идентификационную информацию соты (PCI) для идентификации каждой из сот связи из базовых станций, и выбора соты, с которой каждый из мобильных терминалов обменивается данными, и каждый мобильный терминал осуществляет доступ к указанной абонентской соте посредством использования информации разрешения доступа, которая выдается при разрешении использовать указанную абонентскую соту, при этом зона отслеживания указанной абонентской соты, которая может одновременно использовать первый рабочий режим, в котором указанная абонентская сота позволяет конкретному мобильному терминалу или конкретному абоненту использовать указанную абонентскую соту, и второй рабочий режим, в котором указанная абонентская сота позволяет неуказанному мобильному терминалу или неуказанному пользователю использовать указанную абонентскую соту, управляется в качестве зоны отслеживания указанной абонентской соты, работающей в первом рабочем режиме, и каждый из мобильных терминалов определяет, осуществлять или нет доступ к указанной абонентской соте, на основе идентификатора зоны отслеживания, включенного в информацию разрешения доступа, и информации режима, показывающей, в каком из первого и второго рабочих режимов работает указанная абонентская сота.

Поскольку в системе мобильной связи, в соответствии с настоящим изобретением, включающей в себя мобильные терминалы, каждый из которых предназначен для передачи и приема данных посредством использования способа OFDM в качестве способа доступа по нисходящей линии связи и посредством использования способа SC-FDMA в качестве способа доступа в восходящей линии связи, базовую станцию, расположенную в указанной абонентской соте, которая является сотой связи, которая позволяет конкретному одному из упомянутых мобильных терминалов или конкретному абоненту использовать указанную абонентскую соту, и базовую станцию, расположенную в неуказанной пользовательской соте, которая является сотой связи, которую неуказанный один из упомянутых мобильных терминалов или неуказанный пользователь может использовать, и устройство управления базовыми станциями для управления требуемой зоной отслеживания, в которой находятся мобильные терминалы, через базовые станции и для выполнения процесса поискового вызова в мобильных терминалах, причем каждый из мобильных терминалов принимает идентификационную информацию соты (PCI), назначаемую каждой из сот связи, для идентификации каждой из сот связи из базовых станций, и выбора соты, с которой каждый из мобильных терминалов осуществляет связь, указанная абонентская сота может одновременно использовать первый рабочий режим, в котором указанная абонентская сота позволяет упомянутому конкретному мобильному терминалу или упомянутому конкретному абоненту использовать указанную абонентскую соту, и второй рабочий режим, в котором упомянутая указанная абонентская сота дает возможность упомянутому неуказанному мобильному терминалу или упомянутому неуказанному пользователю использовать указанную абонентскую соту, и упомянутая идентификационная информация соты включает в себя идентификационную информацию для идентификации упомянутой указанной абонентской соты, работающей в упомянутом втором рабочем режиме, может предоставляться преимущество возможности выполнять операцию поиска на высокой скорости и недопущения возникновения задержки управления в системе мобильной связи. Может предоставляться еще одно преимущество, заключающееся в уменьшении потребляемой мощности каждого мобильного терминала.

Поскольку в системе мобильной связи, в соответствии с настоящим изобретением, включающей в себя мобильные терминалы, каждый из которых предназначен для передачи и приема данных посредством использования способа OFDM в качестве способа доступа по нисходящей линии связи и посредством использования способа SC-FDMA в качестве способа доступа в восходящей линии связи, базовую станцию, расположенную в указанной абонентской соте, которая является сотой связи, которая дает возможность конкретному одному из упомянутых мобильных терминалов или конкретному абоненту использовать указанную абонентскую соту, и базовую станцию, расположенную в неуказанной пользовательской соте, которая является сотой связи, которую не