Жевательные резинки с улучшенной удаляемостью остатка

Иллюстрации

Показать все

Изобретение относится к кондитерской промышленности. Предложено два варианта жевательной резинки. Жевательная резинка после окончания жевания образует остаток. В первом варианте изобретения этот остаток характеризуется величиной параметра деформационного упрочнения менее 0. Во втором варианте изобретения остаток характеризуется величиной параметра деформационного упрочнения более 2,0. Изобретение позволяет получить жевательную резинку, которая после употребления легко удаляется с различных поверхностей. 2 н. и 29 з.п. ф-лы, 3 ил., 10 табл., 33 пр.

Реферат

Перекрестные ссылки на родственные заявки

Данная заявка претендует на приоритет предварительной заявки США на патент №61/241080, поданной 10 сентября 2009 г., предварительной заявки США на патент №61/263452, поданной 23 ноября 2009 г., предварительной заявки США на патент №61/325529, поданной 19 апреля 2010 г., предварительной заявки США на патент №61/325542, поданной 19 апреля 2010 г., предварительной заявки США на патент №61/371073, поданной 5 августа 2010 г., предварительной заявки США на патент №61/373431, поданной 13 августа 2010 г., и предварительной заявки США на патент №61/373454, поданной 13 августа 2010 г., все эти заявки включены в данную заявку в качестве ссылок.

Предпосылки создания изобретения

Настоящее изобретение относится к жевательной резинке и к ее основам (гуммиосновам). Более конкретно, данное изобретение относится к усовершенствованным жевательным резинкам и к гуммиосновам, которые образуют после жевания остатки, характеризующиеся улучшенной удаляемостью с окружающих поверхностей благодаря показателю их текучести при растяжении.

Основными компонентами жевательной резинки обычно являются не растворимая в воде гуммиоснова и обычно растворимая в воде объемная часть. Основной компонент гуммиосновы представляет собой эластомерный полимер, который обеспечивает характерные жевательные свойства продукта. Гуммиоснова обычно включает другие ингредиенты, которые модифицируют жевательные свойства или способствуют переработке продукта. Эти ингредиенты включают пластификаторы, мягчители, наполнители, эмульгаторы, пластические смолы, а также красители и антиоксиданты. Водорастворимая часть жевательной резинки обычно включает объемообразующий агент вместе с небольшими количествами вторичных компонентов, таких как ароматизаторы, интенсивные подсластители, красители, водорастворимые мягчители, эмульгаторы для смол, подкислители и вкусовые вещества. Обычно растворимая в воде часть, вкусовые вещества и ароматизаторы рассеиваются во время жевания, а гуммиоснова остается во рту. Даже если ароматизаторы и вкусовые вещества часто не растворяются в воде, они по меньшей мере частично высвобождаются вместе с растворимым в воде объемообразующим агентом в процессе жевания и считаются компонентами растворимой в воде части.

Одной из проблем, связанных с жевательными резинками, является неудобство удаления остатка от жевания жевательной резинки, когда такой остаток выбрасывается неподходящим образом. Хотя потребители жевательных резинок легко могут выбросить такие остатки в сборники отходов, некоторые потребители намеренно или нечаянно выбрасывают остатки на тротуары или другие окружающие поверхности. Природа жевательных резинок может привести к тому, что остатки, выброшенные неподходящим образом, прилипают к окружающей поверхности, затем на них могут наступить и расплющить с получением массы, которую чрезвычайно трудно удалить.

Сущность изобретения

Данное изобретение направлено на новые жевательные резинки и гуммиосновы, которые после окончания жевания образуют остатки, которые благодаря их уникальному показателю текучести при растяжении отличаются улучшенной удаляемостью с окружающих поверхностей по сравнению с большинством коммерчески доступных жевательных резинок. Конкретно, такие жевательные резинки образуют после жевания остатки, имеющие такой показатель текучести при растяжении, как их параметр вязкостно-деформационного упрочнения при одноосном растяжении (), величина которого меньше нуля или больше 2,0.

Краткое описание рисунков

На Фигуре 1 показана зависимость величины продольной вязкости при одноосном растяжении от истинной деформации / деформации по Хенки для выбранных Примеров и для сравнительных примеров.

На Фигуре 2 показан график зависимости предела продольной вязкости при одноосном растяжении от параметра деформационного упрочнения при одноосном растяжении для выбранных Примеров и для сравнительных примеров.

На Фигуре 3 показан график зависимости количества остатка жевательной резинки после удаления от параметра деформационного упрочнения при одноосном растяжении для выбранных Примеров и для сравнительных примеров.

Описание изобретения

Хотя было несколько попыток измерить продольную вязкость остатков после жевания жевательной резинки, недавнее испытание показало, что типичные коммерческие жевательные резинки после жевания приводят к образованию остатков, имеющих величину параметра деформационного упрочнения (SHP) при одноосном растяжении, находящуюся в интервале от примерно 0,4 до примерно 1,8. Хотя есть некоторые исключения, остатки, полученные из этих коммерческих продуктов, имеют также низкую величину предела продольной вязкости при одноосном растяжении (), обычно менее 106 П. Полагают, что интервал значений SHP легко определить в случае дающих ощущение вкуса приемлемых смесей доступных полимеров гуммиосновы и что низкая величина предела продольной вязкости является результатом регулирования текстуры продукта (путем добавления пластификаторов и мягчителей) для обеспечения приемлемой для потребителя жевательной способности. Однако сопутствующим результатом получения в условиях такого ограничения является то, что полученный продукт имеет тенденцию к образованию такого остатка, который сильно прилипает к шероховатым пористым поверхностям, таким как бетон.

Данное изобретение обеспечивает получение усовершенствованных жевательных резинок и гуммиоснов этих резинок. В соответствии с данным изобретением получаются новые гуммиосновы и жевательные резинки, которые обеспечивают образование остатка, проявляющего такие показатели текучести при растяжении, как параметр деформационного упрочнения при одноосном растяжении (), величина которого меньше нуля. Или же остаток будет иметь параметр деформационного упрочнения при одноосном растяжении (), величина которого больше 2,0. Неожиданно было обнаружено, что остатки после жевания жевательных резинок, имеющие один или второй из указанных показателей, имеют тенденцию к улучшенной удаляемости с окружающих поверхностей по сравнению с остатками большинства известных жевательных резинок.

С применением составов гуммиоснов, описанных ниже, можно изготовить ряд гуммиоснов и жевательных резинок, которые удовлетворяют требованиям заявленного изобретения. Согласно некоторым вариантам данное изобретение предусматривает получение жевательных резинок, содержащих гуммиосновы, которые являются обычными гуммиосновами, содержащими воск или не содержащими воска. Согласно другим вариантам данное изобретение предусматривает получение жевательных резинок, которые могут иметь низкое или высокое содержание влаги и содержать небольшие или большие количества сиропа, включающего влагу. Жевательные резинки с низким содержанием влаги представляют собой жевательные резинки, содержащие менее 1,5% или менее 1% или даже менее 0,5% воды. В противоположность этому жевательными резинками с высоким содержанием влаги считаются резинки, содержащие более 1,5% или более 2% или даже более 2,5% воды. Жевательные резинки могут содержать сахар или могут быть с низким содержанием сахара или вообще не содержать сахара, когда их получают с применением сорбита, маннита, других полиолов и несахарных углеводов.

В то время, как свойства текучести в основном определяются композицией гуммиосновы, не растворимой в воде, компоненты в обычно растворимой в воде части жевательной резинки могут оказывать по меньшей мере небольшое влияние на реологию остатка от жевательной резинки. Ароматизаторы и вкусовые вещества (и другие компоненты, не растворяющиеся в воде, которые составляют небольшое количество в обычно растворимой в воде части резинки) вполне могут влиять на продольную вязкость при одноосном растяжении.

Показатели текучести при растяжении относятся к тенденции пластической массы к течению. Эти реологические свойства включают предел продольной вязкости при одноосном растяжении () и параметр деформационного упрочнения при одноосном растяжении () Предел вязкости описывает склонность массы к началу течения. Массы с высокой величиной предела вязкости обладают большим сопротивлением, которое надо преодолеть, чтобы масса начала течь. Параметр деформационного упрочнения при одноосном растяжении описывает стремление массы продолжать течь, как только исходное сопротивление будет преодолено. Массы с положительным значением этого показателя () характеризуются увеличением сопротивления текучести по мере растягивания потока. Таким образом, они имеют тенденцию к сопротивлению течению после начала течения. В противоположность этому массы с отрицательным значением подвергаются деформационному размягчению и не оказывают сопротивления течению, поэтому они стремятся продолжать течь, как только течение начинается.

Полагают, что остатки после жевания жевательных резинок, известных из уровня техники, когда они прикрепляются к шероховатым окружающим поверхностям, таким как поверхность бетона, легко начинают течь вследствие низкой величины предела вязкости. Из-за наличия у них низкого положительного значения параметра деформационного упрочнения при одноосном растяжении они склонны к продолжению течения и затекают в поры и трещины на шероховатых окружающих поверхностях. Поэтому такие остатки очень трудно полностью удалить с поверхности через некоторое время.

Не намереваясь ограничиться какой-либо теорией, полагают, что жевательные резинки согласно данному изобретению, которые образуют остатки, обладающие низкой величиной предела вязкости, но высоким значением значения параметра деформационного упрочнения, начинают течь, но сопротивляются течению перед тем, как масса проникнет в нерегулярности структуры шероховатой поверхности. Жевательные резинки в соответствии с данным изобретением, которые образуют остатки, обладающие низким значением параметра деформационного упрочнения, как было установлено, также характеризуются улучшенной удаляемостью, особенно в случаях, когда величина предела продольной вязкости при растяжении выше 106 Па. Неожиданно оказалось, что жевательные резинки согласно данному изобретению, которые образуют остатки, характеризующиеся низким значением параметра деформационного упрочнения и низким значением предела продольной вязкости при растяжении также имеют улучшенную удаляемость по сравнению с большинством коммерческих жевательных резинок.

Согласно некоторым вариантам данного изобретения жевательные резинки по изобретению после жевания образуют остатки, характеризующиеся величиной параметра деформационного упрочнения при одноосном растяжении (), составляющей более 2,0. Согласно некоторым вариантам данного изобретения жевательные резинки по изобретению после жевания образуют остатки, характеризующиеся величиной параметра деформационного упрочнения при одноосном растяжении(), составляющей более 2,1. Согласно некоторым вариантам данного изобретения жевательные резинки по изобретению после жевания образуют остатки, характеризующиеся величиной параметра деформационного упрочнения при одноосном растяжении(), составляющей более 2,2. Согласно некоторым вариантам данного изобретения жевательные резинки по изобретению после жевания образуют остатки, характеризующиеся величиной параметра деформационного упрочнения при одноосном растяжении(), составляющей более 2,3. Согласно некоторым вариантам данного изобретения жевательные резинки по изобретению после жевания образуют остатки, характеризующиеся величиной параметра деформационного упрочнения при одноосном растяжении(), составляющей менее 0. Согласно некоторым вариантам данного изобретения жевательные резинки по изобретению после жевания образуют остатки, характеризующиеся величиной параметра деформационного упрочнения при одноосном растяжении(), составляющей менее - 0,5. Согласно некоторым вариантам данного изобретения жевательные резинки по изобретению после жевания образуют остатки, характеризующиеся величиной параметра деформационного упрочнения при одноосном растяжении(), составляющей менее - 1,0. Согласно некоторым вариантам данного изобретения жевательные резинки по изобретению после жевания образуют остатки, характеризующиеся величиной параметра деформационного упрочнения при одноосном растяжении(), составляющей менее - 1,5. Согласно некоторым вариантам данного изобретения жевательные резинки по изобретению после жевания образуют остатки, характеризующиеся величиной параметра деформационного упрочнения при одноосном растяжении(), составляющей менее - 2,0. Согласно некоторым вариантам данного изобретения жевательные резинки по изобретению после жевания образуют остатки, характеризующиеся величиной параметра деформационного упрочнения при одноосном растяжении (), составляющей менее 0 или менее - 0,5, или менее - 1,0, или менее - 1,5, или менее - 2,0, и величиной предела продольной вязкости при одноосном растяжении (), составляющей более 106 Па или даже более 2×106. Неожиданно оказалось, что такие остатки, имеющие отрицательное значение параметра деформационного упрочнения и довольно высокое значение предела продольной вязкости при одноосном растяжении, имеют приемлемые жевательные свойства по сравнению с остатками, имеющими положительные значения показателей параметра деформационного упрочнения и предела продольной вязкости.

Согласно некоторым вариантам жевательная резинка включает гуммиоснову, содержащую пищевой триблочный сополимер А - В - А или А - В - С, включающий мягкий средний блок и жесткие концевые блоки, при этом мягкий средний блок содержит по меньшей мере 30% вес. триблочного сополимера и каждый концевой

жесткий блок имеет Tg менее 70°C, как описано в сопутствующей заявке США на патент №61/241080. По меньшей мере некоторые такие полимеры имеют величину параметра деформационного упрочнения более 2,0.

Согласно вариантам данного изобретения, использующим триблочные сополимеры, эти сополимеры содержат мягкий средний полимерный блок, ковалентно связанный с двумя жесткими концевыми блоками в конфигурации А - В - А или А - В - С. Под мягким средним блоком понимают средний блок или блок " В ", который состоит из полимера, имеющего температуру стеклования ниже 20°C. Предпочтительно, чтобы полимер, содержащий мягкий блок, имел температуру стеклования ниже 10°C. Еще более предпочтительно, если полимер, содержащий мягкий блок, имел температуру стеклования ниже 0°C. Мягкие полимеры также имеют величину комплексного модуля сдвига, находящуюся в интервале между 103 и 108 Па и измеренную при температуре 37°C при частоте колебаний 1 рад/с. Предпочтительно, чтобы величина комплексного модуля сдвига находилась в пределах между 104 и 107, более предпочтительно между 5×105 и 5×106 Па при температуре 37°C при частоте колебаний 1 рад/с. Согласно одному из вариантов мягкий средний блок состоит из полиизопрена. Согласно другому варианту данного изобретения мягкий средний блок состоит из поли-(6-метилкапролактона). Согласно еще одному варианту данного изобретения мягкий средний блок состоит из поли-6-бутил-ε-капролактона). Согласно другим вариантам данного изобретения мягкий средний блок состоит из других полимеров алкил- или арил-замещенных капролактонов. Согласно одному из вариантов мягкий средний блок состоит из полидиметилсилоксана. Согласно одному из вариантов мягкий средний блок состоит из полибутадиена. Согласно одному из вариантов мягкий средний блок состоит из полициклооктена. Согласно еще одному варианту мягкий средний блок состоит из поливиниллаурата. Согласно еще одному варианту мягкий средний блок состоит из полиэтиленоксида. Согласно еще одному варианту мягкий средний блок состоит из полиоксиметилена. Согласно еще одному варианту мягкий средний блок состоит из полиментида. Согласно еще одному варианту мягкий средний блок состоит из полифарнезена. Согласно еще одному варианту мягкий средний блок состоит из полимирцена. Согласно еще одному варианту мягкий средний блок состоит из чередующегося или хаотического полимера. Обычно средний мягкий блок не является кристаллическим при обычных условиях хранения и при температуре во рту. Однако мягкий средний блок может содержать несколько полукристаллических доменов.

Под жесткими концевыми блоками подразумевают, что концевой блок (- и) или блок (- и -) "А" или "С" состоят из практически идентичных полимеров (в случае сополимеров А - В - А) или совместимых или несовместимых полимеров (в случае сополимеров А - В - С), имеющих Tg выше примерно 20°C. Предпочтительно, чтобы полимер (- ы), содержащие жесткие концевые блоки, имели Tg выше 30°C или даже выше 40°C. Важно также, чтобы жесткий (- ие) полимер (- ы) имели достаточно низкую Tg, чтобы можно было осуществлять удобную и эффективную переработку, особенно. Когда триблочный сополимер или система триблочного эластомера должны применяться как единственный компонент гуммиосновы. Таким образом, жесткий (- ие) полимер (- ы) должен иметь Tg ниже 70°C и предпочтительно ниже 60°C. Согласно одному из вариантов жесткий (- ие) полимер (- ы) должен иметь Tg в пределах между 20°C и 70°C. Согласно одному из вариантов жесткий (- ие) полимер (- ы) должен иметь Tg в пределах между 20°C и 60°C. Согласно одному из вариантов жесткий (- ие) полимер (- ы) должен иметь Tg в пределах между 30°C и 70°C. Согласно одному из вариантов жесткий (- ие) полимер (- ы) должен иметь Tg в пределах между 30°C и 60°C. Согласно одному из вариантов жесткий (- ие) полимер (- ы) должен иметь T° в пределах между 40°C и 70°C. Согласно одному из вариантов жесткий (- ие) полимер (- ы) должен иметь Tg в пределах между 40°C и 60°C. Применение жестких полимеров, которые имеют Tg в таком интервале, позволяет перерабатывать их при более низкой температуре, уменьшить величину момента кручения и уменьшить промежуток времени, требующийся для смешения. Это приводит к экономии энергии и эффективному смешению. В экструдерах с непрерывным смешением устраняется проблема, связанная с избытком тепла. Согласно одному из вариантов жесткий концевой блок состоит из полилактида (PLА). Согласно одному из вариантов жесткий концевой блок состоит из поливинилацетата. Согласно одному из вариантов жесткий концевой блок состоит из полиэтилентерефталата. Согласно одному из вариантов жесткий концевой блок состоит из полигликолевой кислоты. Согласно одному из вариантов жесткий концевой блок состоит из полипропилметакрилата. Согласно еще одному варианту жесткие концевые блоки состоят из чередующегося или хаотического полимера. Обычно жесткие концевые блоки являются аморфными или полукристаллическими при хранении и при температуре жевания.

Предпочтительно, если мягкий средний блок и жесткие концевые блоки были несовместимы друг с другом, чтобы происходило максимальное образование внутренних микродоменов, как описано ниже.

Температура стеклования жестких и мягкого блоков может быть измерена методом дифференциальной сканирующей калориметрии (DSC), который хорошо известен из уровня техники. Триблочные сополимеры согласно данному изобретению характеризуются термограммами DSC, на которых видны две (или возможно три, в случае триблочных сополимеров А - В - С) температуры стеклования; меньшая температура стеклования соответствует Tg мягкого блока и одна или две температуры стеклования соответствуют Tg жестких блоков. (См. Фигуру 1). В некоторых случаях может быть трудно обнаружить переход состояния жестких блоков, особенно когда содержание мягкого блока значительно превышает 50% от общей массы полимера. В таких случаях может быть синтезирован гомополимер, состоящий из одного блока или двух блоков с подобным молекулярным весом, его температура стеклования может быть измерена методом DSC.

В триблочных сополимерах согласно данному изобретению мягкий средний блок составляет по меньшей мере 40%, предпочтительно по меньшей мере 50%, по меньшей мере 60% от веса всего сополимера. Это обеспечивает эластичность полимера, необходимую для того, чтобы он функционировал в качестве эластомера в гуммиоснове. Остальное в триблочном сополимере составляют жесткие концевые блоки. Таким образом, общий вес двух концевых блоков будет менее 60% и предпочтительно менее 50% иди 40% в расчете вес всего сополимера.

В большинстве случаев особенно когда триблочный сополимер имеет конфигурацию А - В - А, оба жестких концевых блока будут иметь примерно равный молекулярный вес. То есть отношение их молекулярных весов будет составлять от 0,8:1 до 1:1. Однако предусмотрено также, что они могут быть практически неодинаковой длины и отношение тогда может составлять 0,75:1 или 0,70:1 или 0,60:1 или даже 0,50:1 или 0,30: 1, особенно когда триблочный сополимер имеет конфигурацию А - В - С.

Молекулярный вес триблочного сополимера выбирают таким образом, чтобы обеспечить желательную текстуру при введении в состав гуммиосновы жевательной резинки или самой жевательной резинки. Для этой цели оптимальный молекулярный вес зависит от вида выбранных конкретных блоков и состава гуммиосновы и жевательной резинки, но обычно он находится в пределах от 6000 до 4000000 Да. Чаще эта величина выбирается в пределах 20000 до 150000 Да. Еще чаще она находится в пределах от 20000 до 150000 Да. Триблочные сополимеры с очень высокими молекулярными весами являются слишком жесткими для жевания, когда их вводят в гуммиоснову и в состав самой жевательной резинки. Кроме того, их переработка может быть затруднена. Триблочные сополимеры с недостаточным молекулярным весом могут иметь недостаточную когезию, твердость и эластичность для жевания и могут создавать проблемы для регуляции и безопасности получаемых пищевых продуктов.

Такие заявленные триблочные сополимеры после введения в гуммиосновы и жевательные резинки и окончания жевания могут образовывать остатки, которые характеризуются заявленной текучестью при одноосном растяжении и которые более легко удаляются с окружающих поверхностей, если их выбрасывают неподходящим образом. Считают, что это обусловлено образованием внутренних структур, которые оптимизируют когезионность остатка и повышают параметр деформационного упрочнения остатка от жевательной резинки. Эти внутренние структуры обусловлены разделением доменов микрофаз и последующим упорядочиванием жестких и мягких доменов полимерных молекул.

Согласно некоторым вариантам настоящего изобретения гуммиоснова содержит триблочный сополимер, описанный выше, соединенный с двухблочным сополимером, включающим мягкий блок и жесткий блок, которые совместимы с мягким и по меньшей мере с одним из жестких блоков, соответственно, в триблочном сополимере. По этим вариантам двухблочный сополимер пластифицирует триблочный сополимер с образованием пластифицированного эластомерного материала, который обеспечивает желательные свойства жевания у систем эластомер / пластификатор. Двухблочный сополимер может также обеспечивать дополнительные преимущества, такие как контролируемое высвобождение вкусовых веществ, подсластителей и других активных ингредиентов и уменьшение поверхностных взаимодействий выброшенных остатков для улучшения их удаляемости с окружающих поверхностей.

Согласно другим вариантам в жевательную резинку включают сшитые полимерные частицы, такие как описанные в сопутствующей заявке США на патент №61/263462. Сшитый полимер может иметь температуру стеклования менее примерно 30°C, или менее примерно 10°C или даже меньше 0°C. Согласно другим вариантам сшитый полимер может иметь величину комплексного модуля (G*), измеренную при 25°C, составляющую менее примерно 109 дин/см2 или менее примерно 107 дин/см2. Согласно другим вариантам сшитый полимер может иметь величину комплексного модуля упругости (G*) более примерно 104 дин/см2 или более примерно 105 дин/см2. По меньше мере некоторые такие жевательные резинки образуют остатки, величина параметра деформационного упрочнения при растяжении которых больше 2,0.

Самый большой размер микрочастиц может составлять по меньшей мере примерно 0,1 мк или по меньшей мере примерно 0,5 мк, или по меньшей мере примерно 10 мк. Этот самый большой размер микрочастиц может составлять менее примерно 1000 мк или менее примерно 500 мк или менее примерно 100 мк.

Согласно некоторым вариантам микрочастицы могут содержать пищевой полимер, который может быть пластифицированным и не пластифицированным. Согласно этим и другим вариантам полимер может представлять собой полиакрилат, полиуретан или их сополимеры. Если желательно применять полиакрилат, он может быть получен из по меньшей мере одного акрилового мономера, включающего изооктилакрилат, 4-метил-2-пентилакрилат, 2-метилбутилакрилат, изоамилакрилат, втор. бутилакрилат, н-бутилакрилат, 2-этилгексилакрилат, изодецилметакрилат, изононилакрилат, изодецилакрилат, а также их комбинации. Согласно некоторым вариантам, когда желательно применять полиакрилат, он может быть получен из изооктилакрилата, 2-этилгексилакрилата, н-бутилакрилата и их комбинаций.

Согласно другим вариантам жевательная резинка включает гуммиоснову, содержащую от 45 до 95% вес. низкомолекулярного полиэтилена со средневесовым молекулярным весом между 2000 и 23000 Да, описанного в сопутствующей заявке США на патент №61/325542. Согласно одному варианту гуммиоснова включает 50-75% вес. или 55-70% вес. полиэтилена. Согласно некоторым вариантам гуммиоснова включает 3-30% вес. по меньшей мере одного эластомера. Согласно некоторым вариантам гуммиоснова содержит 5-28% вес. по меньшей мере одного эластомера или даже 8-25% вес. по меньшей мере одного эластомера. Согласно некоторым вариантам гуммиоснова содержит 0-30% вес., или 0-20% вес. или 0-10% вес. пластичного полимера, такого как поливинилацетат. Такие жевательные резинки образуют остатки, величина параметра деформационного упрочнения при растяжении которых меньше 0. По меньшей мере некоторые из этих резинок образуют остатки, величина предела продольной вязкости при растяжении которых больше 106 Па.

Указанные выше полимеры, пригодные для введения в гуммиоснову, являются примерами полимеров, которые можно назвать "полимерами с контролируемой текучестью" благодаря их чрезвычайно высоким положительным или отрицательным параметрам деформационного упрочнения. Однако данное изобретение не ограничено этими конкретными полимерами. В действительности, настоящее изобретение предусматривает также применение других полимеров с контролируемой текучестью. Кроме того, жевательные резинки по изобретению, включающие только распространенные полимеры, могут быть получены так, чтобы остатки жевательной резинки после жевания имели заявленное значение параметров текучести при одноосном растяжении. Именно заявленные величины параметров текучести при одноосном растяжении остатка жвачки определяют сущность данного изобретения в большей степени, чем любой конкретный ингредиент, состав или способ.

Согласно некоторым вариантам жевательные резинки по изобретению содержат пищевые гуммиосновы. Термин " пищевой ", используемый в данной заявке, указывает на то, что материал отвечает всем существующим требованиям, предъявляемым к пищевому продукту, имеющемуся в продаже, или к его производству. Хотя требования к пищевому продукту являются различными в разных странах, пищевые полимеры, пригодные для применения в качестве жевательных веществ (а именно, гуммиосновы), обычно должны быть: (i) одобрены соответствующим агентством, регулирующим требования к пищевым продуктам; (ii) получены в соответствии с руководством "Good Manufacturing Practices" (GMPs), которое разрабатывается местным органом, такое руководство предусматривает адекватные степени чистоты и безопасности при изготовлении пищевых материалов; (iii) получены с применением пищевых материалов (включая реагенты, катализаторы, растворители и антиоксиданты) или материалов, которые по меньшей мере соответствуют стандартам качества и чистоты; (iv) отвечающими минимальным стандартам качества и количества и природы имеющихся примесей; (v) получены при наличии документации, касающейся способа производства для того, чтобы обеспечить соответствие стандартам, и/или (vi) получены на установке, которая сама подвергается инспекции соответствующим правительственным органом. Все эти стандарты могут не применяться во всех сферах, и все, что требуется согласно тем вариантам, когда гуммиоснова является основой пищевого сорта (пищевой), это соответствие полимера стандартам, действующим в конкретной сфере.

Например, в США ингредиенты для применения в пищевых продуктах одобряются Food and Drug Administration. Для того, чтобы получить одобрение для применения в случае добавки в пищу или пищевого красителя, изготовитель или другой спонсор должен для этого обратиться в FDA. Такое обращение является ненужным в случае санкционированных ранее веществ или ингредиентов, которые уже признаны безопасными (ингредиенты GRAS) и включены в значение термина "пищевой сорт" (пищевые вещества). Информацию о требованиях к пищевым продуктам и красителям в США можно найти на сайте http://www.fda.qov/Food/FoodIngredientsPackaging/ucm094211.htm, содержание этого источника включено в качестве ссылки в данную заявку.

В Европе одним из органов, регулирующих указанные выше требования, является Европейская Комиссия (European Commission, Enterprise and Industry). Информацию о требованиях Европейской Комиссии к пищевой промышленности можно найти на сайте http://ec.europa.eu/enterprise/sectors/food/index_en.htm; содержание этого источника также включено в данную заявку в качестве ссылки.

Хотя могут быть самые различные варианты методов измерения параметров текучести при одноосном растяжении, величины, указанные здесь (и на которых основаны притязания заявителя), измеряют особым методом.

Получение остатка от жевательной резинки: Примерно от 2 до 8 г жевательной резинки пережевывали в течение по меньшей мере 20 мин. Альтернативно можно экстрагировать водорастворимые компоненты при помещении тонкой полоски жевательной резинки под струю бегущей воды на ночь, затем эту полоску разминают рукой под струей бегущей воды в течение 2 мин. Любой из этих методов является достаточным для практического удаления всех растворимых в воде компонентов. Затем остаток от жевательной резинки подвергают старению, помещая его на силиконовый противень. Второй силиконовый поддон помещают на остаток от жвачки сверху и на этот поддон на 2 с встает человек весом 150 - 200 ф, на ногах которого имеются ботинки с плоскими подошвами. Затем верхний поддон удаляют, а нижний с прилипшим остатком от жвачки выдерживают в печке с температурой 50°C /10% отн. вл. в течение 5 дн для имитирования 2-недельного старения в условиях жары и сухой атмосферы, которые обычно приводят к сильной адгезии остатков жвачки к тротуарам.

Определение реологических свойств

Керамическую плитку смачивают водопроводной водой при помощи влажной ткани для предотвращения прилипания. Экстрагированный остаток от жевательной резинки помещают на керамическую плитку, фиксированную при помощи разделителя толщиной 0,7 мм. Сверху на остаток помещают вторую керамическую плитку, смоченную водой, как описано выше, и слегка прижимают ее до тех пор, пока вторая плитка не коснется разделителя. Образец сжимают в течение 30-60 с, поддерживая толщину равную 0,7 мм. Если необходимо помешать отскакиванию остатка, температуру плитки и остатка можно слегка повысить, поместив их в печь. Время нагревания и температуру следует ограничить до минимальных значений, чтобы предотвратить отскакивание остатка. После сжатия из расплющенного остатка вырезают прямоугольный образец с размером 10 мм × 20 мм. Оставшуюся часть образца можно сохранить для использования для проведения дальнейших испытаний, накрыв плитку и расплющенный остаток влажной тканью для предотвращения высыхания. Размеры образца измеряют еще раз для получения точных величин перед помещением его в приспособление EVF в приборе ARES.

Прямоугольный образец затем помещают в приспособление для измерения продольной вязкости (EVF) в приборе ARES или ротационном реометре ARES-G2. EVF включает двигающийся по орбите барабан, расположенный под углом 30° от его равновесного положения (исходное положение динамической осцилляции). Образец размещают, заправляя его осторожно между деталями EVF с помощью пинцета. Детали затем осторожно опускают на образец, причем сжимать нужно таким образом, чтобы образец не попадал на деталь, а вместо этого оказывался на участке деформации (участок между вращающимися барабанами) во время растяжения. Любая часть остатка вне участка деформации слегка прижимается к основанию барабана для увеличения адгезии образца и предотвращения его соскальзывания во время расширения. После размещения до начала испытания образец подвергают уравновешиванию при температуре 37°C (температура во рту) в течение 5 мин. Образец подвергают одноосному растяжению при постоянной истинной скорости (έ, известной также как скорость деформации по Хенки), составляющей 1 в течение 8-10 с, пока образец не разрушится. Вязкость при одноосном растяжении (, называемая также неустановившейся вязкостью) измеряется во времени (то есть деформацией по Хенки).

Предел продольной вязкости при одноосном растяжении () и параметр деформационного упрочнения при одноосном растяжении () измеряют по полулогарифмическому графику зависимости продольной вязкости при одноосном растяжении () от значения истинной деформации по Хенки () (). Сделав это, можно наблюдать выраженную степенную зависимость величины упрочнения остатков жевательных резинок в виде прямой линии при более 0,1. На этом участке обычная модель степенной зависимости деформационного упрочнения, описываемая уравнением , соответствует этому участку прямой линии при изменении величин предела продольной вязкости при растяжении () и параметра упрочнения при деформации при одноосном растяжении (), чтобы они пересекли конечную точку предела вязкости, приводящую к разрушению, и остальной части этого участка. В случае жевательных резинок без двойного явления предела (то есть исходный предел при ~ 0,1) кривая касается конечной точки предела разрушения. Это является типичным для остатков жевательной резинки с высоким значением предела продольной вязкости при одноосновном растяжении и низким параметром деформационного упрочнения при одноосном растяжении (0 - 0,5). В случае жевательных резинок с отрицательным значением параметра деформационного упрочнения при одноосном растяжении уравнение степенной зависимости деформационного упрочнения соответст