Шина, содержащая корды каркасной арматуры разной проницаемости

Иллюстрации

Показать все

Изобретение относится к конструкции корда шины, предназначенной для транспортных средств, перевозящих на высокой скорости тяжелые грузы. Шина с радиальной каркасной арматурой состоит, по меньшей мере, из одного слоя металлических усилительных элементов. По меньшей мере, 70% металлических усилительных элементов, по меньшей мере, одного слоя каркасной арматуры являются не стянутыми кордами, показывающими при так называемом тесте на проницаемость расход менее 2 см3/мин, и, по меньшей мере, 10% металлических усилительных элементов упомянутого, по меньшей мере, одного слоя каркасной арматуры являются кордами, показывающими при так называемом тесте на проницаемость расход более 4 см3/мин. Технический результат - повышение усталостной стойкости шины. 5 н. и 10 з.п. ф-лы, 7 ил.

Реферат

Настоящее изобретение касается шины с радиальной каркасной арматурой и, в частности, шины, предназначенной для транспортных средств, перевозящих тяжелые грузы и движущихся на поддерживаемой высокой скорости, например таких, как грузовики, трактора, прицепы или автобусы дальнего следования.

Как правило, в пневматических шинах типа шин для грузовиков каркасную арматуру крепят с двух сторон в зоне борта и накрывают в радиальном направлении арматурой гребня, образованной, по меньшей мере, двумя наложенными друг на друга слоями, образованными нитями или кордами, параллельными в каждом слое и перекрещивающимися от одного слоя к другому, образуя с окружным направлением углы от 10° до 45°. Упомянутые рабочие слои, образующие рабочую арматуру, можно также накрыть, по меньшей мере, одним так называемым защитным слоем, образованным предпочтительно растяжимыми и металлическими усилительными элементами, называемыми упругими элементами. Она может также содержать слой металлических нитей или кордов с незначительной растяжимостью, образующих с окружным направлением угол от 45° до 90°, причем этот пласт, называемый триангуляционным, находится в радиальном направлении между каркасной арматурой и первым пластом гребня, называемым рабочим пластом, образованными параллельными нитями или кордами, имеющими углы не более 45° по абсолютной величине. Триангуляционный пласт образует, по меньшей мере, с упомянутым рабочим пластом триангуляционную арматуру, которая под действием различных напряжений претерпевает мало деформаций, при этом основной функцией триангуляционного пласта является восприятие поперечных усилий сжатия, которым подвергаются все усилительные элементы в зоне гребня шины.

В случае пневматических шин для большегрузных транспортных средств обычно используют только один защитный слой, и в большинстве случаев его защитные элементы ориентированы в том же направлении и под тем же углом по абсолютной величине, что и усилительные элементы рабочего слоя, находящегося радиально наиболее снаружи и, следовательно, являющегося радиально смежным. В случае пневматических шин для дорожно-строительной техники, предназначенных для движения по более или менее неровной поверхности, предпочтительно применяют два защитных слоя, при этом усилительные элементы перекрещиваются от одного слоя к следующему, и усилительные элементы радиально внутреннего защитного слоя перекрещиваются с нерастяжимыми усилительными элементами радиально наружного рабочего слоя, смежного с упомянутым радиально внутренним защитным слоем.

Окружное направление пневматической шины или продольное направление является направлением, которое соответствует периферии шины и определено направлением качения шины.

Поперечное или осевое направление шины параллельно оси вращения шины.

Радиальное направление является направлением, секущим ось вращения шины и перпендикулярным к этой оси.

Ось вращения шины является осью, вокруг которой она вращается в условиях нормальной эксплуатации.

Радиальная или меридиональная плоскость является плоскостью, которая содержит ось вращения шины.

Окружная центральная плоскость или экваториальная плоскость является плоскостью, перпендикулярной к оси вращения шины и делящей шину пополам.

Некоторые пневматические шины, называемые «шинами для дальних пробегов», предназначены для движения на большой скорости и на все более дальние расстояния в силу постоянного улучшения и развития автомобильных дорог в мире. Совокупность условий, в которых такая шина должна работать, вне всякого сомнения обеспечивает больший пробег при меньшем износе шины; с другой стороны, происходит снижение усталостной стойкости этой шины. Чтобы можно было осуществить восстановление протектора и даже два восстановления протектора таких шин с целью продления их срока службы, необходимо сохранить структуру и, в частности, каркасную арматуру, свойства усталостной стойкости которой являются достаточными, чтобы выдерживать такие восстановления протектора.

Действительно, длительная эксплуатация в особо сложных условиях изготовленных таким образом шин позволила выявить пределы усталостной стойкости этих шин.

Элементы каркасной арматуры подвергаются, в частности, напряжениям изгиба и сжатия во время качения, которые снижают их усталостную стойкость. Действительно, корды, образующие усилительные элементы каркасных слоев, подвергаются большим напряжениям во время качения шин, в частности изгибам или повторяющимся изменениям кривизны, которые приводят на уровне нитей к трениям и, следовательно, к износу и к усталости; это явление называют «фрикционной усталостью».

Для выполнения своей функции усиления каркасной арматуры шины упомянутые корды должны прежде всего обладать хорошей гибкостью и повышенной износостойкостью при изгибе, для чего их нити должны иметь относительно небольшой диаметр, предпочтительно меньший 0,28 мм, еще предпочтительнее - меньший 0,25 мм, как правило, меньше диаметра нитей, применяемых в обычных кордах для арматур гребня шин.

На корды каркасной арматуры влияют также так называемые явления «коррозионной усталости», связанные с самой природой кордов, которые способствуют проникновению и даже сами проводят коррозийные вещества, такие как кислород и влага. Действительно, воздух или вода, которые проникают в шину, например, в результате пореза или просто за счет пусть даже слабой проницаемости внутренней поверхности шины, могут поступать через каналы, образованные внутри кордов с учетом их структуры.

Все эти явления усталости, которые можно объединить общим термином «фрикционная и коррозионная усталость», являются причиной постепенного снижения механических свойств кордов и при наиболее экстремальных условиях качения могут привести к сокращению срока службы этих кордов.

Для повышения усталостной стойкости этих кордов каркасной арматуры, как известно, в частности, увеличивают толщину каучукового слоя, который образует внутреннюю стенку полости шины, чтобы максимально ограничить проницаемость упомянутого слоя. Обычно этот слой частично состоит из бутила, что повышает герметичность шины. Недостатком материала этого типа является удорожание шины.

Известно также изменение конструкции упомянутых кордов, чтобы повысить их проницаемость для каучука и ограничить, таким образом, размер канала для проникновения окисляющих веществ через каналы, образующиеся внутри кордов. Выполненные таким образом шины позволили выявить проблемы появления воздушного мешка во время изготовления шины.

Действительно, различные этапы изготовления приводят к образованию закрытых воздушных мешков. В случае шин с каркасной арматурой, образованной кордами, структура которых содержит каналы, которые могут проводить воздух, эти воздушные мешки исчезают по причине диффузии воздуха в материалах, в частности, через упомянутые каналы, существующие внутри кордов. В случае шин с каркасной арматурой, состоящей из кордов, структура которых значительно заполняется каучуком, эти воздушные мешки остаются после этапов изготовления. Происходит только перемещение этих воздушных мешков во время этапа вулканизации шины, причем они перемещаются в направлении зон, где действует слабое давление. Перемещение воздуха происходит вдоль каркасной арматуры по проходам, существующим между различными усилительными элементами, поскольку слои каучуковой смеси покрывают усилительные элементы, образуя полостные зоны, параллельные усилительным элементам, перед этапом вулканизации шины. Эти полостные зоны позволяют воздуху слегка перемещаться в зависимости от давления, действующего на области, где находятся воздушные мешки. Давление или изменения давления действуют, в частности, во время этапа вулканизации шины или во время этапа ее формования, если он присутствует.

Появление этих воздушных мешков чаще всего имеет негативные последствия в зависимости от их расположения и может потребовать отбраковки шин, так как они могут стать уязвимыми зонами шины. Это снижает производительность и, следовательно, приводит к удорожанию продукции.

Авторы изобретения поставили перед собой задачу получить шины для транспортных средств большегрузного типа, в которых сохраняются характеристики износоустойчивости при эксплуатации на дорогах и в которых улучшены характеристики усталостной стойкости, в частности по отношению к явлениям «коррозионной усталости» или «фрикционной и коррозионной усталости» при любых условиях эксплуатации, в частности, что касается давления накачивания, и стоимость изготовления которых остается на приемлемом уровне.

Эта проблема была разрешена согласно изобретению с помощью шины с радиальной каркасной арматурой, состоящей, по меньшей мере, из одного слоя металлических усилительных элементов, при этом упомянутая шина содержит арматуру гребня, над которой в радиальном направлении находится протектор, при этом упомянутый протектор соединен с двумя бортами через две боковины, при этом, по меньшей мере, 70% металлических усилительных элементов, по меньшей мере, одного слоя каркасной арматуры являются не стянутыми кордами, показывающими при так называемом тесте на проницаемость расход менее 2 см3/мин, и, по меньшей мере, 10% металлических усилительных элементов упомянутого, по меньшей мере, одного слоя каркасной арматуры являются кордами, предпочтительно не стянутыми кордами, показывающими при так называемом тесте на проницаемость расход более 4 см3/мин.

Так называемый тест на проницаемость позволяет определить продольную воздухопроницаемость проверяемых кордов посредством измерения объема воздуха, проходящего через образец под постоянным давлением в течение заданного времени. Принцип такого теста, хорошо известного специалистам, состоит в выявлении эффективности обработки корда для обеспечения его воздухонепроницаемости; он был описан, например, в стандарте ASTM D2692-98.

Тест осуществляют на кордах, извлекаемых непосредственно путем рассечения вулканизированных каучуковых пластов, которые они усиливают, то есть погруженных в вулканизированный каучук.

Тест производят на 2 см длины корда, покрытого окружающей его каучуковой композицией (или оболочковым каучуком) в вулканизированном состоянии, следующим образом: на вход корда подают воздух под давлением 1 бар и измеряют объем воздуха на выходе при помощи расходомера (например, калиброванного на 0-500 см3/мин). Во время измерения образец корда закрепляют в сжатой герметичной прокладке (например, прокладке из плотной губки или каучука) таким образом, чтобы при измерении можно было учитывать только количество воздуха, проходящего через корд от одного конца к другому вдоль продольной оси; при этом производят предварительный контроль герметичности прокладки при помощи образца из сплошного каучука, то есть без корда.

Измеренный средний (на 10 образцах) расход тем ниже, чем выше продольная непроницаемость корда. Поскольку измерение производят с точностью ±0,2 см3/мин, измеренные значения, равные или меньшие 0,2 см3/мин, считаются ничтожными; они соответствуют корду, который можно считать герметичным (полностью герметичным) по отношению к воздуху вдоль своей оси (то есть в продольном направлении).

Кроме того, этот тест на проницаемость является простым средством опосредованного измерения коэффициента проницаемости корда для каучуковой композиции. Измеренный расход тем ниже, чем выше коэффициент проницаемости корда для каучука.

Корды, показывающие при так называемом тесте на проницаемость расход менее 2 см3/мин, имеют коэффициент проницаемости более 90%.

Корды, показывающие при так называемом тесте на проницаемость расход менее 20 см3/мин, имеют коэффициент проницаемости более 66%.

Коэффициент проницаемости корда можно также определить при помощи нижеследующего метода. В случае многослойного корда на первом этапе метода с образца длиной от 2 до 4 см снимают наружный слой, затем в продольном направлении и вдоль данной оси измеряют сумму длин каучуковой смеси, отнесенную к длине образца. Эти измерения длин каучуковой смеси исключают незаполненные пространства на этой продольной оси. Эти измерения повторяют на трех продольных осях, распределенных на периферии образца, и повторяют на пяти образцах кордов.

Если корд содержит несколько слоев, первый этап удаления повторяют для слоя, который оказался внешним, и длины каучуковой смеси измеряют вдоль продольных осей.

Затем вычисляют среднее значение всех отношений длины каучуковой смеси к определенным таким образом длинам образцов, чтобы определить коэффициент проницаемости корда.

Авторы изобретения установили, что выполненная таким образом шина в соответствии с настоящим изобретением показывает хороший компромисс между усталостной стойкостью и стоимостью изготовления. Действительно, свойства усталостной стойкости такой шины, по меньшей мере, такие же высокие, как и в вышеупомянутых известных решениях. Присутствие, по меньшей мере, 70% кордов каркасной арматуры, показывающих при тесте на проницаемость расход ниже 2 см3/мин, позволяет ограничить риски, связанные с коррозией. Кроме того, присутствие, по меньшей мере, 10% кордов каркасной арматуры, показывающих при тесте на проницаемость расход более 4 см3/мин, позволяет отводить закупоренный воздух во время изготовления шины и, следовательно, обеспечивает более высокую производительность по сравнению с ранее упомянутой и позволяет снизить стоимость. Авторы изобретения установили, что число кордов каркасной арматуры, показывающих при тесте на проницаемость расход более 4 см3/мин, составляющее от 10 до 30%, позволяет включенному воздуху встретить «отвод» либо сразу во время образования воздушного мешка, либо во время перемещения упомянутого воздушного мешка в направлении, параллельном усилительным элементам слоя каркасной арматуры, во время изготовления шины, как было указано выше. Произведенные испытания позволили убедиться, что результаты, полученные с такими кордами в этих пропорциях относительно кордов, показывающих при тесте на проницаемость расход менее 2 см3/мин, несоизмеримы с результатами, полученными для слоев каркасной арматуры, содержащих только корды, показывающие при тесте на проницаемость расход менее 2 см3/мин. Действительно, присутствие, по меньшей мере, 10% этих кордов позволило сохранить практически все изготовленные шины и привести унитарную стоимость изготовления к приемлемым значениям.

В случае каркасной арматуры, содержащей несколько слоев усилительных элементов, каждый из упомянутых слоев может быть слоем в соответствии с изобретением. Предпочтительно, по меньшей мере, радиально наружный слой содержит, по меньшей мере, 70% не стянутых кордов, показывающих при тесте на проницаемость расход менее 2 см3/мин, и, по меньшей мере, 10% кордов, предпочтительно не стянутых кордов, показывающих при тесте на проницаемость расход более 4 см3/мин. Этот выбор представляет особый интерес для обеспечения полного удаления воздушных мешков, образующихся во время изготовления шины и появляющихся в основном на аксиально и/или радиально наружной поверхности каркасной арматуры во время изготовления.

Согласно предпочтительному варианту выполнения изобретения упомянутые, по меньшей мере, 70% металлических усилительных элементов, по меньшей мере, одного слоя каркасной арматуры являются кордами, по меньшей мере, из двух слоев, при этом, по меньшей мере, один внутренний слой покрывают оболочкой из слоя, образованного полимерной композицией, такой как сшиваемая или сшитая каучуковая композиция, предпочтительно на основе, по меньшей мере, одного диенового эластомера.

Объектом изобретения является также шина с радиальной каркасной арматурой, состоящей, по меньшей мере, из одного слоя усилительных элементов, при этом упомянутая шина содержит арматуру гребня, над которой в радиальном направлении находится протектор, при этом упомянутый протектор соединен с двумя бортами через две боковины, при этом, по меньшей мере, 70% металлических усилительных элементов, по меньшей мере, одного слоя каркасной арматуры являются не стянутыми кордами, по меньшей мере, с двумя слоями, при этом, по меньшей мере, один внутренний слой покрывают оболочкой из слоя, состоящего из полимерной композиции, такой как сшиваемая или сшитая каучуковая композиция, предпочтительно на основе, по меньшей мере, одного диенового эластомера, и, по меньшей мере, 10% металлических усилительных элементов упомянутого, по меньшей мере, одного слоя каркасной арматуры являются кордами, предпочтительно не стянутыми кордами, показывающими при тесте на проницаемость расход более 4 см3/мин.

Под выражением «композиция на основе, по меньшей мере, одного диенового эластомера», как известно, следует понимать, что композиция преимущественно (то есть в массовой доле более 50%) содержит этот или эти диеновые эластомеры.

Следует отметить, что оболочка в соответствии с настоящим изобретением проходит непрерывно вокруг покрываемого ею слоя (то есть эта оболочка является сплошной в «орторадиальном» направления корда, которое перпендикулярно к его радиусу), образуя сплошную манжету с поперечным сечением, которое предпочтительно является практически круглым.

Следует также отметить, что каучуковая композиция этой оболочки является сшиваемой или сшитой, то есть по определению содержит систему поперечного сшивания для обеспечения поперечного сшивания композиции во время ее вулканизации (то есть ее затвердевания, но не плавления); таким образом, эту каучуковую композицию можно рассматривать как неплавкую, так как ее невозможно расплавить нагревом при любой температуре.

Под «диеновым» эластомером или каучуком, как известно, следует понимать эластомер, получаемый, по меньшей мере, частично (то есть гомополимер или сополимер) из диеновых мономеров (мономеров, несущих две двойные сопряженные или не сопряженные связи углерод-углерод).

Как известно, диеновые эластомеры можно разделить на две категории: так называемые «по существу ненасыщенные» диеновые эластомеры и так называемые «по существу насыщенные» диеновые эластомеры. Как правило, под «по существу ненасыщенным» диеновым эластомером понимают диеновый эластомер, по меньшей мере, частично получаемый из сопряженных диеновых мономеров с содержанием звеньев или единиц диенового происхождения (сопряженные диены) более 15% (молярных). Так, например, диеновые эластомеры, такие как бутиловые каучуки или сополимеры диенов и альфа-олефинов типа EPDM, не входят в предыдущее определение и могут рассматриваться как «по существу насыщенные» диеновые эластомеры (низкое или очень низкое содержание звеньев диенового происхождения, всегда менее 15%). В категории «по существу ненасыщенных» диеновых эластомеров под «сильно ненасыщенным» диеновым эластомером следует понимать диеновый эластомер с содержанием звеньев диенового происхождения (сопряженные диены), превышающим 50%.

В свете этих определений под диеновым эластомером, который можно применять в корде в соответствии с настоящим изобретением, следует, в частности, понимать:

(а) любой гомополимер, полученный посредством полимеризации сопряженного диенового мономера, содержащего 4-12 атомов углерода;

(b) любой сополимер, полученный посредством сополимеризации одного или нескольких сопряженных диенов между собой или с одним или несколькими ароматическими виниловыми соединениями с 8-20 атомами углерода;

(c) тройной сополимер, полученный посредством сополимеризации этилена, α-олефина с 3-6 атомами углерода с несопряженным диеновым мономером, содержащим 6-12 атомов углерода, например такой как, эластомеры, полученные из этилена, пропилена с несопряженным диеновым мономером типа вышеуказанного, в частности такой, как гексадиен-1,4, этилиден норборнен, дициклопентадиен;

(d) сополимер изобутилена и изопрена (бутил-каучук), а также галогенсодержащие, в частности хлорсодержащие или бромсодержащие версии этого типа сополимера.

Настоящее изобретение хотя и подходит для любого типа диенового эластомера, в первую очередь применяется с по существу ненасыщенными диеновыми эластомерами, в частности, вышеупомянутых типов (а) или (b).

Так, предпочтительно диеновый эластомер выбирают из группы, в которую входят полибутадиены (BR), натуральный каучук (NR), синтетические полиизопрены (IR), различные сополимеры бутадиена, различные сополимеры изопрена и смеси этих эластомеров. Предпочтительно такие сополимеры выбирают из группы, в которую входят сополимеры бутадиена и стирола (SBR), сополимеры изопрена и бутадиена (BIR), сополимеры изопрена и стирола (SIR) и сополимеры изопрена, бутадиена и стирола (SBIR).

Предпочтительно, согласно изобретению выбранный диеновый эластомер преимущественно (то есть из более чем на 50 в.ч.) состоит из изопренового эластомера. Как известно, под «изопреновым эластомером» следует понимать гомополимер или сополимер изопрена, иначе говоря, диеновый эластомер, выбираемый из группы, в которую входят натуральный каучук (NR), синтетические полиизопрены (IR), различные сополимеры изопрена и смеси этих эластомеров.

Согласно предпочтительному варианту изобретения выбранный диеновый эластомер исключительно (то есть на 100 в.ч.) состоит из натурального каучука, синтетического полиизопрена или из смеси этих эластомеров, при этом содержание (в молярных %) связей цис-1,4 в синтетическом полиизопрене предпочтительно превышает 90%, еще предпочтительнее превышает 98%.

Согласно частному варианту изобретения можно также использовать купажи (смеси) этого натурального каучука и/или этих синтетических полиизопренов с другими сильно ненасыщенными диеновыми эластомерами, в частности с вышеуказанными эластомерами SBR или BR.

Каучуковая оболочка корда в соответствии с настоящим изобретением может содержать только один или несколько диеновых эластомеров, который(ые) можно использовать в сочетании с любым типом синтетического эластомера, отличного от диенового, и даже с полимерами, отличными от эластомеров, например с термопластическими полимерами, причем эти полимеры, отличные от эластомеров, присутствуют в качестве миноритарного полимера.

Несмотря на то что каучуковая композиция упомянутой оболочки предпочтительно не содержит никакого пластомера и в качестве полимерной основы содержит только диеновый эластомер (или смесь диеновых эластомеров), упомянутая композиция может содержать также, по меньшей мере, один пластомер с массовым содержанием хр, меньшим массового содержания хе эластомера(ов). В этом случае предпочтительно придерживаются следующего отношения: 0<xp<0,5.хе и более предпочтительно 0<xp<0,1.хе.

Предпочтительно система поперечного сшивания каучуковой оболочки является так называемой системой вулканизации, то есть системой на основе серы (или агента-донора серы) и первичного ускорителя вулканизации. К этой базовой системе вулканизации можно добавлять различные известные вторичные ускорители или активаторы вулканизации. Предпочтительно серу используют с содержанием в пределах между 0,5 и 10 в.ч., еще предпочтительнее в пределах между 1 и 8 в.ч., первичный ускоритель вулканизации, например сульфенамид, предпочтительно используют в количестве в пределах между 0,5 и 10 в.ч., еще предпочтительнее в пределах между 0,5 и 5,0 в.ч.

Кроме упомянутой системы сшивания, каучуковая композиция оболочки в соответствии с настоящим изобретением может также содержать все обычные ингредиенты, используемые в каучуковых композициях, предназначенных для производства шин, например такие, как усиливающие наполнители на основе сажи, или неорганический усиливающий наполнитель, такой как диоксид кремния, агенты, противодействующие старению, например антиоксиданты, масла-расширители, пластификаторы или вещества, облегчающие применение композиций в сыром состоянии, акцепторы и доноры метилена, смолы, бисмалеимиды, известные системы-промоторы сцепления типа “RFS” (резорцин-формальдегид-диоксид кремния) или металлические соли, в частности соли кобальта.

Предпочтительно в сшитом состоянии композиция каучуковой оболочки имеет секущий модуль при растяжении при 10% удлинения (обозначаемый М10), измеренный по стандарту ASTM D 412 1998 года, менее 20 МПа, предпочтительно менее 12 МПа и, в частности, в интервале от 4 до 11 МПа.

Предпочтительно композицию этой оболочки выбирают идентичной композиции, используемой для каучуковой матрицы, которую должны усиливать корды в соответствии с изобретением. Таким образом, не возникает никакой проблемы возможной несовместимости между соответствующими материалами оболочки и каучуковой матрицы.

Предпочтительно упомянутую композицию выполняют на основе натурального каучука, и в качестве усиливающего наполнителя она содержит газовую сажу, например газовую сажу типа (ASTM) 300, 600 или 700 (например, N326, N330, N347, N375, N683, N772).

Согласно варианту изобретения упомянутые, по меньшей мере, 70% кордов, по меньшей мере, одного слоя каркасной арматуры, показывающие при тесте на проницаемость расход менее 2 см3/мин, являются металлическими кордами со слоями конструкции [L+M] или [L+M+N], используемыми в качестве усилительного элемента каркасной арматуры шины, содержащими первый слой С1 с L нитями диаметром d1, где L составляет от 1 до 4, охваченный, по меньшей мере, одним промежуточным слоем С2 с М нитями диаметром d2, намотанными вместе спиралевидно с шагом р2, где М составляет от 3 до 12, при этом, в случае необходимости, упомянутый слой С2 окружают наружным слоем С3 из N нитей диаметром d3, намотанных вместе спиралевидно с шагом р3, где N составляет от 8 до 20, при этом оболочка, состоящая из сшиваемой или сшитой каучуковой композиции на основе, по меньшей мере, одного диенового эластомера, в конструкции [L+M] покрывает упомянутый первый слой С1 и в конструкции [L+M+N] покрывает, по меньшей мере, упомянутый слой С2.

Предпочтительно диаметр нитей первого слоя внутреннего слоя (С1) составляет от 0,10 до 0,5 мм, и диаметр нитей наружных слоев (С2, С3) составляет от 0,10 до 0,5 мм.

Предпочтительно шаг спиралевидного наматывания упомянутых нитей наружного слоя (С3) составляет от 8 до 25 мм.

В рамках настоящего изобретения шаг представляет собой длину, измеренную параллельно оси корда, в конце которой нить с этим шагом завершает полный оборот вокруг оси корда; таким образом, если ось рассечь двумя плоскостями, перпендикулярными к упомянутой оси и разделенными длиной, равной шагу нити слоя, образующего корд, ось этой нити имеет в этих двух плоскостях одинаковое положение на двух окружностях, соответствующих слою рассматриваемой нити.

Предпочтительно корд содержит один и предпочтительно совокупность следующих отличительных признаков:

- слой С3 является насыщенным слоем, то есть в этом слое не остается достаточно места для добавления в него, по меньшей мере, одной (N+1)-й нити диаметром d3, при этом N является максимальным числом нитей, наматываемых одним слоем вокруг слоя С2;

- каучуковая оболочка покрывает также внутренний слой С1 и/или разделяет пары смежных нитей промежуточного слоя С2;

- каучуковая оболочка покрывает практически радиально внутреннюю половину окружности каждой нити слоя С3, разделяя пары смежных нитей этого слоя С3.

В конструкции L+M+N в соответствии с настоящим изобретением промежуточный слой С2 предпочтительно содержит шесть или семь нитей, и в этом случае корд в соответствии с настоящим изобретением имеет следующие предпочтительные характеристики (d1, d2, d3, p2 и р3 в мм):

-(i) 0,10<d1<0,28;

-(ii) 0,10<d2<0,25;

-(iii) 0,10<d3<0,25;

-(iv) М=6 или М=7;

-(v) 5π(d1+d2)<p2≤p3<5π(d1+2d2+d3);

-(vi) нити упомянутых слоев С2, С3 намотаны в одном направлении кручения (S/S или Z/Z).

Предпочтительно характеристика (v) является такой, что р23, и корд называют компактным с учетом также характеристики (vi) (нити слоев С2 и С3 намотаны в одном направлении).

Согласно характеристике (vi), все нити слоев С2 и С3 намотаны в одном направлении кручения, то есть либо в направлении S (расположение “S/S”), либо в направлении Z (расположение “Z/Z”). Предпочтительно наматывание в одном направлении слоев С2 и С3 позволяет в корде в соответствии с настоящим изобретением минимизировать трения между этими двумя слоями С2 и С3 и, следовательно, износ образующих их нитей (поскольку перекрестный контакт между нитями отсутствует).

Предпочтительно упомянутые, по меньшей мере, 70% кордов, по меньшей мере, одного слоя каркасной арматуры, показывающих при тесте на проницаемость расход менее 2 см3/мин, являются многослойными кордами с конструкцией, обозначаемой 1+M+N, то есть его внутренний слой С1 состоит только из одной нити.

Предпочтительно соотношения (d1/d2) фиксируют в данных пределах в зависимости от числа М (6 или 7) нитей слоя С2 следующим образом:

при М=6:0,9<(d1/d2)<1,3;

при М=7:1,3<(d1/d2)<1,6.

Слишком низкое значение соотношения d1/d2 может способствовать износу между внутренним слоем и нитями слоя С2. Слишком большое значение может отрицательно сказаться на компактности корда при мало изменившемся в конечном счете уровне прочности, а также на его гибкости; повышенная жесткость внутреннего слоя С1 из-за слишком большого диаметра d1 может, кроме того, помешать возможности самого изготовления корда во время операций свивания корда.

Нити слоев С2 и С3 могут иметь одинаковый или разный диаметр от одного слоя к другому. Предпочтительно используют нити одинакового диаметра (d2=d3), в частности, для упрощения процесса свивания и для снижения затрат.

Максимальное число Nmax нитей, наматываемых в один насыщенный слой С3 вокруг слоя С2, зависит, разумеется, от многих параметров (диаметр d1 внутреннего слоя, число М и диаметр d2 нитей слоя С2, диаметр d3 нитей слоя С3).

Упомянутые, 70% кордов, по меньшей мере, одного слоя каркасной арматуры, показывающих при тесте на проницаемость расход менее 2 см3/мин, выбирают среди кордов структуры 1+6+10, 1+6+11, 1+6+12, 1+7+11, 1+7+12 или 1+7+13.

Для достижения лучшего компромисса межу прочностью, возможностью выполнения и сопротивлением изгибу корда, с одной стороны, и проницаемостью по отношению к каучуку, с другой стороны, предпочтительно, чтобы диаметры нитей слоев С2 и С3, идентичные или нет, находились в пределах от 0,12 мм до 0,22 мм.

В этом случае предпочтительно проверяют следующие отношения:

0,14<d1<0,22;

0,12<d2≤d3<0,20;

5<p2≤p3<12 (уменьшенный шаг в мм) или 20<p2≤p3<30 (увеличенный шаг в мм).

Диаметр меньше 0,19 мм позволяет снизить уровень напряжений, действующих на нити во время больших изменений кривизны кордов, тогда как предпочтительно выбирают диаметры более 0,16 мм, в частности, из соображений прочности нитей и стоимости производства.

В предпочтительном варианте выполнения выбирают, например, р2 и р3 в пределах от 8 до 12 мм, предпочтительно для кордов со структурой 1+6+12.

Предпочтительно каучуковая оболочка имеет среднюю толщину, достигающую от 0,010 мм до 0,040 мм.

Как правило, упомянутые, по меньшей мере, 70% кордов в соответствии с изобретением, по меньшей мере, одного слоя каркасной арматуры, показывающие при тесте на проницаемость расход менее 2 см3/мин, можно выполнять с любым типом металлических нитей, в частности, стальных нитей, например, нитей из углеродистой стали и/или нитей из нержавеющей стали. Предпочтительно используют углеродистую сталь, однако, разумеется, можно использовать другие стали или другие сплавы.

Если используют углеродистую сталь, содержание в ней углерода (в мас.% стали) предпочтительно находится в интервале от 0,1% до 1,2%, еще предпочтительнее от 0,4% до 1,0%; эти значения содержания представляют собой хороший компромисс между необходимыми механическими свойствами шины и возможностью изготовления нити. Следует отметить, что содержание углерода от 0,5% до 0,6% делает такие стали в конечном счете менее дорогими, поскольку они легче поддаются волочению. Согласно другому предпочтительному варианту выполнения изобретения в зависимости от назначения используют стали с низким содержанием углерода, например от 0,2% до 0,5%, в частности, по причине более низкой стоимости и более легкого волочения.

Упомянутые, по меньшей мере, 70% кордов, по меньшей мере, одного слоя каркасной арматуры, показывающие при тесте на проницаемость расход менее 2 см3/мин в соответствии с изобретением, можно получить при помощи различных известных специалисту технологий, например в два этапа, сначала при помощи головки экструдера путем обволакивания сердечника или промежуточной структуры L+M (слои С1+С2), затем на втором этапе посредством конечной операции свивания или скручивания остальных N нитей (слой С3) вокруг покрытого таким образом оболочкой слоя С3. Проблему склеивания в сыром состоянии для каучуковой оболочки во время промежуточных операций наматывания или разматывания в рулонах можно решить известным специалистам способом, например путем применения промежуточной пленки из пластического материала.

Согласно первому варианту выполнения изобретения упомянутые, по меньшей мере, 10% кордов, предпочтительно не стянутых кордов, показывающих при тесте на проницаемость расход более 4 см3/мин, являются не покрытыми оболочкой многослойными кордами, наружный слой которых является насыщенным.

В рамках изобретения слои корда называют «не покрытыми оболочкой», когда корд выполняют без какой-либо полимерной смеси на образующих его нитях. Полимерную смесь применяют только во время изготовления шины или элементов-полуфабрикатов, таких как пласт, образованный полимерными смесями, усиленными упомянутыми кордами.

В рамках изобретения наружный слой является слоем из N нитей данного диаметра, называемым «насыщенным» или «полным», если в этом слое остается недостаточно места для добавления в него, по меньшей мере, одной (N+1)-й нити диаметром, идентичным диаметру N нитей.

Изобретением предлагается также шина с радиальной каркасной арматурой, состоящей, по меньшей мере, из одного слоя металлических усилительных элементов, при этом упомянутая шина содержит арматуру гребня, над которой в радиальном направлении находится протектор, при этом упомянутый протектор соединен с двумя бортами через две боковины, при этом, по меньшей мере, 70% металлических усилительных элементов, по меньшей мере, одного слоя каркасной арматуры являются не стянутыми кордами, по меньшей мере, из двух слоев, при этом, по меньшей мере, один внутренний слой покрыт оболочкой из слоя, образованного полимерной композицией, такой как сшиваемая или сшитая каучуковая композиция, предпочтительно на основе, по меньшей мере, одного диенового эластомера, и, по меньшей мере, 10% металлических усилительных элементов, упомянутого, по меньшей мере, одного слоя каркасной арматуры являются не покрытыми оболочкой многослойными кордами, наружный слой которых является насыщенным.

Если, по меньшей мере, 10% усилительных элементов упомянутого, по меньшей мере, одного слоя каркасной арматуры являются не покрытыми оболочкой многослойными кордами, наружный слой которых является насыщенным, они показывают во время так называемого теста на проницаемость расход, существенно превышающий 4 см3/мин и предпочтительно превышающий 20 см3/мин. Такие корды обеспечивают диффузию воздуха и влаги во время изготовления шины, а также во время эксплуатации шины для воздуха и влаги, поступающих, в частности, из полости.

Предпочтительно такие усилительные элементы составляют менее 15% усилительных элементов упомянутого, по меньшей мере, одного слоя каркасной арматуры. Эти усилительные элементы, являющиеся чувствительными к явлениям «фрикционной и коррозионной усталости», не должны присутствовать в слишком больших количествах, чтобы не ухудшать характеристики шины с точки зрения усталостной сто