Устройство отображения, устройство обработки видео и способ отображения видео

Иллюстрации

Показать все

Изобретение относится к устройствам отображения. Техническим результатом является предоставление устройства отображения, которое может предотвратить ситуацию, в которой информация, назначаемая источнику света, который не может быть включен, вообще не отображается, даже при условии, что часть из множества источников света не может быть включена. Результат достигается тем, что секция получения обычных видеоданных получает, в качестве обычных видеоданных, множество фрагментов видеоданных, соответственно назначаемых множеству источников света при обычном отображении, из входного видеосигнала. Секция вычисления выполняет предварительно определенное вычисление для множества фрагментов видеоданных, включенных в обычные видеоданные, чтобы формировать дополнительные видеоданные, используемые вместо обычных видеоданных при дополнительном отображении. Секция выбора выполняет, в соответствии с инструкцией из секции управления, процесс выбора для предоставления любых из обычных видеоданных и дополнительных видеоданных в секцию возбуждения модуляции. 3 н. и 4 з.п. ф-лы, 21 ил.

Реферат

Область техники, к которой относится изобретение

[0001] Настоящее изобретение относится к устройству отображения, устройству видеообработки и способу отображения видео.

Уровень техники

[0002] Не так давно было предложено использовать светоизлучающие диоды (светодиоды) в качестве источников света в устройстве отображения проекционного типа. В частности, в устройстве отображения на основе цифровой обработки света (DLP; зарегистрированная торговая марка) с использованием цифрового микрозеркального устройства используются светодиоды, испускающие красный световой луч (в дальнейшем в этом документе, также называемые R-светодиодами), светодиоды, испускающие зеленый световой луч (в дальнейшем в этом документе, также называемые G-светодиодами), и светодиоды, испускающие синий световой луч (в дальнейшем в этом документе, также называемые B-светодиодами), и светодиоды трех цветов включаются последовательно (см. патентный документ 1). В таком устройстве отображения проекционного типа возбуждающая схема для источника света предоставляется для каждого цвета излучения источника света. Более конкретно, три схемы постоянного тока, состоящие из схемы постоянного тока для R-светодиодов, схемы постоянного тока для G-светодиодов и схемы постоянного тока для B-светодиодов, предоставляются, соответственно, для цветов излучения светодиодов.

[0003] В вышеуказанном устройстве отображения входные видеосигналы преобразуются во фрагменты цифровых данных соответствующих цветов, т.е. в данные красного цвета (в дальнейшем в этом документе, также называемые R-данными), данные зеленого цвета (в дальнейшем в этом документе, также называемые G-данными) и данные синего цвета (в дальнейшем в этом документе, также называемые B-данными), и DMD возбуждается в соответствии с фрагментами данных соответствующих цветов, чтобы тем самым выполнять модуляцию интенсивности для световых лучей трех цветов. Иными словами, красный световой луч подвергается модуляции интенсивности в соответствии с R-данными, зеленый световой луч подвергается модуляции интенсивности в соответствии с G-данными, и синий световой луч подвергается модуляции интенсивности в соответствии с B-данными. Световые лучи трех цветов, подвергнутые модуляции интенсивности, проецируются на экран и т.п. через проекционную линзу, так что отображаются видеоизображения.

Документы предшествующего уровня техники

Патентные документы

[0004] Патентный документ 1. Выложенная заявка на патент Японии номер 2005-331705

Патентный документ 2. Выложенная заявка на патент Японии номер 2007-164099

Сущность изобретения

Задачи, разрешаемые изобретением

[0005] В вышеуказанном устройстве отображения, в случае если, например, R-светодиоды не могут быть включены вследствие неисправности схемы постоянного тока и т.п., информация, которая должна быть представлена посредством R-данных, полностью теряется на дисплее. Это может приводить к такой проблеме, что может не отображаться важная информация.

[0006] Например, также возможна ситуация, в которой не может быть включен другой цвет, или ситуация, в которой не могут быть включены два цвета. Следует отметить, что цвета излучения источников света и число цветов излучения не ограничены тремя цветами в вышеприведенном примере. Аналогичная проблема также может возникать в устройстве отображения, в котором используется источник света, отличный от светодиодов, и в устройстве отображения, в котором используется средство модуляции света (например, жидкокристаллическая панель), отличное от DMD.

[0007] Настоящее изобретение имеет цель предоставлять устройство отображения, устройство видеообработки и способ отображения видео, которые могу предотвратить ситуацию, в которой информация, назначаемая источнику света, который не может быть включен, вообще не отображается, даже при условии, что часть из множества источников света не может быть включена.

Средство для решения задачи

[0008] Устройство отображения согласно аспекту настоящего изобретения включает в себя множество источников света, секцию модуляции, выполняющую оптическую модуляцию интенсивности для испускаемых световых лучей из множества источников света, секцию возбуждения модуляции, возбуждающую секцию модуляции на основе фрагментов видеоданных, секцию предоставления данных, предоставляющую фрагменты видеоданных в секцию возбуждения модуляции, и секцию управления, управляющую секцией предоставления данных, при этом секция предоставления данных включает в себя: секцию получения обычных видеоданных, получающую, в качестве обычных видеоданных, множество фрагментов видеоданных, соответственно назначаемых множеству источников света при обычном отображении, из входного видеосигнала; секцию вычисления, выполняющую предварительно определенное вычисление для множества фрагментов видеоданных, включенных в обычные видеоданные, чтобы формировать дополнительные видеоданные, используемые вместо обычных видеоданных при дополнительном отображении; и секцию выбора, выполняющую, в соответствии с инструкцией из секции управления, процесс выбора для предоставления любых из обычных видеоданных и дополнительных видеоданных в секцию возбуждения модуляции.

Преимущества изобретения

[0009] Согласно аспекту переключение может выполняться между обычными видеоданными и дополнительными видеоданными. Следовательно, в случае если, например, часть источников света не может быть включена, можно не допускать, с использованием дополнительных видеоданных, ситуации, в которой информация, назначенная источнику света, который не может быть включен, в обычных видеоданных вообще не отображается.

[0010] Кроме того, преобразование из обычных видеоданных в дополнительные видеоданные выполняется посредством вычисления, посредством чего можно, например, упрощать последовательность операций управления преобразованием, уменьшать размер конфигурации устройства и легче изменять содержимое вычисления по сравнению с преобразованием с использованием так называемой справочной таблицы (LUT).

[0011] Эти и другие цели, признаки, аспекты и преимущества настоящего изобретения должны становиться более очевидными из нижеследующего подробного описания настоящего изобретения, рассматриваемого вместе с прилагаемыми чертежами.

Краткое описание чертежей

[0012] Фиг.1 является блок-схемой, иллюстрирующей устройство отображения согласно первому варианту осуществления.

Фиг.2 является блок-схемой, иллюстрирующей средство получения обычных видеоданных согласно первому варианту осуществления.

Фиг.3 является блок-схемой, иллюстрирующей средство вычисления данных согласно первому варианту осуществления.

Фиг.4 является блок-схемой последовательности операций, иллюстрирующей выбор видеоданных согласно первому варианту осуществления.

Фиг.5 является схемой, иллюстрирующей работу устройства отображения согласно первому варианту осуществления (обычное отображение; все источники света могут быть включены).

Фиг.6 является схемой, иллюстрирующей работу устройства отображения согласно первому варианту осуществления (обычное отображение; красный источник света не может быть включен).

Фиг.7 является схемой, иллюстрирующей отображаемое видеоизображение посредством устройства отображения согласно первому варианту осуществления (обычное отображение; все источники света могут быть включены).

Фиг.8 является схемой, иллюстрирующей отображаемое видеоизображение посредством устройства отображения согласно первому варианту осуществления (обычное отображение; красный источник света не может быть включен).

Фиг.9 является схемой, иллюстрирующей работу устройства отображения согласно первому варианту осуществления (дополнительное отображение, красный источник света не может быть включен).

Фиг.10 является схемой, иллюстрирующей отображаемое видеоизображение посредством устройства отображения согласно первому варианту осуществления (дополнительное отображение; красный источник света не может быть включен).

Фиг.11 является схемой, иллюстрирующей работу устройства отображения согласно первому варианту осуществления (дополнительное отображение; красный и зеленый источники света не могут быть включены).

Фиг.12 является блок-схемой, иллюстрирующей средство вычисления данных согласно второму варианту осуществления.

Фиг.13 является блок-схемой последовательности операций, иллюстрирующей выбор видеоданных согласно второму варианту осуществления.

Фиг.14 является схемой, иллюстрирующей работу устройства отображения согласно третьему варианту осуществления (дополнительное отображение; красный источник света не может быть включен).

Фиг.15 является схемой, иллюстрирующей работу устройства отображения согласно третьему варианту осуществления (дополнительное отображение; красный и зеленый источники света не могут быть включены).

Фиг.16 является блок-схемой, иллюстрирующей устройство отображения согласно четвертому варианту осуществления.

Фиг.17 является блок-схемой последовательности операций, иллюстрирующей выбор типа отображения согласно четвертому варианту осуществления.

Фиг.18 является блок-схемой, иллюстрирующей устройство отображения согласно пятому варианту осуществления.

Фиг.19 является блок-схемой, иллюстрирующей устройство видеообработки согласно шестому варианту осуществления.

Фиг.20 является блок-схемой, иллюстрирующей другое устройство видеообработки согласно шестому варианту осуществления.

Фиг.21 является блок-схемой, иллюстрирующей еще одно другое устройство видеообработки согласно шестому варианту осуществления.

Варианты осуществления для выполнения изобретения

[0013] Первый вариант осуществления

Общая конфигурация устройства 1 отображения

Фиг.1 иллюстрирует блок-схему устройства 1 отображения согласно первому варианту осуществления. Устройство 1 отображения является так называемым устройством отображения проекционного типа, и пользователь просматривает видеоизображение, проецируемое на экран 50.

[0014] Типично, устройства отображения проекционного типа примерно классифицируются на устройства с передним проецированием и устройства с задним проецированием. В устройстве с передним проецированием пользователь просматривает проецируемое видеоизображение со стороны проекционной поверхности экрана 50. Устройство с передним проецированием также упоминается как устройство прямого видения. Между тем в устройстве с задним проецированием пользователь просматривает проецируемое видеоизображение со стороны напротив проекционной поверхности экрана 50, т.е. просматривает проецируемое видеоизображение через экран 50. Экран 50 может быть реализован, например, как поверхность внутренней/наружной стены комнаты и стеклянная поверхность, в дополнение к выделенному элементу.

[0015] Ниже проиллюстрирован случай, в котором устройство 1 отображения представляет собой устройство с передним проецированием, и экран 50 подготавливается в качестве элемента, предоставляемого отдельно от устройства 1 отображения, но не ограничен этим. Иными словами, конфигурация устройства 1 отображения также является применимой к устройству с задним проецированием. Альтернативно, экран 50 в некоторых случаях составляет один элемент устройства 1 отображения.

[0016] В примере по фиг.1, устройство 1 отображения включает в себя три источника 10R, 10G и 10B света, средство 20 комбинирования оптического пути, средство 30 модуляции, средство 40 проецирования, средство 60 управления, средство 70 возбуждения источников света, средство 80 возбуждения модуляции, средство 90 предоставления данных и средство 100 оперирования. Следует отметить, что, например, "средство управления" сокращается как "управление" на схеме.

[0017] Источники 10R, 10G и 10B света каждый испускают световой луч предварительно определенного цвета. Хотя здесь проиллюстрирован случай, в котором цвета излучения источников 10R, 10G и 10B света отличаются друг от друга, нижеприведенное описание также применимо к случаю, в котором цвета излучения источников 10R, 10G и 10B света являются одинаковыми друг с другом.

[0018] Здесь проиллюстрирован случай, в котором источники 10R, 10G и 10B света являются светодиодами. Более конкретно, проиллюстрирован случай, в котором источник 10R света включает в себя светодиоды, испускающие красный световой луч (в дальнейшем в этом документе, также называемые R-светодиодами), источник 10G света включает в себя светодиоды, испускающие зеленый световой луч (в дальнейшем в этом документе также называемые G-светодиодами), и источник 10B света включает в себя светодиоды, испускающие синий световой луч (в дальнейшем в этом документе также называемые B-светодиодами). В последующем описании источник 10R света также иногда упоминается как светодиод 10R или R-светодиод 10R, что применимо также и для источников 10G и 10B света. Источники 10R, 10G и 10B света могут быть сконфигурированы как источники света, отличные от светодиодов, например лазеры.

[0019] Световые лучи 11R, 11G и 11B, испускаемые из светодиодов 10R, 10G и 10B, последовательно проходят через средство 20 комбинирования оптического пути, средство 30 модуляции и средство 40 проецирования, так что они направляются на одну и ту же область экрана 50. Другими словами, светодиоды 10R, 10G и 10B, средство 20 комбинирования оптического пути, средство 30 модуляции и средство 40 проецирования располагаются таким образом, что они следуют такому оптическому пути. Следует отметить, что оптический путь может быть выполнен с возможностью включать в себя элемент, который не проиллюстрирован здесь.

[0020] Средство 20 комбинирования оптического пути направляет испускаемые световые лучи 11R, 11G и 11B из светодиодов 10R, 10G и 10B в одном и том же направлении, т.е. вдоль одного и того же оптического пути. В качестве средства 20 комбинирования оптического пути здесь проиллюстрировано дихроическое зеркало, и средство 20 комбинирования оптического пути также упоминается как дихроическое зеркало 20. Средство 20 комбинирования оптического пути не ограничивается дихроическим зеркалом. Альтернативно, средство 20 комбинирования оптического пути может состоять из множества оптических компонентов.

[0021] Средство 30 модуляции выполняет оптическую модуляцию интенсивности (в дальнейшем в этом документе также называемую модуляцией) для испускаемых световых лучей 11R, 11G и 11B (в этом случае световых лучей 11R, 11G и 11B после регулирования оптического пути посредством дихроического зеркала 20) светодиодов 10R, 10G и 10B. Оптическая модуляция интенсивности выполняется попиксельно с помощью средства 30 модуляции.

[0022] Средство 30 модуляции формируется из одного элемента модуляции. С учетом вышеизложенного средство 30 модуляции также упоминается как элемент 30 модуляции. Один элемент 30 модуляции совместно используется светодиодами 10R, 10G и 10B и обрабатывает испускаемые световые лучи 11R, 11G и 11B из светодиодов 10R, 10G и 10B с использованием временного разделения (другими словами, с использованием временной последовательности).

[0023] Элемент 30 модуляции может быть реализован, например, как жидкокристаллическая панель, цифровое микрозеркальное устройство (DMD) и т.п. Оптическая модуляция интенсивности посредством элементов модуляции, описанных выше, выполняется с использованием различных известных технологий, и ее подробное описание не приводится в данном документе. Типично, элементы модуляции примерно классифицируются на пропускающие элементы и отражательные элементы, при этом жидкокристаллическая панель представляет собой пример пропускающих элементов, а DMD представляет собой пример отражательных элементов. Фиг.1 иллюстрирует пропускающий элемент 30 модуляции.

[0024] Средство 40 проецирования типично увеличивает и проецирует световые лучи 31R, 31G и 31B после модуляции, которые выводятся из средства 30 модуляции. Здесь средство 40 проецирования формируется из одного проекционного элемента (к примеру, проекционной линзы). С учетом вышеизложенного средство 40 проецирования также упоминается как проекционная линза 40. Видеоизображение проецируется на экран 50, расположенный на оптическом пути, посредством модулированных световых лучей 31R, 31G и 31B, проецируемых из проекционной линзы 40. Следует отметить, что проекционный элемент может быть модулем линз, полученным посредством сборки множества линз, и т.п.

[0025] Средство 60 управления выполняет различные процессы, описанные ниже (к примеру, процесс управления и процесс получения пользовательского ввода). Средство 60 управления может быть выполнено с возможностью включать в себя, например, микропроцессор (также называемый MPU, CPU или микрокомпьютером) и запоминающее устройство, предоставляемое таким образом, что оно доступно для микропроцессора. В случае этого примера микропроцессор выполняет этапы обработки (другими словами, процедуры обработки), описанные в программе, предварительно сохраненной в запоминающем устройстве, посредством которой выполняются различные процессы.

[0026] Согласно вышеуказанному примеру конфигурации микропроцессор реализует различные функции, соответствующие одному или множеству этапов обработки. Альтернативно, микропроцессор выступает в качестве различных средств, соответствующих одному или множеству этапов обработки.

[0027] Микропроцессор может использовать, например, многопроцессорную или многоядерную конфигурацию. Запоминающее устройство может быть выполнено с возможностью включать в себя одно или множество из, например, постоянного запоминающего устройства (ROM), оперативного запоминающего устройства (RAM) и перезаписываемого энергонезависимого запоминающего устройства (к примеру, стираемого программируемого ROM (EPROM)). Запоминающее устройство хранит программу, как описано выше, и, кроме того, хранит различные типы данных и предоставляет рабочую область для выполнения программы.

[0028] Согласно этому примеру конфигурации различные процессы посредством средства 60 управления реализованы как программное обеспечение, и часть либо все различные процессы могут быть реализованы как аппаратные средства.

[0029] Средство 70 возбуждения источников света подает мощность возбуждения в источники 10R, 10G и 10B света, тем самым возбуждая источники 10R, 10G и 10B света. В примере, в котором источники 10R, 10G и 10B света формируются из светодиодов, источник тока постоянной величины проиллюстрирован в качестве примера средства 70 возбуждения источников света. Также здесь проиллюстрирована конфигурация, в которой схема постоянного тока предоставляется для каждого из светодиодов 10R, 10G и 10B. Иными словами, предусмотрено следующее: R-схема 71R постоянного тока, которая подает ток возбуждения в R-светодиод 10R, G-схема 71G постоянного тока, которая подает ток возбуждения в G-светодиод 10G, и B-схема 71B постоянного тока, которая подает ток возбуждения в B-светодиод 10B.

[0030] R-схема 71R постоянного тока получает сигнал Vsync вертикальной синхронизации из средства 90 предоставления данных и получает управляющий сигнал 61R из средства 60 управления, чтобы тем самым возбуждать R-светодиод 10R в предварительно определенное время на основе этих сигналов Vsync и 61R. Аналогично, схемы 71G и 71B постоянного тока получают сигнал Vsync вертикальной синхронизации из средства 90 предоставления данных и получают управляющие сигналы 61G и 61B из средства 60 управления соответственно. Затем, G-схема 71G постоянного тока возбуждает G-светодиод 10G в предварительно определенное время на основе полученных сигналов Vsync и 61G, и B-схема 71B постоянного тока возбуждает B-светодиод 10B в предварительно определенное время на основе полученных сигналов Vsync и 61B. Моменты времени возбуждения светодиодов 10R, 10G и 10B описываются ниже.

[0031] Средство 80 возбуждения модуляции получает фрагменты видеоданных RD, GD и BD, назначаемых R-светодиоду 10R, G-светодиоду 10G и B-светодиоду 10B, из средства 90 предоставления данных соответственно, чтобы тем самым возбуждать элемент 30 модуляции на основе фрагментов видеоданных RD, GD и BD. Более конкретно, средство 80 возбуждения модуляции управляет подачей мощности возбуждения в каждый пиксел элемента 30 модуляции в соответствии с фрагментами видеоданных RD, GD и BD и технологией модуляции, используемой посредством элемента 30 модуляции. Соответственно, каждый пиксел переходит в предварительно определенное состояние согласно используемой технологии модуляции.

[0032] Кроме того, средство 80 возбуждения модуляции получает сигнал Vsync вертикальной синхронизации из средства 90 предоставления данных и получает управляющий сигнал 62 из средства 60 управления, чтобы тем самым управлять временем возбуждения элемента 30 модуляции на основе этих сигналов Vsync и 62. Вышеуказанное время возбуждения описывается ниже.

[0033] Иными словами, средство 80 возбуждения модуляции возбуждает каждый пиксел элемента 30 модуляции в предварительно определенное состояние в предварительно определенное время.

[0034] Средство 80 возбуждения модуляции может быть реализовано, главным образом, посредством аппаратных средств в виде так называемого источника мощности возбуждения и схемы управления.

[0035] Средство 90 предоставления данных предоставляет фрагменты видеоданных RD, GD и BD и сигнал Vsync вертикальной синхронизации в средство 80 возбуждения модуляции. В примере по фиг.1 средство 90 предоставления данных включает в себя средство 120 получения обычных видеоданных и средство 140 вычисления данных. Средство 90 предоставления данных описывается ниже.

[0036] Средство 100 оперирования является человеко-машинным интерфейсом, который соединяет пользователя и устройство 1 отображения и здесь предоставляется для того, чтобы осуществлять связь со средством 60 управления. Соответственно, пользователь может вводить различные типы инструкций и данных в средство 60 управления через средство 100 оперирования. Средство 100 оперирования может быть реализовано, например, как панель оперирования, предоставляемая в устройстве 1 отображения. Альтернативно, средство 100 оперирования может быть реализовано, например, как удаленная система управления.

[0037] Здесь, тогда как средство 100 оперирования проиллюстрировано в качестве одного элемента устройства 1 отображения, также можно использовать устройство и т.п., предоставляемое отдельно от устройства 1 отображения, в качестве средства 100 оперирования. Например, конфигурация также может быть задана таким образом, что устройство 1 отображения управляется посредством средства оперирования устройства (например, персонального компьютера), которое подключается к устройству 1 отображения и предоставляет видеоизображение, которое должно отображаться.

[0038] Конфигурация средства 90 предоставления данных

Относительно средства 90 предоставления данных (см. фиг.1), фиг.2 иллюстрирует блок-схему средства 120 получения обычных видеоданных, а фиг.3 иллюстрирует блок-схему средства 140 вычисления данных.

[0039] Конфигурация средства 120 получения обычных видеоданных

Средство 120 получения обычных видеоданных получает фрагменты видеоданных RP, GP и BP, назначаемых светодиодам 10R, 10G и 10B при обычном отображении соответственно, из входного видеосигнала 110. В дальнейшем в этом документе фрагменты видеоданных RP, GP и BP, которые используются в обычном случае, в некоторых случаях совместно упоминаются в качестве обычных видеоданных D1.

[0040] В примере по фиг.2 средство 120 получения обычных видеоданных включает в себя соединительный модуль 121, аналого-цифровой преобразователь 122 (в дальнейшем в этом документе, также упоминается как A/D) и средство 123 пикселного преобразования.

[0041] Соединительный модуль 121 передает входной видеосигнал 110 из источника предоставления видео внутри или снаружи устройства 1 отображения в A/D 122. В качестве входного видеосигнала 110 здесь проиллюстрирован аналоговый RGB-видеосигнал, выводимый из видеокарты и т.п. персонального компьютера.

[0042] A/D 122 преобразует входной видеосигнал 110, который вводится, в фрагменты цифровых данных R0, G0 и B0. Иными словами, аналоговый RGB-видеосигнал 110 преобразуется в фрагменты цифровых данных R0, G0 и B0 в отношении красного, зеленого и синего компонентов видеоизображения, предоставляемого посредством сигнала 110. Каждый из фрагментов цифровых данных R0, G0 и B0, например, имеет 8 битов данных, другими словами, 8 битов (256 уровней) данных градации.

[0043] Средство 123 пиксельного преобразования получает фрагменты цифровых данных R0, G0 и B0 из A/D 122 и формирует фрагменты цифровых данных RP, GP и BP и сигнал Vsync вертикальной синхронизации, которые совпадают с выходным разрешением и временем вывода устройства 1 отображения, на основе фрагментов данных R0, G0 и B0. Сигнал Vsync вертикальной синхронизации является сигналом, служащим в качестве опорного сигнала, когда отображается видеоизображение одного кадра, и имеет частоту, например, 60 Гц.

[0044] Например, в случае если входной видеосигнал 110 имеет число пикселов 1024×768 и вертикальную частоту 80 Гц, и технические требования устройства 1 отображения являются такими, что число пикселов составляет 1400×1050, а вертикальная частота составляет 60 Гц, средство 123 пиксельного преобразования увеличивает и преобразует видеоизображение, имеющее разрешение 1024×768, в изображение, имеющие разрешение 1400×1050, и выполняет преобразование частоты кадров таким образом, что выходная частота становится равной 60 Гц.

[0045] Как результат вышеуказанного процесса преобразования, получаются фрагменты цифровых данных RP, GP и BP. Фрагменты цифровых данных RP, GP и BP после процесса преобразования являются фрагментами красного, зеленого и синего компонентов в отношении цифровых данных, аналогично фрагментам цифровых данных R0, G0 и B0 до процесса преобразования, каждый из которых имеет, например, 8 битов данных.

[0046] Средство 123 пиксельного преобразования может быть реализовано как аппаратные средства, программное обеспечение или комбинация вышеозначенного.

[0047] Фрагменты видеоданных RP, GP и BP (т.е. обычные видеоданные D1) предоставляются в средство 140 вычисления данных (см. фиг.1 и 3). Сигнал Vsync вертикальной синхронизации предоставляется в средство 140 вычисления данных, средство 80 возбуждения модуляции и схемы 71R, 71G и 71B постоянного тока (см. фиг.1) и используется в качестве, например, опорного сигнала времени работы.

[0048] Средство 120 получения обычных видеоданных может быть выполнено с возможностью выводить другие данные и сигнал, например сигнал горизонтальной синхронизации, предоставляемый в средство 140 вычисления данных и средство 80 возбуждения модуляции.

[0049] Входной видеосигнал 110 также может представлять собой, например, цифровой RGB-видеосигнал. Альтернативно, входной видеосигнал 110 представляет собой не только RGB-видеосигнал, но также может представлять собой видеосигнал в другом формате, к примеру композитный видеосигнал, YCbCr-сигнал и SDI-сигнал. Конфигурация средства 120 получения обычных видеоданных надлежащим образом изменяется в соответствии с типом входного видеосигнала 110.

[0050] Например, в случае если входной видеосигнал 110 включает в себя фрагменты видеоданных RP, GP и BP и сигнал Vsync вертикальной синхронизации, средство 120 получения обычных видеоданных сконфигурировано только из соединительного модуля 121 согласно примеру по фиг.2, и фрагменты видеоданных RP, GP и BP и сигнал Vsync вертикальной синхронизации получаются посредством соединительного модуля 121.

[0051] Конфигурация средства 140 вычисления данных

В примере по фиг.3 средство 140 вычисления данных включает в себя средство 150 вычисления и средство 160 выбора.

[0052] Средство 150 вычисления получает обычные видеоданные D1, т.е. фрагменты видеоданных RP, GP и BP, и выполняет предварительно определенное вычисление для фрагментов данных RP, GP и BP, чтобы тем самым формировать дополнительные видеоданные D2. Другими словами, средство 150 вычисления преобразует обычные видеоданные 124 в дополнительные видеоданные D2 в соответствии с предварительно определенным вычислением. Дополнительные видеоданные D2 представляют собой видеоданные, используемые вместо обычных видеоданных 124 при дополнительном отображении. Дополнительное отображение станет очевидным из нижеприведенного описания.

[0053] Средство 150 вычисления, проиллюстрированное на фиг.3, включает в себя умножители 151R, 151G и 151B и сумматор 152. Умножитель 151R получает видеоданные RP в отношении компонента красного цвета, включенного в обычные видеоданные D1, умножает данные RP на предварительно определенный коэффициент αr (≠0) и выводит результат умножения. Аналогично, умножители 151G и 151B получают фрагменты видеоданных GP и BP, умножают фрагменты данных GP и BP на предварительно определенные коэффициенты αg и αb (≠0) и выводят результаты умножения. Сумматор 152 суммирует результаты умножения, выводимые из умножителей 151R, 151G и 151B, и выводит результат суммирования в качестве дополнительных видеоданных D2. Содержимое данного вычисления представляется посредством нижеприведенного уравнения (1).

[0054] Математическое выражение 1

[0055] Иными словами, средство 150 вычисления выполняет операцию линейной комбинации для фрагментов видеоданных RP, GP и BP. Коэффициенты αr, αg и αb могут задаваться равными надлежащим значениям (≠0).

[0056] Например, можно обращаться к ITU-R BT 601, установленному международным союзом по телекоммуникациям (ITU). Иными словами, ITU-R BT 601 задает уравнения в отношении преобразования из RGB-данных в YCbCr-данные (в дальнейшем в этом документе, представленного как, например, RGB→YCbCr) и из них, уравнение для вычисления данных Y яркости из RGB-данных предоставляется посредством нижеприведенного уравнения (2).

[0057] Математическое выражение 2

[0058] В этом случае средство 150 вычисления выполняет преобразование RGB→Y согласно ITU-R BT 601, посредством использования такого задания, что αr=0,29891, αg=0,58661 и αb=0,11448.

[0059] Например, ITU-R BT 709 задает уравнения преобразования в отношении RGB→YPbPr, и из них, уравнение преобразования RGB→Y предоставляется посредством нижеприведенного уравнения (3).

[0060] Математическое выражение 3

[0061] В этом случае средство 150 вычисления выполняет преобразование RGB→Y согласно ITU-R BT 709 посредством использования такого задания, что αr=0,2126, αg=0,7152 и αb=0,0722.

[0062] Хотя вычисление посредством средства 150 вычисления не ограничивается преобразованием RGB→Y, здесь проиллюстрирован случай, в котором средство 150 вычисления выполняет преобразование RGB→Y. Следовательно, дополнительные видеоданные D2 в некоторых случаях также далее упоминаются как дополнительные видеоданные Y.

[0063] Средство 160 выбора выполняет процесс выбора для предоставления любых из обычных видеоданных D1 и дополнительных видеоданных D2 в средство 80 возбуждения модуляции (см. фиг.1). Этот выбор выполняется в соответствии с инструкцией посредством средства 60 управления (см. фиг.1).

[0064] Здесь проиллюстрирована конфигурация, в которой средство 160 выбора получает обычные видеоданные D1 и дополнительные видеоданные D2 и выводит любые из фрагментов данных D1 и D2 в соответствии с инструкцией выбора посредством средства 60 управления.

[0065] Иными словами, средство 160 выбора, проиллюстрированное на фиг.3, включает в себя средство 161R R-выбора, средство 161G G-выбора и средство 161B B-выбора. Средство 161R R-выбора получает видеоданные RP, включенные в обычные видеоданные D1 и дополнительные видеоданные D2, и выводит любые из фрагментов данных RP и D2 в качестве выходных данных RD. Аналогично, средство 161G G-выбора выводит видеоданные GP или дополнительные видеоданные D2 в качестве выходных данных GD, и средство 161B B-выбора выводит видеоданные BP или дополнительные видеоданные D2 в качестве выходных данных BD.

[0066] Здесь средство 161R, 161G и 161B выбора получает управляющий сигнал 63 из средства 60 управления (см. фиг.1). Управляющий сигнал 63 является сигналом для передачи содержимого инструкции выбора данных и задается равным любой из инструкции (например, ассоциированной с L-уровнем управляющего сигнала 63) для выбора обычных видеоданных D1, т.е. фрагментов видеоданных RP, GP и BP, и инструкции (например, ассоциированной с H-уровнем управляющего сигнала 63) для выбора дополнительных видеоданных D2.

[0067] Сигнал 63 инструктирования выбора, содержащий одно и то же содержимое, предоставляется в каждое из средств 161R, 161G и 161B выбора, посредством чего операции выбора средств 161R, 161G и 161B выбора выполняются синхронно друг с другом. Следовательно, альтернативно выполняются операция вывода фрагментов видеоданных RP, GP и BP посредством средств 161R, 161G и 161B выбора соответственно (другими словами, операция совместного вывода обычных видеоданных D1 посредством средств 161R, 161G и 161B выбора) или операция вывода дополнительных видеоданных D2 посредством всех из средств 161R, 161G и 161B выбора.

[0068] В примере по фиг.1 фрагменты данных RD, GD и BD, выбранные и выводимые посредством средств 161R, 161G и 161B выбора, предоставляются в средство 80 возбуждения модуляции. Здесь фрагменты выходных данных RD, GD и BD могут предоставляться в средство 80 возбуждения модуляции после подвергания различным предварительно определенным процессам. С учетом этих примеров, фрагменты выходных данных RD, GD и BD из средств 161R, 161G и 161B выбора предоставляются в средство 80 возбуждения модуляции прямо или косвенно. Другими словами, процесс выбора данных посредством средства 160 выбора является эквивалентным процессу выбора варианта видеоданных, который должен предоставляться в средство 80 возбуждения модуляции.

[0069] Различные процессы посредством средства 150 вычисления и средства 160 выбора могут быть реализованы как аппаратные средства, программное обеспечение или комбинация вышеозначенного.

[0070] Здесь в устройстве 1 отображения, содержимое сигнала 63 инструктирования выбора задается в соответствии с инструкцией пользователем через средство 100 оперирования. Более конкретно, как проиллюстрировано на блок-схеме последовательности операций по фиг.4, средство 60 управления получает инструкцию от пользователя (этап ST11) и выводит сигнал 63 инструктирования выбора, который заключает в себе содержимое согласно результату различения пользовательской инструкции (этап ST12). Затем средство 160 выбора избирательно выводит обычные видеоданные D1 или дополнительные видеоданные D2 в соответствии с содержимым сигнала 63 инструктирования выбора (этапы ST13 и ST14).

[0071] Работа устройства 1 отображения

Работа устройства 1 отображения проиллюстрирована со ссылкой на фиг.5-11 в дополнение к фиг.1-4. Фиг.5, 6, 9 и 11 иллюстрируют содержание работы устройства 1 отображения, а фиг.7, 8 и 10 иллюстрируют отображаемые видеоизображения посредством устройства 1 отображения.

[0072] Сначала описывается работа устройства 1 отображения при обычном отображении. Обычное отображение выполняется, когда пользователь запрашивает обычное отображение через средство 100 оперирования. Вышеуказанная пользовательская инструкция вводится в средство 60 управления, и средство 60 управления выполняет следующий процесс управления.

[0073] Средство 60 управления принимает инструкцию для обычного отображения и затем передает сигнал 63 инструкции для инструктирования средству 160 выбора средства 90 предоставления данных выбирать обычные видеоданные D1, т.е. фрагменты видеоданных RP, GP и BP, в него (см. фиг.3). Соответственно, фрагменты обычных видеоданных RP, GP и BP предоставляются в средство 80 возбуждения модуляции в качестве фрагментов видеоданных RD, GD и BD. Обычные видеоданные D1 предоставляются синхронно с сигналом Vsync вертикальной синхронизации на покадровой основе (см. фиг.5).

[0074] В случае различения кадров фрагменты видеоданных RP, GP и BP n-ного кадра представляются как RP(n), GP(n) и BP(n), где n является натуральным числом.

[0075] Средство 60 управления передает управляющие сигналы 61R, 61G, 61B и 62 в отношении задания времени возбуждения в схемы 71R, 71G и 71B постоянного тока и средство 80 возбуждения модуляции. Управляющие сигналы 61R, 61G, 61B и 62 в данном документе содержат содержимое, указывающее, что операция выполняется в моменты времени, полученные посредством разделения периода в один кадр на три.

[0076] Соответственно, на основе задания времени возбуждения посредством управляющих сигналов 61R, 61G и 61B и сигнала Vsync вертикальной синхронизации, схемы 71R, 71G и 71B постоя