Производные 1, 2-дигидроциклобутендиона в качестве ингибиторов фосфорибозилтрансферазы никотинамида

Иллюстрации

Показать все

Изобретение относится к соединению формулы (I)

где A выбирают из -C(=O)-, -S(=O)2-, и -P(=O)(R5)-, где R5 выбирают из C1-6-алкила, C1-6-алкокси и гидрокси; B выбирают из одинарной связи, -O-, и -C(=O)-NR6-, где R6 выбирают из водорода; D выбирают из одинарной связи, -O- и -NR9, где R7, R8 и R9 независимо выбирают из водорода; m равно целому числу 0-12 и n равно целому числу 0-12, где сумма m+n равна 1-20; p равно целому числу 0-2; R1 выбирают из необязательно замещенного гетероарила, где гетероарил представляет собой ароматическое карбоциклическое кольцо, где один атом углерода замещен гетероатомом; R2 выбирают из водорода, необязательно замещенного C1-12-алкила, при этом заместители выбраны из фенила, морфолина, галогена и пиридина; C3-12-циклоалкила, -[CH2CH2O]1-10-C1-6-алкила); и R3 выбирают из необязательно замещенного C1-12-алкила, при этом заместители выбраны из морфолина, фенила, диалкиламина и C3-12-циклоалкила; C3-12-циклоалкила, необязательно замещенного галогеном арила; или R2 и R3 вместе с соседними атомами образуют необязательно замещенное алкилкарбонилом или алкилом N-содержащее гетероциклическое или гетероароматическое кольцо;каждый из R4 и R4* независимо представляет собой водород; и их фармацевтически приемлемым солям, а так же к применению этих соединений для лечения заболеваний/состояний, вызванных повышенным уровнем фосфорибозилтрансферазы никотинамида ( ФРТНАМ) . 3 н. и 18 з.п. ф-лы, 1 ил., 2 табл., 83 пр.

Реферат

Область техники

Данное изобретение относится к производным 1,2-дигидроциклобутендиона и, в частности, производным 3,4-диаминоциклобут-3-ен-1,2-диона, которые применяют для ингибирования фермента фосфорибозилтрансферазы никотинамида (ФРТНАМ), и к медицинскому применению таких производных 1,2-дигидроциклобутендиона.

Уровень техники

Ингибирование фермента фосфорибозилтрансферазы никотинамида (ФРТНАМ) дает ингибирование NF-kB, ингибирование NF-kB является результатом снижения клеточных концентраций никотинамид-аденин-динуклеотида (НАД) (Beauparlant et al (2007) AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, 2007 Oct 22-26 Abstract nr A82; и Roulson et al (2007) AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, 2007 Oct 22-26 Abstract nr A81). Опухолевые клетки характеризуются повышенной экспрессией ФРТНАМ и высокой скоростью обновления НАД из-за высокой активности АДФ-рибозилирования, требуемого для восстановления ДНК, стабильности генома и поддержания теломера, что делает их более чувствительными к ингибированию ФРТНАМ, чем обычные клетки. Это также является разумным объяснением для применения соединений в соответствии с данным изобретением в сочетании с агентами, повреждающими ДНК, для последующих клинических испытаний.

Пути биосинтеза НАД показаны на фиг. 1.

ФРТНАМ вовлечена в биосинтез никотинамид-аденин-динуклеотида (НАД) и НАД(Ф). НАД может быть синтезирован у млекопитающих тремя различными путями, начиная либо с триптофана через хинолиновую кислоту, с никотиновой кислоты (ниацина) или с никотинамида (ниацинамида).

Хинолиновая кислота взаимодействует с фосфорибозилпирофосфатом с получением мононуклеотида ниацина (dНАМ) с применением фермента фосфорибозилтрансферазы хинолиновой кислоты ❸, который найден в печени, почках и мозге.

Никотиновая кислота (ниацин) взаимодействует с ФРФФ с получением мононуклеотида ниацина (dНАМ), с применением фермента фосфорибозилтрансферазы ниацина ❷, который широко распространен в различных тканях.

Никотинамид (ниацинамид) взаимодействует с ФРФФ с получением мононуклеотида ниацинамида (НАМ) с применением фермента фосфорибозилтрансферазы никотинамида (ФРТНАМ) ❶, который также широко распространен в тканях.

Последующее добавление аденозинмонофосфата к мононуклеотидам дает образование соответствующих динуклеотидов; мононуклеотид ниацина и мононуклеотид ниацинамида взаимодействуют с АТФ с получением ниацин-аденин-динуклеотида (dНАД) и ниацинамид-аденин-динуклеотида (НАД), соответственно. Обе реакции, хотя они проходят различными путями, катализированы одним и тем же ферментом, НАД пирофосфорилазой ❹.

Следующая стадия амидирования требуется для превращения ниацин-аденин-динуклеотида (dНАД) в ниацинамид-аденин-динуклеотид (НАД). Ферментом, который катализирует эту реакцию, является синтетаза НАД ❺. НАД является непосредственным предшественником фосфата ниацинамид-аденин-динуклеотида (НАД(Ф)). Реакцию катализируют НАД киназой. Подробное описание см., например, в Cory J. G. Purine and pyrimidine nucleotide metabolism In: Textbook of Biochemistry and Clinical Correlations 3rd edition ed. Devlin, T, Wiley, Brisbane 1992, p. 529-574.

Нормальные клетки обычно используют оба предшественника, ниацин и ниацинамид, для синтеза НАД(Ф) и во многих случаях дополнительно триптофан или его метаболиты. Следовательно, мышиные глиозные клетки используют ниацин, ниацинамид и хинолиновую кислоту (Grant et al. (1998) J. Neurochem. 70: 1759- 1763). Человеческие лимфоциты используют ниацин и ниацинамид (Carson et al. (1987) J. Immunol. 138: 1904-1907; Berger et al (1982) Exp. Cell Res. 137; 79-88). Клетки печени крысы используют ниацин, ниацинамид и триптофан (Yamada et al. (1983) Int. J. Vit. Nutr. Res. 53: 184-1291; Shin et al (1995) Int. J. Vit. Nutr. Res. 65: 143-146; Dietrich (1971) Methods Enzymol. 18B; 144-149). Человеческие эритроциты используют ниацин и ниацинамид (Rocchigiani et al. (1991) Purine and pyrimidine metabolism in man VII Part B ed. Harkness et al. Plenum Press New York, p.337-3490). Лейкоциты морских свинок используют ниацин (Flechner et al. (1970), Life Science 9: 153-162).

НАД(Ф) вовлечен во множество биохимических реакций, которые жизненно важны для клеток и поэтому тщательно исследуются. Роль НАД(Ф) в развитии и росте опухолей также изучается. Было обнаружено, что многие опухолевые клетки используют ниацинамид для клеточного синтеза НАД(Ф). Ниацин и триптофан, которые являются альтернативными предшественниками во многих нормальных типах клеток, не могут использоваться опухолевыми клетками или, по крайней мере, не до такой степени, которая достаточна для выживания клетки. Селективное ингибирование фермента, который находится только на пути ниацинамида (такого как ФРТНАМ), может составлять основу выбора лекарственных средств, специфичных к опухоли. Это подтверждается ингибитором ФРТНАМ APO866 (см. Hasmann and Schemainda, Cancer Res 63(21): 7463-7442).

Известно, что различные производные 3,4-диаминоциклобут-3-ен-1,2-диона, замещенные определенным образом, имеют фармакологически полезные свойства. В частности известно, что определенные производные обладают антипролиферативным действием. Все такие соединения, однако, структурно не похожи на соединения в соответствии с данным изобретением.

Соединения, содержащие 3,4-диаминоциклобут-3-ен-1,2-дионовые группы, описаны в следующих публикациях:

Применение в качестве открывателей калиевых каналов: J. Med. Chem. (2000) 43: 1187, J. Med. Chem (2000) 43: 1203, WO 02/062761.

Применение в качестве релаксантов гладких мышц: WO 96/15103, WO 96/14300, WO 95/14005, US 5532245.

Применение в качестве связующих агентов с рецепторов хемокина: WO 02/083624.

Применение в качестве связующих агентов с рецептором интегрина: WO 00/035864, US 6420396, WO 01/47867, WO 02/04426, WO 02/10136, WO 02/42264, US 6677360.

Применение в качестве противораковых агентов: WO 02/083624, EP 1674457 Al.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Полагают, что новые соединения в соответствии с данным изобретением действуют на фермент фосфорибозилтрансфераза никотинамида (ФРТНАМ) и что нисходящее ингибирование NF-kB является результатом снижения концентраций в клетках никотинамид-аденин-динуклеотида (НАД).

Следовательно, в данном изобретении представлены соединения общей формулы (I) по пункту 1 и применение этих соединений в медицине, см. пункты 19, 20, 22 и 23.

Ингибиторы фермента ФРТНАМ могут применяться в лечении рака (WO 97/48696), для подавления иммунитета (WO 97/48397), для лечения заболеваний, в которые вовлечен ангиогенез (WO 03/80054), для лечения ревматоидного артрита или септического шока (WO 08/025857), для профилактики и лечения ишемии (PCT/EP2009/052572) или для профилактики и лечения диабетической нефропатии (Song et al. [2008] AJP - Renal Physiology 295 F1485-F1494).

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг. 1 показан путь биосинтеза НАД (из Biedermann E. et al, WO 00/50399).

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Соединения в соответствии с данным изобретением

Данное изобретение относится к определенным производным 1,2-дигидроциклобутендиона, которые применяются для ингибирования фермента фосфорибозилтрансферазы никотинамида (ФРТНАМ).

Данное изобретение относится к соединениям формулы (I)

где

A выбирают из -C(=O)-, -S(=O)2-, -C(=S)- и -P(=O)(R5)-, где R5 выбирают из C1-6-алкила, C1-6-алкокси и гидрокси;

B выбирают из одинарной связи, -O-, -NR6- и -C(=O)-NR6-, где R6 выбирают из водорода, необязательно замещенного C1-12-алкила, необязательно замещенного C1-12-алкенила, необязательно замещенного арила, необязательно замещенного гетероциклила и необязательно замещенного гетероарила;

D выбирают из одинарной связи, -O-, -CR7R8- и -NR9, где R7, R8 и R9 независимо выбирают из водорода, необязательно замещенного C1-12-алкила, необязательно замещенного C1-12-алкенила, необязательно замещенного арила, необязательно замещенного гетероциклила и необязательно замещенного гетероарила;

m равно целому числу 0-12 и n равно целому числу 0-12, где сумма m+n равна 1-20;

p равно целому числу 0-2;

R1 выбирают из необязательно замещенного гетероарила и необязательно замещенного арила;

R2 выбирают из водорода, необязательно замещенного C1-12-алкила, необязательно замещенного C3-12-циклоалкила, -[CH2CH2O]1-10-(необязательно замещенного C1-6-алкила), необязательно замещенного C1-12-алкенила, необязательно замещенного арила, необязательно замещенного гетероциклила и необязательно замещенного гетероарила; и R3 выбирают из необязательно замещенного C1-12-алкила, необязательно замещенного C3-12-циклоалкила, -[CH2CH2O]1-10-(необязательно замещенного C1-6-алкила), необязательно замещенного C1-12-алкенила, необязательно замещенного арила, необязательно замещенного гетероциклила и необязательно замещенного гетероарила; или R2 и R3 вместе с промежуточными атомами (т.е. -N-B-) образуют необязательно замещенное N-содержащее гетероциклическое или гетероароматическое кольцо;

каждый из R4 и R4* независимо выбирают из водорода, необязательно замещенного C1-12-алкила и необязательно замещенного C1-12-алкенила;

и их фармацевтически приемлемые соли и их пролекарства.

Определения

В данном контексте термины "C1-12-алкил" и "C1-6-алкил" означают линейную, циклическую или разветвленную углеводородную группу, имеющую от 1 до 12 атомов углерода и от 1 до 6 атомов углерода, соответственно, такую как метил, этил, пропил, изопропил, циклопропил, бутил, изобутил, втор-бутил, циклобутил, пентил, циклопентил, гексил и циклогексил.

Хотя термин "C3-12-циклоалкил" включен в термин "C1-12-алкил", он относится конкретно к моно- и бициклическим соединениям, включая алкильные группы, имеющие экзоциклические атомы, например циклогексилметил.

Также, термины "C2-12-алкенил" и "C2-6-алкенил" включают линейные, циклические или разветвленные группы, имеющие от 2 до 12 атомов углерода и от 2 до 6 атомов углерода, соответственно, и содержащие (по крайней мере) одну ненасыщенную связь. Примеры алкенильных групп включают винил, аллил, бутенил, пентенил, гексенил, гептенил, октенил, гептадекаенил. Предпочтительными примерами алкенила являются винил, аллил, бутенил, особенно аллил.

Хотя термин "C3-12-циклоалкенил" включен в термин "C2-12-алкенил", он относится конкретно к моно- и бициклическим соединениям, включая алкенильные группы, имеющие экзоциклические атомы, например циклогексенилметил и циклогексилаллил.

В данном контексте, т.е. в сочетании с терминами "алкил", "циклоалкил", "алкокси", "алкенил", "циклоалкенил" и подобными, термин "необязательно замещенный" означает, что рассматриваемая группа может быть замещена один или несколько раз, предпочтительно, 1-3 раза, группой(ами), выбранными из гидрокси (которая, будучи связанной с ненасыщенным атомом углерода, может быть представлена в таутомерной кетоформе), C1-6-алкокси (т.е. C1-6-алкилокси), C2-6-алкенилокси, карбокси, оксо (образующей кето или альдегидную функциональность), C1-6-алкоксикарбонила, C1-6-алкилкарбонила, формила, арила, арилокси, ариламино, арилкарбонила, арилоксикарбонила, арилкарбонилоксила, ариламинокарбонила, арилкарбониламино, гетероарила, гетероарилокси, гетероариламино, гетероарилкарбонила, гетероарилоксикарбонила, гетероарилкарбонилокси, гетероариламинокарбонила, гетероарилкарбониламино, гетероциклила, гетероциклилокси, гетероциклиламино, гетероциклилкарбонила, гетероциклилоксикарбонила, гетероциклилкарбонилокси, гетероциклиламинокарбонила, гетероциклилкарбониламино, амино, моно- и ди(C1-6-алкил)амино, -N(C1-4-алкила)3+, карбамоил, моно- и ди(C1-6-алкил)аминокарбонила, C1-6-алкилкарбониламино, циано, гуанидино, карбамидо, C1-6-алкилсульфониламино, арилсульфониламино, гетероарилсульфониламино, C1-6-алканоилокси, C1-6-алкилсульфонила, C1-6-алкилсульфинила, C1-6-алкилсульфонилокси, нитро, C1-6-алкилтио и галогена, где любой арил, гетероарил и гетероциклил могут быть замещены, как описано ниже для арила, гетероарила и гетероциклила, и любой алкил, алкокси и подобные, являющиеся заместителями, могут быть замещены гидрокси, C1-6-алкокси, амино, моно- и ди(C1-6-алкил)амино, карбокси, C1-6-алкилкарбониламино, C1-6-алкиламинокарбонилом или галогеном.

Обычно заместители выбирают из гидрокси (которая, будучи связанной с ненасыщенным атомом углерода, может быть представлена в таутомерной кетоформе), C1-6-алкокси (т.е. C1-6-алкилокси), C2-6-алкенилокси, карбокси, оксо (образующей кето или альдегидную функциональность), C1-6-алкилкарбонила, формила, арила, арилокси, ариламино, арилкарбонила, гетероарила, гетероарилокси, гетероариламино, гетероарилкарбонила, гетероциклила, гетероциклилокси, гетероциклиламино, гетероциклилкарбонила, амино, моно- и ди(C1-6-алкил)амино; карбамоила, моно- и ди(C1-6-алкил)аминокарбонила, амино-C1-6-алкиламинокарбонила, моно- и ди(C1-6-алкил)амино-C1-6-алкиламинокарбонила, C1-6-алкилкарбониламино, гуанидино, карбамидо, C1-6-алкилсульфониламино, C1-6-алкилсульфонила, C1-6-алкилсульфинила, C1-6-алкилтио, галогена, где любой арил, гетероарил и гетероциклил могут быть замещены, как описано ниже для арила, гетероарила и гетероциклила.

В некоторых вариантах заместители выбирают из гидрокси, C1-6-алкокси, амино, моно- и ди(C1-6-алкил)амино, карбокси, C1-6-алкилкарбониламино, C1-6-алкиламинокарбонила или галогена.

Термин "галоген" включает фтор, хлор, бром или йод.

В данном контексте термин "арил" означает полностью или частично ароматическое карбоциклическое кольцо или систему колец, такую как фенил, нафтил, 1,2,3,4-тетрагидронафтил, антрацил, фенантрацил, пиренил, бензопиренил, флуоренил и ксантенил, где предпочтительным примером является фенил.

Термин "гетероарил" означает полностью или частично ароматическое карбоциклическое кольцо или систему колец, где один или более атомов углерода замещены гетероатомами, например, азотом (=N- или -NH-), серой и/или кислородом. Примеры таких гетероарильных групп включают оксазолил, изоксазолил, тиазолил, изотиазолил, пирролил, имидазолил, пиразолил, пиридинил, пиримидинил, пиразинил, пиридазинил, триазинил, кумарил, фуранил, тиенил, хинолил, бензотиазолил, бензотриазолил, бензодиазолил, бензооксазолил, фталазинил, фталанил, триазолил, тетразолил, изохинолил, акридинил, карбазолил, дибензазепинил, индолил, бензопиразолил, феноксазонил. Особенно интересными гетероарильными группами являются бензимидазолил, оксазолил, изоксазолил, тиазолил, изотиазолил, пирролил, имидазолил, пиразолил, пиридинил, пиримидинил, пиразинил, пиридазинил, фурил, тиенил, хинолил, триазолил, тетразолил, изохинолил, индолил, в частности, бензимидазолил, пирролил, имидазолил, пиридинил, пиримидинил, фурил, тиенил, хинолил, тетразолил и изохинолил.

Термин "гетероциклил" означает не ароматическое карбоциклическое кольцо или систему колец, где один или более атомов углерода замещены гетероатомами, например, азотом (=N- или -NH-), серой и/или кислородом. Примеры таких гетероциклильных групп (поименованных согласно кольцам) включают имидазолидин, пиперазин, гексагидропиридазин, гексагидропиримидин, диазепан, диазокан, пирролидин, пиперидин, азепан, азокан, азиридин, азирин, азетидин, пирролин, тропан, оксазинан (морфолин), азепин, дигидроазепин, тетрагидроазепин и гексагидроазепин, оксазолан, оксазепан, оксазокан, тиазолан, тиазинан, тиазепан, тиазокан, оксазетан, диазетан, тиазетан, тетрагидрофуран, тетрагидропиран, оксепан, тетрагидротиофен, тетрагидротиопиран, тиепан, дитиан, дитиепан, диоксан, диоксепан, оксатиан, оксатиепан. Наиболее интересными примерами являются тетрагидрофуран, имидазолидин, пиперазин, гексагидропиридазин, гексагидропиримидин, диазепан, диазокан, пирролидин, пиперидин, азепан, азокан, азетидин, тропан, оксазинан (морфолин), оксазолан, оксазепан, тиазолан, тиазинан и тиазепан, в частности тетрагидрофуран имидазолидин, пиперазин, гексагидропиридазин, гексагидропиримидин, диазепан, пирролидин, пиперидин, азепан, оксазинан (морфолин) и тиазинан.

Термин "N-содержащее гетероциклическое или гетероароматическое кольцо" включает кольца, указанные как "гетероциклил" и "гетероарил", соответственно, которые включают один или более гетероатомов, по крайней мере, один из которых является атомом азота. Примеры включают пиперазин, изоксазол, изоксазолидин и морфолин, и т.д.

Термин "N,O-содержащее гетероциклическое или гетероароматическое кольцо" включает кольца, указанные как "гетероциклил" и "гетероарил", соответственно, которые включают два или более гетероатома, два из которых являются соседними атомами азота и кислорода. Примеры включают изоксазол, изоксазолидин, морфолин и т.д.

В данном контексте, т.е. в сочетании с терминами "арил", "гетероарил", "гетероциклил", "N,O-содержащее гетероциклическое или гетероароматическое кольцо" и подобные (например, "арилокси", "гетерарилкарбонил", и т.д.), термин "необязательно замещен" означает, что рассматриваемая группа может быть замещена один или несколько раз, предпочтительно, 1-5 раз, в частности, 1-3 раза, группой(ами), выбранными из гидрокси (которая, если присутствует в енольной системе, может быть представлена в таутомерной кетоформе), C1-6-алкила, C1-6-алкокси, C2-6-алкенилокси, оксо (которая может быть представлена в таутомерной енольной форме), оксида (актуальны только N-оксиды), карбокси, C1-6-алкоксикарбонила, C1-6-алкилкарбонила, формила, арила, арилокси, ариламино, арилоксикарбонила, арилкарбонила, гетероарила, гетероариламино, амино, моно- и ди(C1-6-алкил)амино; карбамоила, моно- и ди(C1-6-алкил)аминокарбонила, амино- C1-6-алкиламинокарбонила, моно- и ди(C1-6-алкил)амино-C1-6-алкиламинокарбонила, C1-6-алкилкарбониламино, циано, гуанидино, карбамидо, C1-6-алканоилокси, C1-6-алкилсульфониламино, арилсульфониламино, гетероарилсульфониламино, C1-6-алкилсульфонила, C1-6-алкилсульфинила, C1-6-алкилсульфонилокси, нитро, сульфанила, амино, аминосульфонила, моно- и ди(C1-6-алкил)аминосульфонила, дигалоген-C1-4-алкила, тригалоген-C1-4-алкила, галогена, где арил и гетероарил, являющиеся заместителями, могут быть замещены 1-3 раза C1-4-алкилом, C1-4-алкокси, нитро, циано, амино или галогеном, и любой алкил, алкокси и подобные, являющиеся заместителями, могут быть замещены гидрокси, C1-6-алкокси, C2-6-алкенилокси, амино, моно- и ди(C1-6-алкил)амино, карбокси, C1-6-алкилкарбониламино, галогеном, C1-6-алкилтио, C1-6-алкилсульфониламино или гуанидино.

Обычно заместители выбирают из гидрокси, C1-6-алкила, C1-6-алкокси, оксо (которая может быть представлена в таутомерной енольной форме), карбокси, C1-6-алкилкарбонила, формила, амино, моно- и ди(C1-6-алкил)амино; карбамоила, моно- и ди(C1-6-алкил)аминокарбонила, амино-C1-6-алкиламинокарбонила, C1-6-алкилкарбониламино, гуанидино, карбамидо, C1-6-алкилсульфониламино, арилсульфониламино, гетероарилсульфониламино, C1-6-алкилсульфонила, C1-6-алкилсульфинила, C1-6-алкилсульфонилокси, сульфанила, амино, аминосульфонила, моно- и ди(C1-6-алкил)аминосульфонила или галогена, где любой алкил, алкокси и подобные, являющиеся заместителями, могут быть замещены гидрокси, C1-6-алкокси, C2-6-алкенилокси, амино, моно- и ди(C1-6-алкил)амино, карбокси, C1-6-алкилкарбониламино, галогеном, C1-6-алкилтио, C1-6-алкилсульфониламино или гуанидино. В некоторых вариантах, заместители выбирают из C1-6-алкила, C1-6-алкокси, амино, моно- и ди(C1-6-алкил)амино, сульфанила, карбокси или галогена, где любой алкил, алкокси и подобные, являющиеся заместителями, могут быть замещены гидрокси, C1-6-алкокси, C2-6-алкенилокси, амино, моно- и ди(C1-6-алкил)амино, карбокси, C1-6-алкилкарбониламино, галогеном, C1-6-алкилтио, C1-6-алкилсульфониламино или гуанидино.

Группы (например, R2 и R3), включающие C3-12-циклоалкил, C3-12-циклоалкенил и/или арил в качестве, по крайней мере, части заместителя, обозначены как содержащие "карбоциклическое кольцо".

Группы (например, R2 и R3), включающие гетероциклил или гетероарил в качестве, по крайней мере, части заместителя, обозначены как содержащие "гетероциклическое кольцо" и "гетероароматическое кольцо", соответственно.

Термин "фармацевтически приемлемые соли" включает кислотно-аддитивные соли и основные соли. Иллюстративные примеры кислотно-аддитивных солей включают фармацевтически приемлемые соли, полученные с нетоксичными кислотами. Примеры таких органических солей включают соли малеиновой, фумаровой, бензойной, аскорбиновой, янтарной, щавелевой, бис-метиленсалициловой, метансульфоновой, этандисульфоновой, уксусной, пропионовой, винной, салициловой, лимонной, глюконовой, молочной, яблочной, миндальной, коричной, цитраконовой, аспартиновой, стеариновой, пальмитиновой, итаконовой, гликолевой, п-аминобензойной, глутаминовой бензолсульфоновой и теофиллинуксусной кислот, а также 8-галотеофиллины, например, 8-бромтеофиллин. Примеры таких неорганических солей включают соли с хлористоводородной, бромистоводородной, серной, сульфаминовой, фосфорной и азотной кислотами. Примеры основных солей включают соли, в которых (оставшийся) противоион выбирают из щелочных металлов, таких как натрий и калий, щелочноземельных металлов, таких как кальций и аммоний (+N(R)3R', где R и R' независимо обозначают необязательно замещенный C1-6-алкил, необязательно замещенный C2-6-алкенил, необязательно замещенный арил или необязательно замещенный гетероарил). Фармацевтически приемлемые соли описаны, например в Remington's Pharmaceutical Sciences, 17. Ed. Alfonso R. Gennaro (Ed.), Mack Publishing Company, Easton, PA, U.S.A., 1985 и более поздних изданиях, и в Encyclopedia of Pharmaceutical Technology. Таким образом, термин "его кислотно-аддитивная соль или щелочная соль" включает такие соли. Более того, соединения, а также любые промежуточные или исходные материалы, могут присутствовать в форме гидрата.

Термин "пролекарство" означает соединение, которое, при помещении в физиологические условия, освобождает производное такого соединения, которое способно оказывать желаемое биологическое действие. Типовые примеры включают нестабильные эфиры (т.е. скрытую гидроксильную группу или скрытую кислотную группу).

Более того, должно быть понятно, что соединения могут присутствовать в виде рацемических смесей или отдельных стереоизомеров, таких как энантиомеры или диастереомеры. Данное изобретение охватывает каждый и все такие возможные стереоизомеры (например, энантиомеры и диастереомеры) а также рацематы и смеси, обогащенные одним из возможных стереоизомеров.

Варианты осуществления

В одном важном варианте осуществления B выбирают из -O- и -NR5-, в частности, B является -O-. В одном из важных вариантов этого варианта осуществления, A является -S(=O)2- и B является -O-. В другом важном варианте этого варианта осуществления, A является-C(=O)- и B является -O-. В этих вариантах осуществления, D предпочтительно является одинарной связью.

В другом варианте осуществления, B является одинарной связью. В одном важном варианте этого варианта осуществления, A является -S(=O)2-.

В другом варианте осуществления, B является -C(=O)-NR5-. В этом варианте осуществления, D предпочтительно выбирают из одинарной связи, -O- и -NR9.

Что касается R1, этот заместитель предпочтительно является необязательно замещенным пиридинилом, в частности, необязательно замещенным пиридин-4-илом. В другом варианте осуществления, R1 является пиридин-3-илом.

Расстояние между R1 и 1,2-дигидроциклобутендионовой группой определяется p. p равно целому числу 0-2, но, предпочтительно, 0-1, в частности, 0.

В особенно интересном варианте осуществления, p равно 0 и R1 является пиридин-4-илом.

Длина разделяющего элемента определяется m и n. Предпочтительно, m равно целому числу 0-10 и n равно целому числу 0-10, где сумма m+n равна 1-12; в частности, m равно целому числу 1- 8 и n равно целому числу 0-3, где сумма m+n равна 3-8. В наиболее предпочтительном варианте, m равно целому числу 2-8 и n равно 0.

Очевидно, что - кроме D, A и B - R2 и R3 (и частично также R4 и R4*) играют важную роль в эффективности соединений в соответствии с данным изобретением. Следовательно, в одном особенно интересном варианте осуществления, по крайней мере, один из R2 и R3 включает карбоциклическое кольцо, гетероциклическое кольцо или гетероароматическое кольцо, или R2 и R3 вместе с промежуточными атомами образуют необязательно замещенное N-содержащее гетероциклическое или гетероароматическое кольцо.

В одном варианте, R2 и R3 вместе с промежуточными атомами образуют необязательно замещенное N,O-содержащее гетероциклическое или гетероароматическое кольцо.

Более того, R4 предпочтительно выбирают из водорода, C1-6-алкила и необязательно замещенного бензила, и R4* является водородом.

В одном особенно важном варианте осуществления,

A выбирают из -C(=O)- и -S(=O)2-;

B является -O-;

D выбирают из одинарной связи, -O- и -NR9

m равно целому числу 2-8 и n равно 0;

R2 выбирают из водорода, необязательно замещенного C3-12-циклоалкила, -[CH2CH2O]1-10-(необязательно замещенного C1-6-алкила), -(CH2)0-2-(необязательно замещенного арила), -(CH2)0-2-(необязательно замещенного гетероарила) и -(CH2)0-2-(необязательно замещенного гетероциклила);

R3 выбирают из необязательно замещенного C3-12-циклоалкила, -[CH2CH2O]1-10-(необязательно замещенного C1-6-алкила), необязательно замещенного C1-12-алкенила, необязательно замещенного арила, необязательно замещенного гетероциклила и необязательно замещенного гетероарила;

R4 выбирают из водорода, необязательно замещенного C3-12-циклоалкила, -(CH2)0-2-(необязательно замещенного арила), -(CH2)0-2-(необязательно замещенного гетероарила) и -(CH2)0-2-(необязательно замещенного гетероциклила); и

R4 является водородом.

Наиболее интересные соединения включают соединения, выбранные из соединений 1001-1181, описанных ниже:

Получение соединений формулы (I)

Соединения в соответствии с данным изобретением могут быть синтезированы с применением указанных ниже методов вместе с методами, известными в области органического синтеза, или их вариантов, которые очевидны специалисту в данной области техники. Предпочтительные способы включают, но не ограничены ими, описанные ниже.

Новые соединение формулы (I) могут быть получены с применением реакций и методик, описанных в этом разделе. Реакции проводят в растворителях, подходящих для используемых реагентов и материалов и подходящих для проводимых превращений. Также в описанных ниже способах синтеза понятно, что все предложенные условия реакций, включая выбор растворителя, атмосферы реакции, температуры реакции, длительности эксперимента и обработки, выбраны так, чтобы быть стандартными для данной реакции, что легко распознается специалистом в данной области техники. Специалист в области органического синтеза поймет, что функциональность, присутствующая в различных частях полученной молекулы, должна быть совместима с предложенными реагентами и реакциями. Не все молекулы формулы (I), попадающие в указанный класс, могут быть совместимы с некоторыми условиями реакции, требуемыми в некоторых описанных способах. Такие ограничения заместителей, которые совместимы с условиями реакции, очевидны специалисту в данной области техники, и он может применять альтернативные способы.

Соединения общей формулы (I) могут быть получены реакцией аминов и 3,4-диэтоксициклобут-3-ен-1,2-диона с получением промежуточных соединений общей формулы (II), с последующей реакцией с аминами (III).

Соединения общей формулы (I), которые являются сложными эфирами гидроксаминовой кислоты, N-алкил- или N-арилгидразидами, N,N'-диалкил- или N,N'-диарилгидразидами (Ia), могут быть получены реакцией аминокислот общей формулы (IV) с промежуточными соединениями общей формулы (II) с получением кислот общей формулы (V), которые затем сочетают с гидроксиламинами или гидразинами общей формулы (VI) с применением пептидного сочетающего реагента (например, ЭДХ или ГАТУ).

Аминокислоты (Va), содержащие заместитель α карбонильной группы, могут быть получены из аминокислот общей формулы (IVa) или их энантиомеров (полученных как описано в литературе, например, K. S. Orwig et al.: Tet.Lett. (2005) 46 7007-7009) сочетанием с соединениями общей формулы (II).

Альтернативно, амины общей формулы (III), которые являются сложными эфирами гидроксаминовой кислоты, N-алкил- или N-арилгидразидами, N,N'-диалкил- или N,N'-диарилгидразидами (IIIa), могут быть получены из защищенных аминокислот общей формулы (VII) (защитная группа Pg, например, Boc или фталимидо) сочетанием с гидроксиламинами или гидразинами общей формулы (VI) с применением пептидного сочетающего реагента (например, ЭДХ или ГАТУ), с последующим удалением защитной группы, с последующей реакцией полученного амина (IIIa) с промежуточными соединениями общей формулы (II).

Гидроксиламины (VI) либо коммерчески доступны, либо могут быть получены из N-гидроксифталимида (или, альтернативно, втор-бутилгидроксикарбамата) алкилированием с галогенидом и основанием (например, ДБУ) или реакцией Мицунобу со спиртом (с применением, например, ДЭАД), с последующим снятием защиты гидразином или метилгидразином, с получением гидроксиламина (VIa).

Если R2 не является водородом, полученный гидроксиламин (VIa) может быть подвергнут восстановительному аминированию с альдегидом или кетоном с последующим восстановлением с, например, цианоборгидридом натрия, как описано в литературе (например, B.J. Mavunkel et al.: Eur.J.Med.Chem. (1994) 29, 659-666; T. Ishikawa et.al.: J.Antibiotics (2000), 53 (10), 1071-1085; J. Ishwara Bhat et al.: J.Chem.Soc, Perkin Trans. 2 (2000), 1435-1446). Альтернативно, алкилирование гидроксиламина (VIa) может быть достигнуто реакцией Мицунобу или алкилированием после защиты, например, 2-нитрофенилсульфонилхлоридом, и последующим удалением защитной группы (с применением, например, тиофенола и карбоната цезия).

(где "Va" должно читаться как "VIa")

(где "Va" должно читаться как "VIa" и "V" должно читаться как "VI")

Гидразины (VI) либо коммерчески доступны, либо - если R2 является H - могут быть получены из гидразингидрата алкилированием в присутствии основания, согласно описанным в литературе методам (например, DJ. Drain et al.: J.Med.Chem. (1963) 6 63-9; G. B. Marini-Bettolo et al.: Rend.Ist.Super.Sanita (1960) 23 1110-27). N,N'-дизамещенные гидразины могут быть получены из монозамещенных гидразинов (VIa) реакцией с альдегидом или кетоном с последующим восстановлением с, например, водородом, LiAlH4, или бораном, согласно описанным в литературе методам (например, H. Dorn et.al.: Zeitschrift fur Chemie (1972) 12(4) 129-30; R.L. Hinman: JACS (1957) 79 414-417; J.A. Blair: JCS (Section) C: Organic (1970) (12) 1714-17) или, альтернативно, Boc-защитой гидразингидрата, алкилированием с алкилгалогенидом в присутствии гидрида натрия с последующим вторым алкилированием с другим алкилгалогенидом в присутствии гидрида натрия, и, наконец, удалением Boc-защитных групп (L.Ling et al.: Bioorg. Med. Chem. Lett. (2001) (11) 2715-2717).

Соединения общей формулы (I) в соответствии с данным изобретением, которые являются N-алкокси- или N-арилокситиоамидами или тиогидразидами (Ib), могут быть получены из соответствующих соединений карбонила (Ia) обработкой с реагентом Ловессона согласно описанным в литературе методам (например, Thomsen et al.: Org. Synth. (1984) 62, 158, R.A. Cherkasov et al.: Tet. (1985) 41, 2567; M. P. Cava, MJ. Levinson Tet. (1985) 41, 5061).

Альтернативно, защищенные аминокислоты общей формулы (VII) (защитной группой является, например, Boc или фталимидо) могут быть превращены в активированные виды общей формулы (VIII) согласно описанным в литературе методам (M.A. Shalaby et al.: J.Org.Chem. (1996) 61 9045-48) и далее подвергнуты взаимодействию с гидроксиламинами или гидразинами (VI) с последующим снятием защиты и последующей реакцией амина (IIIb) с промежуточными соединениями общей формулы (II) как описано ниже.

Соединения (I) в соответствии с данным изобретением, которые являются N-алкокси- или N-арилоксисульфонамидами, -сульфонамидами или сульфонилгидразидами (Ic), могут быть получены реакцией промежуточных соединений общей формулы (II) с аминами общей формулы (IIIc). Амины общей формулы (IIIc) могут быть получены, как описано в предварительной заявке на патент США 61/051130 (не опубликованной) и PCT/DK2009/000006.

Соединения (I) в соответствии с данным изобретением, которые являются N-алкокси-P-алкилфосфонамидатами или N-арилокси-P-алкилфосфонамидатами, P-алкилфосфонамидатами или P-алкилфосфоногидразидатами (Id), могут быть получены реакцией защищенных фталимидо фосфонохлоридатов (IX) (полученных как описано в литературе, например, S. Gobecet at.al.: Tet.Lett. (2002) 43 167-170; U. Urleb et al.: Lett. In Peptide Science (1995) 2 193-197) с гидроксиламинами, аминами или гидразинами (VI), соответственно, в присутствии основания с последующим снятием защиты гидразингидратом. Полученный амин (IIId) затем подвергают взаимодействию с соединениями общей формулы (II) с получением соединений (Id). Могут применяться другие защитные группы, отличные от фталимидо.

Соединения (I) в соответствии с данным изобретением, которые являются N-алкокси-P-алкилфосфиновыми амидами или N-арилокси-P-алкилфосфиновыми амидами, P-алкилфосфиновыми амидами или P-алкилфосфиновыми гидразидами (Ie), могут быть получены взаимодействием защищенных фталимидо алкилфосфиновых хлоридов (X) (например, S. Gobec et al.: Lett. In Peptide Science (1998) 5 109-114) с гидроксиламинами, аминами или гидразинами (VI), соответственно, в присутствии основания с последующим снятием защиты гидразингидратом. Полученный амин (IIIe) затем подвергают взаимодействию с соединениями общей формулы (II) с получением соединений формулы (Ie). Могут применяться другие защитные группы, отличные от фталимидо.

Соединения (I) в соответствии с данным изобретением, которые являются сульфонилмочевинами (If), могут быть получены известными в литературе способами (например, B. Hökfelt et al.: J.Med.&Pharm. Chem. (1962) 5 231-9; R. Tull et al. JCS Section C:Organic (1967) (8) 701-2;B. Loev: J. Med. Chem. (1963) 6(5) 506-8; D. R. Cassady et al.: J.Org.Chem. (1958) 23 923-6; D. Freitag : Tetrahedron (2005) 61 5615-21; Y. Kanbe et.al.: Bioorg. Med. Chem. Lett. (2006) 16 4090-94; I. Ubarretxena-Belandia et.al.: Eur.J.Biochem. (1999) 260 794-800; B. D. Roth et al.: Bioorg. Med. Chem. Lett. (1995) 5 (20) 2367-70), например, реакцией подходящим образом защищенных аминоалкансульфонилхлоридов (XII) (см., например, предварительную заявку на патент США № 61/051130 (не опубликована) и PCT/DK2009/000006) с аммониевым эквивалентом или амином, с последующей реакцией с алкилхлорформиатом в присутствии основания