Способ оценки стойкости тонких защитных покрытий материалов при высокоэнергетическом воздействии на них

Иллюстрации

Показать все

Изобретение относится к способу оценки защитных свойств тонких покрытий от поверхностной деградации (разрушения, эрозии, распыления) защищаемых материалов при воздействии на них высокоэнергетических излучений, преимущественно в вакууме. Отличительная особенность способа оценки стойкости тонких защитных покрытий материалов при высокоэнергетическом воздействии заключается в том, что в качестве воздействия используют фокусированный ионный пучок, а в качестве инструментального средства определения физических параметров разрушений в малых областях образцов используют сканирующий зондовый микроскоп со средствами обработки результатов измерений. Разрушение тонких защитных субмикронных покрытий в виде канавок в них от действия фокусированного ионного пучка определяют по параметрам глубины и/или микрорельефа канавок по величинам их средних линий в сравнении с аналогичными параметрами канавок эталонного образца. Далее производят определение скоростей разрушения защитного покрытия и эталонного образца во времени. По сравнению этих скоростей разрушения судят о степени стойкости защитного покрытия в сравнении с материалом эталонного образца. Технический результат - разработка способа сравнительной количественной параметрической оценки стойкости тонких субмикронных защитных покрытий материалов к воздействию корпускулярных высокоэнергетических потоков, преимущественно в условиях вакуума, моделирующих условия космического пространства. 4 з.п. ф-лы, 4 ил., 1 табл.

Реферат

Область техники

Изобретение относится к способу оценки защитных свойств тонких покрытий от поверхностной деградации (разрушения, эрозии, распыления) защищаемых материалов при воздействии на них высокоэнергетических излучений, преимущественно в вакууме.

Уровень техники

В настоящее время большое внимание уделяется вопросам стойкости материалов внешних конструкций, применяемых в космических аппаратах (КА), к потокам корпускулярных высокоэнергетических излучений в условиях открытого космоса. В условиях открытого космоса материалы КА подвергаются воздействию таких космических факторов, как сверхвысокий вакуум, высокоэнергетические излучения, резкие перепады температуры, микрометеориты и др., которые приводят к снижению эксплуатационного срока как отдельных узлов, так и целого КА. Воздействие факторов космического пространства приводит к разрушению материалов и утрате их физико-механических характеристик, а также к увеличению продуктов газовыделения материалов внешних конструкций КА и соответственно к увеличению плотности собственной внешней атмосферы КА, которая, оседая на оптических элементах КА, вызывает ухудшение оптических характеристик приборов КА.

Среди средств защиты материалов КА от воздействия факторов космического пространства выделяют, помимо подбора специальных материалов, стойких к факторам КП, также создание ионно-модифицированных поверхностных слоев с тонкими покрытиями (пленками) на материалах, применяемых в КА.

Выбор материалов осуществляют по применимости в конструкциях космических аппаратов, используемых в условиях открытого космоса. Отбор основных материалов для применения в КА производят по следующим критериям: - по параметру потери массы рекомендуется применять неметаллические материалы, используемые для внешних конструкций КА, с величиной общей потери массы не более 1,0%. Допускается применение материалов с превышением показателя общей потери массы 1,0% в случае невозможности его замены аналогичными материалами с удовлетворительными показателями.

Выбор защитных тонких покрытий осуществляют на основе априорных характеристик материалов покрытий по стойкости к факторам космического пространства и их хорошей адгезии к защищаемому материалу. Способы получения и количественных оценок этих характеристик сопряжены с большими трудностями в первую очередь из-за малой микронной, субмикронной или даже наноразмерной толщины этих покрытий.

Для работы с такими малыми толщинами материалов в настоящее время есть ряд общих методов, среди которых можно в первую очередь выделить:

- для контролируемых разрушений малых толщин материала - метод фокусированного ионного пучка (ФИП, английский вариант: Focused Ion Beam (FIB) или Focused Particle Beam);

- для исследования и оценки различных характеристик таких материалов - методы сканирующей зондовой (контактной) или электронной (бесконтактной) микроскопии.

По использованию ФИП для удаления малых толщин материалов есть достаточно большое количество патентов в области литографии, например патент США 5482802 (МПК G03F 1/00, G03F 9/00, опубл. 09.01.1996) на изобретение «Удаление материала фокусированными пучками частиц» (Material removal with focused particle beams).

Однако в этих патентах не используют метод сканирующей микроскопии.

По одновременному использованию ФИП и сканирующей микроскопии (электронной, но не зондовой) обнаружен только 1 патент США 7069155 (МПК G01B 5/00; G03F 1/00; G06K 9/00, опубл. 27.06.2006) на изобретение «Аналитический монитор реального времени для инспекции мягких дефектов на сетке» (Real time analytical monitor for soft defects on reticle during reticle inspection).

Однако это изобретение относится к области полупроводниковой техники для химического (а не физического) анализа дефектов фотолитографических сеток.

Наиболее близким аналогом (прототипом) по объекту исследований - защитному покрытию материала, физической направленности задач, последовательности действий и набору существенных признаков можно признать способ по патенту США 4704297 (МПК G01B 11/06; G01N 19/04; G01N 21/94; G01N 21/95; B05D 1/04, опубл. 03.11.1987) «Оценка порошковых покрытий» (Assessing powder coatings), включающий сфокусированное высокоэнергетическое воздействие на малые области двух образцов с покрытием и эталонное (без покрытия) для сравнения и определения параметров деструкции (эрозии) после воздействия. Данный способ предназначен для количественной оценки адгезии покрытия к подложке и оценки толщины самого покрытия. Суть прототипного способа состоит в направлении деструктивного высокоэнергетического воздействия - фокусированной гидроструи под давлением на поверхность покрытия с фиксированного расстояния в течение заданного промежутка времени. Инструментальное средство для сравнительного контроля параметров деструкции образца покрытия материала и второго эталонного образца представлено в виде источника инфракрасного излучения и детектора проходимости этого излучения сквозь области воздействия образцов после деструктивного воздействия. Преимущественно эксперименты проводят с повторами и в герметичном корпусе для исключения влияния факторов внешней среды.

Однако в этом изобретении отсутствует использование метода ФИП и метода сканирующей микроскопии, которые еще практически не применялись в 1980-х гг. Поэтому данный способ не применим для оценки стойкости покрытий с толщинами менее 1 мкм, применяемых в настоящее время в космической отрасли. Поскольку используемое в указанном способе воздействие является достаточно макромасштабным, оно не позволяет достичь оценки субмикроразмерных участков, подвергнутых воздействию. Применение ФИП в качестве воздействующего излучения на покрытие и сканирующей микроскопии в качестве средства анализа позволит устранить эти ограничения и использовать предлагаемый способ для оценки микро- и наноразмерных покрытий.

Раскрытие изобретения

Задача изобретения - разработка способа сравнительной количественной параметрической оценки стойкости тонких субмикронных защитных покрытий материалов к воздействию корпускулярных высокоэнергетических потоков, преимущественно в условиях вакуума, моделирующих условия космического пространства.

Главным отличием предлагаемого способа от прототипного является одновременное применение в едином технологическом цикле сфокусированного ионного пучка в качестве контролируемого высокоэнергетического микровоздействия на защитные покрытия и материалы и количественной оценки стойкости различных покрытий к воздействию корпускулярного излучения ФИП за счет использования сканирующей зондовой (контактной) микроскопии или профилометрии. Преимущество применения зондового микроскопа по сравнению с прототипом, в котором нет метода определения профиля распыленной области, заключается в высоком разрешении определения глубины канавки, полученной в ходе разрушения (распыления) от воздействия ФИП, таким образом можно выявить глубину канавки с высотой до 1 нм и скоростями разрушения в несколько десятков пикометров в секунду (пм/с).

Суть предлагаемого способа заключается в сравнении скорости разрушения материала и материала с защитным покрытием при облучении участков поверхностей высокоэнергетическим потоком направленных ионов, преимущественно галлия, и последующем сравнительном анализе этих участков по параметрам глубины образованных от воздействия ФИП канавок и/или рельефов канавок по величинам их средних линий.

Способ оценки стойкости тонких защитных покрытий материалов при высокоэнергетическом воздействии на них включает единый технологический цикл, состоящий из контролируемого фокусированного высокоэнергетического воздействия в течение заданного периода времени на малые области двух сравниваемых образцов: тестовый с покрытием и эталонный, инструментального определения и сравнительного анализа физических параметров разрушений в малых областях образцов в результате воздействия. При этом в качестве воздействия используют фокусированный ионный пучок, в качестве инструментального средства определения физических параметров разрушений в малых областях образцов используют сканирующий зондовый микроскоп со средствами обработки результатов измерений. Разрушение тонких защитных субмикронных покрытий в виде канавок в них от действия фокусированного ионного пучка определяют по параметрам глубины и/или микрорельефа канавок по величинам их средних линий в сравнении с аналогичными параметрами канавок эталонного образца. Далее производят определение скоростей разрушения защитного покрытия и эталонного образца во времени. По сравнению этих скоростей разрушения судят о степени стойкости защитного покрытия в сравнении с материалом эталонного образца.

Преимущественно в качестве эталонного образца выбирают тот же защищаемый покрытием материал подложки, но уже без покрытия.

В качестве тонких защитных покрытий могут использовать покрытия, полученные осаждением из углеродных, или металлических, или полупроводниковых, или полимерных материалов.

Могут производить повторные испытания одних и тех же образцов с варьированием контролируемых параметров воздействия фокусированного ионного пучка и времени его воздействия на образцы в одних тех же или в разных малых областях образцов.

Преимущественно производят испытания образцов в герметичных условиях вакуума с возможностью моделирования факторов космического пространства.

Перечень фигур

Фиг.1 - внешний вид установки для реализации способа.

Фиг.2 - схема расположения покрытия и подложки при воздействии ФИП.

Фиг.3 - схема сканирования зондом покрытия и подложки с канавками после воздействия ФИП.

Фиг.4 - 3D-модель микроскопического рельефа участка поверхности покрытия и подложки с канавками после воздействия ФИП.

Осуществление изобретения

Для осуществления предлагаемого способа необходимо использовать методы ФИП и сканирующей зондовой микроскопии, реализованные в едином технологическом цикле. Для этого был использован литографический нанотехнологический комплекс «Нанофаб-100» производства компании «НТ-МДТ» (Россия, г.Зеленоград МО), в котором есть камера загрузки образцов и предварительного вакуумирования, система транспортировки и перемещения образцов, шлюзования система и рабочие камеры фокусированного ионного пучка и сканирующей зондовой микроскопии. На фиг.1 представлен внешний вид этого комплекса, состоящего из вакуумной системы 1, шлюзовой камеры загрузки образцов материалов 2, шлюзовой камеры загрузки зондовых датчиков 3, транспортной системы перемещения образцов 4, рабочей камеры фокусированного ионного пучка 5 и рабочей камеры сканирующей зондовой микроскопии 6. В состав вакуумной системы входит форвакуумный и ионный насосы, обеспечивающие вакуум 2·10-7 Па. Система перемещения образцов осуществляет точное позиционирование образца под воздействие высокоэнергетического пучка излучения и перемещение образца от камеры загрузки в рабочую камеру.

Параметры рабочей камеры фокусированного ионного пучка:

источник ионов Ga
давление в камере ≤1.3×10-9 Па
рабочее давление в камере ФИП ≤10-6 Па
энергия ионного пучка 3…30 кВ
ионный ток от 1 пА до 40 пА
минимальный размер пятна <10 нм при токе 1 пА

Работа установки

В рабочих камерах постоянно поддерживается сверхвысокий вакуум. Загрузку осуществляют через загрузочную камеру, вакуумируют образцы до давления 2·10-7 Па. Образцы с помощью манипуляторов транспортируют в рабочую камеру фокусированного ионного пучка. В режиме высокоэнергетического ионного облучения выбранного участка образца в оптимальном режиме ток эмиссии ионов составляет от 1 пА до 40 нА. Ионы ускоряются до номинальной энергии 30 кэВ. Часть пучка вырезается апертурной диафрагмой и фокусируется электростатическими линзами. Для отклонения пучка и коррекции астигматизма служит дефлектор-стигматор.

Параметры высокоэнергетического ионного излучения:

энергия ионов Ga+ 30 кэВ
время варьируемое
напряжение на экстракторе 9±0.3 кВ
напряжение на супрессоре 1±0.1 кВ
напряжение на конденсоре 10 кВ
напряжение на объективе 15888±10 В
апертура 10 мкм
ток пучка 2 мкА
рабочее давление 10-9 мбар
диаметр пучка 10 нм

При подготовке к сравнительным испытаниям осуществляют выбор двух образцов материала без покрытия и материала с тонким защитным покрытием, которые помещают в вакуумную камеру.

Для реализации предлагаемого способа в отличие от технологии чистой литографии, для которой изначально предназначен «Нанофаб-100», потребовалось внести ряд существенных изменений и регулировок в исходную работу комплекса, а именно для создания высокоэнергетического воздействия с целью определения стойкости тонких защитных покрытий была осуществлена дополнительная настройка ионной колонны источника для контроля параметров пучка, поскольку оценка стойкости микроразмерных покрытий в результате воздействия требует повторяемости и контролируемости параметров воздействия, а для литографии это практически не требуется. А также в установку был подготовлен и встроен специальный столик для образцов с целью прецизионного контроля их положения при проведении точного сравнительного анализа образцов методом сканирующей зондовой микроскопии после воздействия ФИП. Область воздействия образца имеет микроразмерные параметры, что требует высокой точности позиционирования в отличие от литографии, где воздействие носит групповой характер по площади, что на два порядка больше микроразмерных областей воздействия по предлагаемому способу.

Пример осуществления способа

На фиг.2, 3 представлены схемы воздействия ФИП на образцы и сканирования зондом образцов с канавками после действия ФИП (подложка 7, покрытие 8, ФИП 9, зонд 10), на фиг.4 - 3D-модель микроскопического рельефа участка поверхности покрытия и подложки после воздействия ФИП.

В качестве покрытия подложки - пластины кремния был выбран углеродный алмазоподобный материал с толщиной 80 нм. Выбранный материал в качестве покрытия на пластине кремния облучают высокоэнергетическим сфокусированным потоком ионов галлия так, чтобы облучению одновременно подвергались материал покрытия и подложка кремния. Таким образом, воздействие высокоэнергетических корпускулярных ионизированных потоков моделирует фактор открытого космического пространства. Это позволяет облучать материал ионизированными потоками и контролировать скорость разрушения материала. Для создания высокоэнергетического сфокусированного потока ионов галлия используют специальный отдельный источник, представляющий собой конструкцию колонны, включающей блок жидкометаллических источников ионов (ЖМИИ) из галлия, который обеспечивает высокую однородность, интенсивность и управляемость потока, и электронно-магнитную систему линз. При поступлении высокого отрицательного напряжения на вытягивающий электрод ЖМИИ подвергается воздействию электрического поля. Электрическое поле достаточной силы формирует из покрывающего подложку галлия конус Тейлора. Деформация жидкого металла на подложке в конус происходит только после воздействия электрического поля достаточной мощности. После достижения такого критического напряжения формируется конус и начинается эмиссия ФИП. При начале эмиссии происходит повышение тока до значения примерно 200 мкА/кВ приложенного напряжения. На данном этапе плотность тока на поверхности жидкости достигает примерно 108 A на один квадратный сантиметр. Очень маленькое острие (зарождающаяся струя) с радиусом на конце примерно 20 Å выступает из конца конуса. В данной точке зарождения струи происходит ионная эмиссия из-за испарения в электрическом поле. Источник имитирует корпускулярное излучение в диапазоне энергий от 3 до 30 кэВ.

Воздействию этого высокоэнергетического ионного излучения подвергались образцы исходного материала (пластин кремния) и материала с защитным тонким покрытием (из алмазоподобного углерода) в количестве по три области на каждый образец с размером области воздействия, превышающей размер ионного пучка. Облучению сфокусированным потоком ионов галлия подвергался участок размером до 400 мкм шириной и 400 мкм длиной. После этого образцы передавались в рабочую камеру сканирующей зондовой микроскопии, где производилось сканирование областей после воздействия ФИП (см. фиг.4). В процессе сканирования определялись глубины образовавшихся канавок и параметры шероховатости микрорельефа области воздействия ионов - среднее отклонение профиля. По результатам определения величин глубины и микрорельефа поверхности канавок проводили оценку сравнительной скорости разрушения тонких защитных покрытий при моделирующем воздействии на них высокоэнергетических излучений.

Подложка кремния выступает в качестве эталонного образца с известной и постоянной скоростью разрушения (распыления, эрозии) и служит для сравнительной оценки скорости разрушения покрытия относительно скорости разрушения подложки. Поскольку кремний является достаточно хорошо изученным материалом в настоящее время в области распыления фокусированным ионным пучком с известными расчетными данными, то применение данного способа для оценки различных тонких защитных покрытий, в том числе композиционных, в сравнении с известными данными по кремнию может характеризовать материал покрытия на стойкость к воздействию корпускулярных высокоэнергетических потоков.

В приведенном примере характер распыления под воздействием ионного пучка как материала подложки (кремний), так и материала покрытия (алмазоподобный углерод) оказался таковым, что облученная поверхность имеет минимальную шероховатость поверхности рельефа (см. фиг.4, отдельные высокие столбики на 3D-модели - это единичные сбои в работе зондового микроскопа, которые не следует принимать в расчет). Поэтому в данном случае для оценки скорости распыления материала определялись глубины канавок (см. таблица 1). Возможны случаи, когда характер распыления материала таков, что поверхность рельефа дна канавок после воздействия будет иметь очень большую шероховатость. Например, это характерно для полимерных материалов. В таком случае для определения скорости распыления материала потребуется статистическая обработка данных о топологии поверхности, подвергнутой ионному воздействию, с целью определения средней глубины распыления.

Для приведенного примера получены результаты, позволяющие говорить о более высокой стойкости покрытия к ионному воздействию в сравнении со стойкостью монокристаллического кремния. Так, скорость распыления подложки кремния (от 40 до 53 пм/с) оказалась от 2 до 2,5 раз выше, чем скорость распыления материала покрытия (от 15 до 26 пм/с), что свидетельствует о достаточно высокой стойкости и потенциальной применимости покрытия для материалов, используемых на аппаратах в открытом космосе.

Таблица 1
№ области Ток ФИП, пА Зона воздействия, мкм Общее время воздействия ФИП, с Глубина распыленного материала в зоне воздействия ФИП, нм Скорость распыления, пм/с
расчетная для подложки реальная для подложки реальная для покрытия подложки покрытия
1 46,5 10×30 325 15,38 13 5 40 15
2 47,3 661 31,82 31 11 47 17
3 47,0 1321 63,19 70 35 53 26

В результате предлагаемый способ может применяться для оценки стойкости защитных покрытий с толщиной менее 1 мкм и обладает высокой степенью воспроизводимости результатов за счет точного задания параметров фокусированного воздействия и сканирующей зондовой микроскопии.

1. Способ оценки стойкости тонких защитных покрытий материалов при высокоэнергетическом воздействии на них, заключающийся в едином технологическом цикле, состоящем из контролируемого фокусированного высокоэнергетического воздействия в течение заданного периода времени на малые области двух сравниваемых образцов: тестовый с покрытием и эталонный, инструментального определения и сравнительного анализа физических параметров разрушений в малых областях образцов в результате воздействия, отличающийся тем, что в качестве воздействия используют фокусированный ионный пучок, в качестве инструментального средства определения физических параметров разрушений в малых областях образцов используют сканирующий зондовый микроскоп со средствами обработки результатов измерений, разрушение тонких защитных субмикронных покрытий в виде канавок в них от действия фокусированного ионного пучка определяют по параметрам глубины и/или микрорельефа канавок по величинам их средних линий в сравнении с аналогичными параметрами канавок эталонного образца; далее производят определение скоростей разрушения защитного покрытия и эталонного образца во времени, по сравнению этих скоростей разрушения судят о степени стойкости защитного покрытия в сравнении с материалом эталонного образца.

2. Способ по п.1, отличающийся тем, что в качестве эталонного образца выбирают тот же защищаемый покрытием материал подложки, но уже без покрытия.

3. Способ по п.1 или п.2, отличающийся тем, что в качестве тонких защитных покрытий используют покрытия, полученные осаждением из углеродных, или металлических, или полупроводниковых, или полимерных материалов.

4. Способ по п.1, отличающийся тем, что производят повторные испытания одних и тех же образцов с варьированием контролируемых параметров воздействия фокусированного ионного пучка и времени его воздействия на образцы в одних тех же или в разных малых областях образцов.

5. Способ по п.1, отличающийся тем, что производят испытания образцов в герметичных условиях вакуума с возможностью моделирования факторов космического пространства.