Моющая композиция, содержащая вариант ксилоглюканазы семейства 44
Иллюстрации
Показать всеИзобретение относится к области биотехнологии. Представлена моющая композиция, содержащая изолированный мутантный вариант исходной ксилоглюканазы, от 2 до 50 мас.% поверхностно-активного вещества и вспомогательный ингредиент, где вариант исходной ксилоглюканазы содержит одну из представленных в описании групп изменений; исходная ксилоглюканаза является ксилоглюканазой, имеющей по меньшей мере 90% идентичности с аминокислотной последовательностью SEQ ID NO:3, представленной в описании; и вариант обладает ксилоглюканазной активностью. Предложено применение указанной композиции для придания хлопку грязеотталкивающих свойств в процессе последующей стирки. Изобретение позволяет получить моющую композицию со стабильной ксилоглюканазой для придания хлопку грязеотталкивающих свойств в процессе последующей стирки. 2 н. и 9 з.п. ф-лы, 1 ил., 56 табл., 29 пр.
Реферат
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к моющей композиции, содержащей вариант ксилоглюканазы, принадлежащей к семейству 44 гликозилгидролаз.
ИЗВЕСТНЫЙ УРОВЕНЬ ТЕХНИКИ
Ксилоглюкан является основным структурным полисахаридом в первичной (растущей) клеточной стенке растений. Структурно, ксилоглюканы состоят из целлюлозаподобной бета-1,4-связанной глюкозной основной цепи, которая часто замещена различными боковыми цепями. Считается, что функцией ксилоглюкана в первичной стенке растений является сшивание целлюлозных микрофибрил с образованием целлюлозно-ксилоглюкановой сетки.
Ксилоглюканазы способны катализировать солюбилизацию ксилоглюкана до ксилоглюкановых олигосахаридов. Некоторые ксилоглюканазы проявляют только ксилоглюканазную активность, тогда как другие обладают как ксилоглюканазной, так и целлюлазной активностью. Ксилоглюканазы могут быть классифицированы как ЕС 3.2.1.4 или ЕС 3.2.1.151. Ферменты с ксилоглюканазной активностью описаны, например, в Vincken et al. (1997) Carbohydrate Research 298(4): 299-310, где охарактеризованы три разные эндоглюканазы Endol, EndoV и EndoVI, выделенные из Trichoderma viride (близкий к Т.reesei). Endol, EndoV и EndoVI принадлежат к семействам 5, 7 и 12 гликозилгидролаз, соответственно, см. Henrissat, В., et al. (1991, 1993). WO 94/14953 раскрывает ксилоглюканазу семейства 12 (EG II), клонированную из гриба Aspergillus aculeatus. WO 99/02663 раскрывает ксилоглюканазы семейства 12 и семейства 5, клонированные из Bacillus licheniformis и Bacillus agaradhaerens, соответственно. WO 01/062903 раскрывает ксилоглюканазы семейства 44.
В частности, WO 99/02663 и WO 01/062903 высказывают предположение о том, что ксилоглюканазы могут быть использованы в моющих средствах.
Целью настоящего изобретения является обеспечение композиции моющего средства, содержащей вариант ксилоглюканазы, принадлежащий к семейству 44 гликозилгидролаз, с улучшенными свойствами по сравнению с ее исходным ферментом.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к моющей композиции, содержащей изолированные варианты исходной ксилоглюканазы, содержащие изменения в одном или больше (нескольких) положениях, выбранных из группы, состоящей из номеров позиций 68, 123, 156, 118, 200, 129, 137, 193, 92, 83, 149, 34, 340, 332, 9, 76, 331, 310, 324, 498, 395, 366, 1, 374, 7, 140, 8, 14, 21, 211, 37, 45, 13, 78, 87, 436, 101, 104, 111, 306, 117, 119, 414, 139, 268, 142, 159, 164, 102, 168, 176, 180, 482, 183, 202, 206, 217, 4, 222, 19, 224, 228, 232, 2, 240, 244, 5, 247, 249, 328, 252, 259, 406, 267, 269, 275, 179, 166, 278, 281, 288, 298, 301, 18, 302, 165, 80, 303, 316, 169, 322, 120, 146, 342, 348, 147, 353, 380, 468, 382, 383, 38, 384, 389, 391, 10, 392, 396, 177, 397, 399, 409, 237, 413, 253, 415, 418, 40, 443, 445, 148, 449, 225, 450, 454, 3, 455, 456, 299, 461, 470, 204, 476, 488, 347 и 507, где позиции соответствуют положению в аминокислотной последовательности SEQ ID NO:3 и где изменение (изменения) независимо представляют собой:
i) инсерцию аминокислоты справа от аминокислоты, занимающей данную позицию,
ii) делецию аминокислоты, занимающей данную позицию, или
iii) замещение аминокислоты, занимающей данную позицию, на другую аминокислоту; и
исходная ксилоглюканаза является ксилоглюканазой семейства 44; и вариант обладает ксилоглюканазной активностью.
ДЕТАЛЬНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к моющей композиции, содержащей вариант исходных ксилоглюканаз семейства 44, содержащий изменение, предпочтительно, в форме замещения, и/или инсерции, и/или делеции в одной или больше (нескольких) позициях, где нумерация позиций соответствует нумерации позиций в SEQ ID NO:3. Варианты настоящего изобретения обладают ксилоглюканазной активностью и, потенциально, также целлюлолитической активностью. Варианты настоящего изобретения имеют улучшенные свойства по сравнению с исходной ксилоглюканазой. В одном аспекте, варианты имеют повышенную стабильность в жидких моющих средствах, особенно, жидких композициях моющих средств для стирки.
Определения
Ксилоглюканазная активность: термин "ксилоглюканазная активность" определяется тут как катализированный ферментом гидролиз ксилоглюкана. Реакция включает эндогидролиз 1,4-бета-D-глюкозидных связей в ксилоглюкане. В целях настоящего изобретения, ксилоглюканазную активность определяют с использованием AZCL-ксилоглюкана (фирмы Megazyme) в качестве субстрата реакции. Анализ может проводиться несколькими способами, например, как описано в Примере 2 данной заявки или как описано в WO 01/62903. Единица ксилоглюканазной активности (XyloU) определяется в соответствии с методом анализа, описанным в WO 01/62903, страница 60, строки 3-17.
Целлюлазная активность: термин "целлюлазная активность" определяется тут как катализированный ферментом гидролиз 1,4-бета-D-глюкозидных связей в бета-1,4-глюкане (целлюлозе). В целях настоящего изобретения целлюлазную активность определяют с использованием AZCL-HE-целлюлозы (фирмы Megazyme) в качестве субстрата реакции.
Вариант: термин "вариант" определяется тут как полипептид, обладающий ксилоглюканазной активностью, содержащий изменение, такое как замещение, инсерция и/или делеция, одного или больше (нескольких) аминокислотных остатков в одной или больше (нескольких) конкретных позициях, соответствующих аминокислотным позициям в SEQ ID NO:3. Варианты по изобретению могут также обладать целлюлазной активностью. Измененный полипептид (вариант) получают с вмешательством человека путем модификации полинуклеотидной последовательности, кодирующей исходный фермент. Исходный фермент может кодироваться SEQ ID NO:1, SEQ ID NO:4 или SEQ ID NO:6, или последовательностью, по меньшей мере на 75% идентичной с одной из этих последовательностей. Вариант полипептидной последовательности, предпочтительно, не встречается в природе.
Фермент дикого типа: термин ксилоглюканаза "дикого типа" обозначает ксилоглюканазу, экспрессируемую природным микроорганизмом, таким как бактерии, дрожжи или нитчатый гриб, встречающийся в природе. Термин "дикого типа" может быть использован взаимозаменяемо с термином "встречающийся в природе".
Исходный фермент: термин "исходная" ксилоглюканаза или "родительская" ксилоглюканаза, в используемом тут значении, обозначает ксилоглюканазу, с которой производится модификация, например замещение (замещения), инсерция (инсерции), делеция (делеции) и/или укорачивание (укорачивания), для получения вариантов фермента по настоящему изобретению. Этот термин также относится к полипептиду, с которым осуществляется сравнение и выравнивание варианта. Исходная форма может быть встречающимся в природе (дикого типа) полипептидом, таким как фермент с SEQ ID NO:2, или SEQ ID NO:3, или SEQ ID NO:5, или SEQ ID NO:7. Исходный полипептид, однако, также может быть вариантом встречающегося в природе полипептида, подвергнутого модифицированию или изменению аминокислотной последовательности. Исходная форма также может быть аллельным вариантом, который представляет собой полипептид, кодируемый любой из двух или больше альтернативных форм гена, занимающих один и тот же хромосомный локус.
Изолированный вариант или полипептид: термин "изолированный вариант" или "изолированный полипептид", в используемом тут значении, относится к варианту или полипептиду, выделенному из источника, например клетки-хозяина, которая его экспрессирует, или ферментного комплекса, в котором он нормально присутствует. Предпочтительно, полипептид является чистым по меньшей мере на 40%, более предпочтительно, чистым по меньшей мере на 60%, еще более предпочтительно, чистым по меньшей мере на 80%, наиболее предпочтительно, чистым по меньшей мере на 90%, и еще более предпочтительно, чистым по меньшей мере на 95%, при определении методом SDS-PAGE.
По существу чистый вариант или полипептид: термин "по существу чистый вариант" или "по существу чистый полипептид" обозначает тут препарат полипептида, содержащий не более 10%, предпочтительно, не более 8%, более предпочтительно, не более 6%, более предпочтительно, не более 5%, более предпочтительно, не более 4%, более предпочтительно, не более 3%, еще более предпочтительно, не более 2%, наиболее предпочтительно, не более 1%, и еще более предпочтительно, не более 0,5% мас. другого полипептидного материала, с которым он нативно или рекомбинантно ассоциирован. Таким образом, предпочтительно, чтобы по существу чистый вариант или полипептид был чистым на по меньшей мере 92%, предпочтительно, чистым на по меньшей мере 94%, более предпочтительно, чистым на по меньшей мере 95%, более предпочтительно, чистым на по меньшей мере 96%, более предпочтительно, чистым на по меньшей мере 96%, более предпочтительно, чистым на по меньшей мере 97%, более предпочтительно, чистым на по меньшей мере 98%, еще более предпочтительно, чистым на по меньшей мере 99%, наиболее предпочтительно, чистым на по меньшей мере 99,5%, и еще более предпочтительно, чистым на 100% мас. от общего количества полипептидного материала, присутствующего в препарате. Варианты и полипептиды по настоящему изобретению, предпочтительно, находятся в по существу чистой форме. Это может быть достигнуто, например, путем получения варианта или полипептида хорошо известными рекомбинантными способами или классическими методами очистки.
Зрелый полипептид: термин "зрелый полипептид" определяется тут как полипептид, обладающий ксилоглюканазной активностью, находящийся в своей конечной форме после трансляции и любых посттрансляционных модификаций, таких как N-терминальный процессинг, С-терминальное укорачивание, гликозилирование, фосфорилирование и т.д. Для полипептида, описываемого SEQ ID NO:2, зрелая ксилоглюканазная последовательность может теоретически начинаться с положения 28 SEQ ID NO:2. Зрелая последовательность заканчивается положением 551 SEQ ID NO:2. Теоретическая зрелая ксилоглюканазная последовательность приведена в SEQ ID NO:3.
Последовательность, кодирующая зрелый полипептид: термин "последовательность, кодирующая зрелый полипептид" определяется тут как нуклеотидная последовательность, которая кодирует зрелый полипептид, обладающий ксилоглюканазной активностью. В одном аспекте, последовательность, кодирующая зрелый полипептид, представляет собой нуклеотиды 82-1653 SEQ ID NO:1.
Идентичность: степень сродства двух аминокислотных последовательностей или двух нуклеотидных последовательностей описывается параметром "идентичность".
В целях настоящего изобретения степень идентичности двух аминокислотных последовательностей определяют с использованием алгоритма Нидлмана-Вунша (Needleman and Wunsch, 1970, J. Mol. Biol. 48:443-453), реализованного в программе Needle пакета EMBOSS (EMBOSS: The European Molecular Biology Open Software Suite, Rice et ah, 2000, Trends in Genetics 16: 276-277; http://emboss.org). предпочтительно, версии 3.0.0 или более поздней. Используемыми необязательными параметрами являются штраф за открытие пробела, равный 10, штраф за продолжение пробела, равный 0,5, и матрица замещения EBLOSUM62 (версия BLOSUM62 для EMBOSS). Результат вычислений Needle, называемый "наиболее протяженная идентичность" (longest identity) (получаемый с использованием опции - nobrief), используется в качестве процента идентичности и рассчитывается следующим образом:
(Идентичные остатки × 100) / (Длина выравнивания - Общее число пробелов в выравнивании).
В целях настоящего изобретения., степень идентичности между двумя дезоксирибонуклеотидными последовательностями определяют с использованием алгоритма Нидлмана-Вунша (Needleman and Wunsch, 1970, supra), реализованного в программе Needle пакета EMBOSS (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, supra; http://emboss.org). предпочтительно, версии 3.0.0 или более поздней. Используемыми необязательными параметрами являются штраф за открытие пробела, равный 10, штраф за продолжение пробела, равный 0,5, и матрица замещения EDNAFULL (версия NCBI NUC4.4 для EMBOSS). Результат вычислений Needle, называемый "наиболее протяженная идентичность" (longest identity) (получаемый с использованием опции - nobrief), используется в качестве процента идентичности и рассчитывается следующим образом:
(Идентичные дезоксирибонуклеотиды × 100) / (Длина выравнивания - Общее число пробелов в выравнивании).
Функциональный фрагмент: термин "функциональный фрагмент полипептида" используется для описания полипептида, который получен из более длинного полипептида, например зрелого полипептида, и который был укорочен в N-терминальной области или в С-терминальной области или в обоих областях с образованием фрагмента исходного полипептида. Для того, чтобы представлять собой функциональный полипептид, фрагмент должен сохранять по меньшей мере 20%, предпочтительно, по меньшей мере 40%, более предпочтительно, по меньшей мере 50%, более предпочтительно, по меньшей мере 60%, более предпочтительно, по меньшей мере 70%, более предпочтительно, по меньшей мере 80%, еще более предпочтительно, по меньшей мере 90%, наиболее предпочтительно, по меньшей мере 95% и еще более предпочтительно, по меньшей мере 100% ксилоглюканазной активности непроцессированного/зрелого полипептида.
Аллельный вариант: термин "аллельный вариант" обозначает тут любую из двух или больше альтернативнх форм гена, занимающих один и тот же хромосомный локус. Аллельные варианты возникают в природных условиях в результате мутаций и могут приводить к полиморфизму в популяциях. Генные мутации могут быть молчащими (отсутствие изменений в кодированном полипептиде) или могут кодировать полипептиды, имеющие измененные аминокислотные последовательности. Аллельный вариант полипептида представляет собой полипептид, кодированный аллельным вариантом гена.
Изолированный полинуклеотид: термин "изолированный полинуклеотид", в используемом тут значении, относится к полинуклеотиду, который был выделен из источника. В одном аспекте, изолированный полинуклеотид является по меньшей мере на 40% чистым, более предпочтительно, по меньшей мере на 60% чистым, еще более предпочтительно, по меньшей мере на 80% чистым, наиболее предпочтительно, по меньшей мере на 90% чистым и еще более предпочтительно, по меньшей мере на 95% чистым при определении методом электрофореза на агарозе.
По существу чистый полинуклеотид: термин "по существу чистый полинуклеотид", в используемом тут значении, относится к препарату полинуклеотида, не содержащему других посторонних или нежелательных нуклеотидов и находящемуся в форме, пригодной для использования в системах продуцирования модифицированного методами генной инженерии полипептида. Таким образом, по существу чистый полинуклеотид содержит не более 10%, предпочтительно, не более 8%, более предпочтительно, не более 6%, более предпочтительно, не более 5%, более предпочтительно, не более 4%, более предпочтительно, не более 3%, еще более предпочтительно, не более 2%, наиболее предпочтительно, не более 1% и еще более предпочтительно, не более 0,5% мас. другого полинуклеотидного материала, с которым он нативно или рекомбинантно ассоциирован. По существу чистый полинуклеотид может, однако, включать встречающиеся в природе 5'- и 3'-нетранслируемые области, такие как промоторы и терминаторы. Предпочтительно, чтобы по существу чистый полинуклеотид был по меньшей мере на 90% чистым, предпочтительно, по меньшей мере на 92% чистым, более предпочтительно, по меньшей мере на 94% чистым, более предпочтительно, по меньшей мере на 95% чистым, более предпочтительно, по меньшей мере на 96% чистым, более предпочтительно, по меньшей мере на 97% чистым, еще более предпочтительно, по меньшей мере на 98% чистым, наиболее предпочтительно, по меньшей мере на 99% и еще более предпочтительно, по меньшей мере на 99,5% мас. чистым. Полинуклеотиды по настоящему изобретению находятся, предпочтительно, в по существу чистой форме, т.е. препарат полинуклеотида по существу не содержит другого полинуклеотидного материала, с которым он нативно или рекомбинантно ассоциирован. Полинуклеотиды могут быть геномного, кДНК, РНК, полусинтетического, синтетического происхождения или любой их комбинацией.
Кодирующая последовательность: при использовании в данном описании термин "кодирующая последовательность" означает полинуклеотид, который непосредственно определяет аминокислотную последовательность его полипептидного продукта. Границы кодирующей последовательности обычно определяются открытой рамкой считывания, которая обычно начинается с инициирующего кодона ATG или альтернативных инициирующих кодонов, таких как GTG и TTG, и заканчивается терминирующим кодоном, таким как ТАА, TAG и TGA. Кодирующая последовательность может быть ДНК, кДНК, синтетическим или рекомбинантным полинуклеотидом.
Функционально связанный: термин "функционально связанный" обозначает тут конфигурацию, в которой контрольная последовательность размещена в соответствующем положении по отношению к кодирующей последовательности полинуклеотидной последовательности таким образом, чтобы контрольная последовательность направляла экспрессию кодирующей последовательности полипептида.
Клетка-хозяин: термин "клетка-хозяин", в используемом тут значении, включает любой тип клеток, восприимчивый к трансформации, трансфекции, трансдукции и т.п. конструктом нуклеиновой кислоты или вектором, содержащим полинуклеотид по настоящему изобретению. Термин "клетка-хозяин" охватывает любое потомство родительской клетки, не идентичное родительской клетке вследствие мутаций, происходящих при репликации.
Повышенная химическая стабильность: термин "повышенная химическая стабильность" определяется тут как вариант фермента, обладающий способностью к сохранению ферментативной активности после периода инкубации в присутствии химиката или химикатов, будь то встречающихся в природе или синтетических, которые снижают ферментативную активность исходного фермента. Повышенная химическая стабильность может также приводить к вариантам, способным лучше катализировать реакцию в присутствии таких химикатов. В определенном аспекте изобретения повышенная химическая стабильность является повышенной стабильностью в моющем средстве, в частности в жидком моющем средстве. Повышенная стабильность моющего средства обозначает, в частности, повышенную стабильность ксилоглюканазной активности при введении варианта ксилоглюканазы по настоящему изобретению в рецептуру жидкого моющего средства и последующем его хранении при температуре в интервале от 15 до 50°С.
В настоящем изобретении жидкие моющие средства являются особенно пригодными для использования в качестве жидких моющих средств для стирки.
Принятые правила обозначения вариантов
В целях настоящего изобретения аминокислотная последовательность ксилоглюканазы, раскрытая в SEQ ID NO:3, используется для определения соответствующего аминокислотного остатка в другой ксилоглюканазе. Аминокислотная последовательность другой ксилоглюканазы сравнивается путем выравнивания с аминокислотной последовательностью ксилоглюканазы, раскрытой в SEQ ID NO:3, и на основании выравнивания может быть определен номер позиции аминокислоты, соответствующий любому аминокислотному остатку в аминокислотной последовательности ксилоглюканазы, раскрытой в SEQ ID NO:3.
Выравнивание полипептидных последовательностей может быть проведено, например, с использованием "ClustalW" (Thompson, J.D., Higgins, D.G. and Gibson, T.J., 1994, CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice, Nucleic Acids Research 22:4673-4680). Выравнивание ДНК-последовательностей может быть проведено с использованием полипептидного выравнивания в качестве матрицы путем замены аминокислот на соответствующий кодон ДНК-последовательности.
При описании различных вариантов ксилоглюканаз по настоящему изобретению для простоты используется описанная ниже номенклатура. Во всех случаях используются принятые IUPAC однобуквенные или трехбуквенные сокращенные обозначения аминокислот.
Замещения. Для аминокислотных замещений используется следующая номенклатура: исходная аминокислота/положение/замещенная аминокислота. Соответственно, замещение треонина на аланин в положении 226 обозначается как "Thr226Ala" или "Т226А". Множественные мутации разделяются знаками сложения ("+"), например "G205R+S411F" обозначает мутации в положениях 205 и 411 с замещениями глицина (G) на аргинин (R) и серина (S) на фенилаланин (F), соответственно. В тех случаях, когда исходная аминокислота может быть замещена на аминокислоту, выбранную из группы, это обозначается как "K129R,S,A,I,F,Q", указывая на замещение лизина (К) в положении 129 на аминокислоту, выбранную из группы, состоящей из: аргинина (R), серина (S), аланина (А), изолейцина (I), фенилаланина (F) и глутамина (Q). Альтернативно, "K129R,S,A,I,F,Q" может быть записано как K129R, или K129S, или K129A, или K129I, или K129P, или K129Q.
Делеции. Для делеций аминокислот используется следующая номенклатура: исходная аминокислота/положение/символ звездочки (*). Соответственно, делеция глицина в положении 195 обозначается как "Gly195*" или "G195*". Множественные делеций разделены знаками сложения ("+"), например, "G195*+S411*".
Инсерции. Для инсерций аминокислот используется следующая номенклатура: Символ звездочки (*)/положение/строчная буква/вставленная аминокислота, где строчная буква указывает добавление аминокислоты справа от (после) указанного номера позиции. Соответственно, инсерция глутаминовой кислоты (Е) справа от положения 10 обозначается "*10аЕ". Если вторая аминокислота, например валин (V), должна быть вставлена справа от положения 10 после глутаминовой кислоты (Е), она обозначается "*10аЕ+*10bV". Добавления к N-концу полипептида обозначаются как 0 (нуль). Добавление глутаминовой кислоты (Е) и валина (V) к N-концевой аминокислоте полипептида обозначается как *0аЕ+*0bV.
Исходные ксилоглюканазы
В настоящем изобретении исходная ксилоглюканаза является или (а) ксилоглюканазой, принадлежащей к семейству 44 гликозилгидролаз, также называемых ксилоглюканазами семейства 44; или (b) полипептидом, выбранным из группы, состоящей из SEQ ID NO:3, SEQ ID NO:5 и SEQ ID NO:7; или (с) полипептидом, содержащим аминокислотную последовательность, имеющую по меньшей мере 75% идентичности со зрелым полипептидом SEQ ID NO:3; или (d) полипептидом, кодируемым полинуклеотидом, который гибридизуется в условиях по меньшей мере средней жесткости с (i) последовательностью, кодирующей зрелый полипептид SEQ ID NO:1, или SEQ ID NO:4, или SEQ ID NO:6, (ii) последовательностью геномной ДНК, содержащей последовательность, кодирующую зрелый полипептид SEQ ID NO:1, или SEQ ID NO:4, или SEQ ID NO:6 или (iii) непроцессированной комплементарной цепью (i) или (ii); или (е) полипептидом, кодируемым полинуклеотидом, содержащим нуклеотидную последовательность, имеющую по меньшей мере 70% идентичности с последовательностью, кодирующей зрелый полипептид SEQ ID NO:1.
В первом аспекте исходная ксилоглюканаза содержит аминокислотную последовательность, имеющую степень идентичности со зрелым полипептидом SEQ ID NO:3, равную, предпочтительно, по меньшей мере 70%, более предпочтительно, по меньшей мере 75%, более предпочтительно, по меньшей мере 80%, более предпочтительно, по меньшей мере 85%, более предпочтительно, по меньшей мере 90%, более предпочтительно, по меньшей мере 95%, более предпочтительно, по меньшей мере 96%, еще более предпочтительно, по меньшей мере 97%, наиболее предпочтительно, по меньшей мере 98%, или еще более предпочтительно, по меньшей мере 99%, обладающим ксилоглюканазной активностью (тут и далее "гомологичные полипептиды"). В одном аспекте гомологичные полипептиды имеют аминокислотную последовательность, которая отличается на десять аминокислот, предпочтительно, на девять, более предпочтительно, на восемь, более предпочтительно, на семь, более предпочтительно, на шесть, более предпочтительно, на пять аминокислот, более предпочтительно, на четыре аминокислоты, еще более предпочтительно, на три аминокислоты, наиболее предпочтительно, на две аминокислоты и еще более предпочтительно, на одну аминокислоту от зрелого полипептида SEQ ID NO:3.
По существу гомологичные исходные ксилоглюканазы могут иметь одно или больше (несколько) аминокислотных изменений, таких как замещения, делеции и/или инсерции. Эти изменения, предпочтительно, являются незначительными по природе, т.е. консервативными аминокислотными замещениями и другими замещениями, которые существенно не влияют на трехмерную укладку или активность белка или полипептида; маленькими делениями, типично, от одной до примерно 9 аминокислот, предпочтительно, от одной до примерно 15 аминокислот и, наиболее предпочтительно, от одной до примерно 30 аминокислот; и маленькими амино- или карбокситерминальными выступами, такими как аминотерминальный остаток метионина, маленький линкерный пептид, состоящий из от примерно пяти до десяти остатков, предпочтительно, от 10 до 15 остатков и, наиболее предпочтительно, от 20 до 25 остатков, или маленьким выступающим концом, который облегчает очистку (аффинная метка), таким как полигистидиновый тракт, или белок A (Nilsson et al., 1985, EMBO J. 4:1075; Nilsson et al., 1991, Methods Enzymol. 198: 3. См. также, в общем, Ford et al., 1991, Protein Expression and Purification 2:95-107).
Хотя описанные выше изменения, предпочтительно, являются незначительными по природе, такие изменения также могут иметь существенный характер, такой как слияние более крупных полипептидов размером до 300 аминокислот или больше, в виде как амино-, так и карбокситерминальных выступов.
Примеры консервативных замещений принадлежат к группам основных аминокислот (аргинин, лизин и гистидин), кислотных аминокислот (глутаминовая кислота и аспарагиновая кислота), полярных аминокислот (глутамин и аспарагин), гидрофобных аминокислот (лейцин, изолейцин и валин), ароматических аминокислот (фенилаланин, триптофан и тирозин) и малых аминокислот (глицин, аланин, серин, треонин и метионин). Аминокислотные замещения, которые в общем не изменяют специфическую активность, известны специалистам и описаны, например, в: Neurath and Hill, 1979, The Proteins, Academic Press, New York. Наиболее часто встречающимися заменами являются Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu и Asp/Gly.
Незаменимые аминокислоты в полипептидах ксилоглюканазы по настоящему изобретению могут быть идентифицированы в соответствии с процедурами, известными специалистам, такими как направленный мутагенез или аланин-сканирующий мутагенез (Cunningham and Wells, Science 244:1081-1085, 1989). В последней методике одиночные аланиновые мутации вводят в каждый остаток молекулы и полученные мутантные молекулы тестируют на биологическую активность (т.е. ксилоглюканазную активность) для идентификации аминокислотных остатков, критических для активности молекулы. См. также Hilton et al., J. Biol. Chem. 271:4699-4708, 1996. Активный сайт фермента или другие биологические взаимодействия также могут быть определены путем физического анализа структуры с использованием таких методик, как ядерный магнитный резонанс, кристаллография, электронная дифракция или фотоаффинное мечение, в сочетании с мутацией предполагаемого контактного сайта аминокислоты. См., например, de Vos et al., Science 255:306-312, 1992; Smith et al., J. Mol. Biol. 224:899-904, 1992; Wlodaver et al., FEBS Lett. 309:59-64, 1992. Точное определение незаменимых аминокислот также может быть проведено на основании анализа гомологии с полипептидами, родственными с полипептидом по изобретению. Кристаллическая структура фермента, принадлежащего к семейству 44 гликозилгидролаз, была опубликована Kitago et. al, J. Biol. Chem. Vol. 282:35703-35711, 2007. На основании этой структуры можно сгенерировать трехмерную структуру исходной ксилоглюканазы (SEQ ID NO:3) in silico (методами компьютерного моделирования). На основании сравнения с опубликованной структурой следующие остатки в SEQ ID NO:3 были идентифицированы как критические для ферментативной функции: Е187 (каталитическая кислота/основание), Е358 (каталитическая - нуклеофильная), Е56 (карбоксилатная группа, координирующая Ca2+) и D154 (карбоксилатная группа, координирующая Са2+). Поэтому эти положения в исходном ферменте, предпочтительно, не должны мутировать.
Исходная ксилоглюканаза, предпочтительно, содержит аминокислотную последовательность SEQ ID NO:3 или ее аллельный вариант; или ее фрагмент, обладающий ксилоглюканазной активностью. В одном аспекте исходная ксилоглюканаза содержит аминокислотную последовательность SEQ ID NO:2. В другом аспекте исходная ксилоглюканаза содержит зрелый полипептид SEQ ID NO:2. В другом аспекте исходная ксилоглюканаза состоит из аминокислотной последовательности SEQ ID NO:3 или ее аллельного варианта; или ее фрагмента, обладающего ксилоглюканазной активностью. В другом аспекте исходная ксилоглюканаза содержит аминокислотную последовательность SEQ ID NO:5, или ее аллельный вариант; или ее фрагмент, обладающий ксилоглюканазной активностью. В другом аспекте исходная ксилоглюканаза содержит аминокислотную последовательность SEQ ID NO:7, или ее аллельный вариант; или ее фрагмент, обладающий ксилоглюканазной активностью.
Фрагмент зрелого полипептида SEQ ID NO:3 представляет собой полипептид, имеющий делеции одной или больше (нескольких) аминокислот из амино- и/или карбоксильного конца этой аминокислотной последовательности, но все еще сохраняющий ксилоглюканазную активность.
Во втором аспекте исходные ксилоглюканазы кодируются полинуклеотидами, которые гибридизуются в условиях очень низкой жесткости, предпочтительно, в условиях низкой жесткости, более предпочтительно, в условиях средней жесткости, более предпочтительно, в условиях средневысокой жесткости, еще более предпочтительно, в условиях высокой жесткости, и наиболее предпочтительно, в условиях очень высокой жесткости, с (i) последовательностью, кодирующей зрелый полипептид SEQ ID NO:1, или SEQ ID NO:4, или SEQ ID NO:6, (ii) последовательностью геномной ДНК, содержащей последовательность, кодирующую зрелый полипептид SEQ ID NO:1, или SEQ ID NO:4, или SEQ ID NO:6, (iii) субпоследовательностью (i) или (ii), или (iv) непроцессированной комплементарной нитью (i), (ii) или (iii) (J. Sambrook, E.F. Fritsch and T. Maniatis, 1989, Molecular Cloning, A Laboratory Manual, 2d edition, Cold Spring Harbor, New York). Субпоследовательность может кодировать полипептидный фрагмент, обладающий ксилоглюканазной активностью. В одном аспекте, комплементарная нить представляет собой непроцессированную комплементарную нить последовательности, кодирующей зрелый полипептид SEQ ID NO:1, или SEQ ID NO:4, или SEQ ID NO:6.
Субпоследовательность кодирующей последовательности зрелого полипептида SEQ ID NO:1, или SEQ ID NO:4, или SEQ ID NO:6, или ее гомолог, представляет собой нуклеотидную последовательность с делениями одного или больше (нескольких) нуклеотидов из 5'- и/или 3'-конца, где полипептид кодируется субпоследовательностью, обладающей ксилоглюканазной активностью.
Исходные ферменты также могут быть аллельными вариантами полипептидов, обладающих ксилоглюканазной активностью.
Полинуклеотид по SEQ ID NO:1, или SEQ ID NO:4, или SEQ ID NO:6; или его субпоследовательность; а также аминокислотная последовательность SEQ ID NO:3, или SEQ ID NO:5, или SEQ ID NO:7; или ее фрагмент; могут быть использованы для конструирования зондов нуклеиновых кислот для идентификации и клонирования ДНК, кодирующей исходные ксилоглюканазы из штаммов разных родов или видов в соответствии со способами, хорошо известными специалистам. В частности, такие зонды могут быть использованы для гибридизации с геномной или кДНК рода или вида, представляющего интерес, в соответствии со стандартными процедурами саузерн-блоттинга, с целью идентификации и выделения их соответствующего гена. Такие зонды могут быть значительно короче целой последовательности, но должны иметь по меньшей мере 14, предпочтительно, по меньшей мере 25, более предпочтительно, по меньшей мере 35 и наиболее предпочтительно, по меньшей мере 70, нуклеотидов в длину. Однако, предпочтительно, чтобы зонд нуклеиновой кислоты имел по меньшей мере 100 нуклеотидов в длину. Например, зонд нуклеиновой кислоты может иметь по меньшей мере 200 нуклеотидов, предпочтительно, по меньшей мере 300 нуклеотидов, более предпочтительно, по меньшей мере 400 нуклеотидов, или наиболее предпочтительно, по меньшей мере 500 нуклеотидов в длину. Могут быть использованы даже более длинные зонды, например зонды нуклеиновой кислоты, имеющие, предпочтительно, по меньшей мере 600 нуклеотидов, более предпочтительно, по меньшей мере 700 нуклеотидов, еще более предпочтительно, по меньшей мере 800 нуклеотидов, предпочтительно, по меньшей мере 900 нуклеотидов в длину, предпочтительно, по меньшей мере 1000 нуклеотидов в длину, предпочтительно, по меньшей мере 1100 нуклеотидов в длину, предпочтительно, по меньшей мере 1200 нуклеотидов в длину, предпочтительно, по меньшей мере 1300 нуклеотидов в длину, предпочтительно, по меньшей мере 1400 нуклеотидов в длину, предпочтительно, по меньшей мере 1500 нуклеотидов в длину или, наиболее предпочтительно, по меньшей мере 1600 нуклеотидов в длину. Могут быть использованы как ДНК, так и РНК зонды. Зонды, типично, метят для детектирования соответствующего гена (например, с использованием 32P, 3Н, 35S, биотина или авидина). Такие зонды входят в объем настоящего изобретения.
Библиотека геномной ДНК, приготовленная из других организмов, может быть подвергнута скринингу на ДНК, которая гибридизуется с описанными выше зондами и кодирует исходную ксилоглюканазу. Геномная или другие ДНК из других организмов могут быть выделены электрофорезом на агарозном или полиакриламидном геле или другими методами разделения. ДНК из библиотек или выделенная ДНК могут быть перенесены на и иммобилизованы на нитроцеллюлозе или других пригодных материалах носителя. Для идентификации клона или ДНК, гомологичных с SEQ ID NO:1 или ее субпоследовательностью, материал носителя используется для проведения саузерн-блоттинга. В целях настоящего изобретения гибридизация указывает, что полинуклеотид гибридизуется с меченым нуклеотидным зондом, соответствующим полинуклеотиду, приведенному в SEQ ID NO:1, его комплементарной нитью, или его субпоследовательностью, в условиях от низкой до очень высокой жесткости. Молекулы, с которыми гибридизуется зонд, могут быть детектированы с использованием, например, рентгеновской пленки или любого другого средства детектирования, известного специалистам.
В одном аспекте зонд нуклеиновой кислоты представляет собой последовательность, кодирующую зрелый полипептид SEQ ID NO:1. В другом аспекте, зонд нуклеиновой кислоты представляет собой нуклеотиды 82-1653 SEQ ID NO:1. В другом аспекте, зонд нуклеиновой кислоты представляет собой полинуклеотидную последовательность, которая кодирует полипептид SEQ ID NO:2, или его субпоследовательность. В другом аспекте, зонд нуклеиновой кислоты представляет собой SEQ ID NO:1.
Для длинных зондов, имеющих по меньшей мере 100 нуклеотидов в длину, условия от очень низкой до очень высокой жесткости определяются как предгибридизация и гибридизация при 42°С в 5×SSPE, 0,3% SDS, 200 микрограмм/мл деградированной в условиях гидродинамического сдвига и денатурированной ДНК спермы лосося и или 25% формамида для очень низкой и низкой жесткости, или 35% формамида для средней и средневысокой жесткости, или 50% формамида для высокой и очень высокой жесткости, в соответствии со стандартной процедурой саузерн-блоттинга, оптимально, в течение 12-24 часов.
Для длинных зондов, имеющих по меньшей мере 100 нуклеотидов в длину, материал носителя в конце промывают трижды, каждый раз в течение 15 минут, с использованием 2×SSC, 0,2% SDS, предпочтительно, при 45°С (очень низкая жесткость), более предпочтительно, при 50°С (низкая жесткость), более предпочтительно, при 55°С (средняя жесткость), более предпочтительно, при 60°С (средневысокая жесткость), еще более предпочтительно, при 65°С (высокая жесткости) и наиболее предпочтительно, при 70°С (очень высокая жесткость).
Для коротких зондов, имеющих от примерно 15 нуклеотидов до примерно 70 нуклеотидов в длину, условия жесткости определяют как предгибридизация, гибридизация и промывка после гибридизации при температуре ниже расчетной Tm на величину от примерно 5°С до примерно 10°С, в соответствии с расчетами Bolton and McCarthy (1962, Proceedings of the National Academy of Sciences USA 48:1390) в 0,9 M NaCl, 0,09 M Tris-HCl, pH 7,6, 6 мМ EDTA, 0,5% NP-40, 1× растворе Денхардта, 1 мМ пирофосфате натрия, 1 мМ первичном кислом фосфате натрия, 0,1 мМ АТР и 0,2 мг РНК дрожжей на мл, в соответствии со стандартными процедурами саузерн-блоттинга, оптимально, в течение 12-24 часов.
Для коротких зондов, имеющих от примерно 15 нуклеотидов до примерно 70 нуклеотидов в длину, материал носителя промывают один раз в 6×SCC плюс 0,1% SDS в течение 15 минут, и дважды, каждый раз по 15 минут, с использованием 6×SSC при температуре, на 5-10°С ниже расчетной Tm.
В третьем аспекте исходная ксилоглюканаза кодируется полинуклеотидом, содержащим или состоящим из нуклеотидной последовательности, имеющей степень идентичности с последовательностью, кодирующей зрелый полипептид SEQ ID NO:1, равной, предпочтительно, по меньшей мере 65%, более предпочтительно, по меньшей