Способ диагностики рака поджелудочной железы

Иллюстрации

Показать все

Изобретение касается диагностического реагента для диагностики рака поджелудочной железы и/или панкреатита, включающего α1→6 специфический лектин, который отличается сильным сродством и высокой специфичностью к фукозе. Фукозный α1→6 специфичный лектин имеет возможность воздействовать на патологический гаптоглобин, содержащийся в образце, взятом у живого организма. При этом указанный лектин: (1) выделен из базидиомицетов; (2) имеет молекулярную массу от 4000 до 40000, установленную ДСН (додецилсульфатом натрия) электрофероза в полиакриламидном геле, и (3) имеет сродство с фукозной α1→6 сахарной цепью с константой связывания 1.0×104 M-1 или более при температуре 25°C и (4) с константой связывания 1.0×103 M-1 или менее при температуре 25°C для длинной маннозной сахарной цепи и/или гликолипида, не содержащего фукозную α1→6 сахарную цепь. Изобретение обеспечивает точную диагностику рака поджелудочной железы и/или панкреатита. 2 з. п. ф-лы, 13 ил., 3 табл.

Реферат

Предпосылки создания изобретения

Техническая сфера

[0001]

Настоящее изобретение относится к методу диагностики рака поджелудочной железы, а именно такому методу диагностики болезни, при котором опухолевым маркером (онкомаркером) является патологический гаптоглобин.

Фоновые научные исследования

[0002]

Поджелудочная железа располагается в глубине верхней части брюшной полости, поэтому рак поджелудочной железы трудно диагностировать. Маркеры для диагностики рака поджелудочной железы включают карциоэмбриональный антиген (СЕА) (исходное значение: 5.0 нг/мл) и СА 19-9 (исходное значение: 37 Ед/мл). Однако онкомаркеры могут показывать ложноположительные результаты на рак, поэтому диагностика с помощью онкомаркеров не может быть единственным способом получения достоверных результатов. Для подтверждения рака поджелудочной железы необходимо пройти дорогостоящее всестороннее обследование, включающее компьютерную томографию (СТ), эндоскопическую ретроградную холангиопанкреатографию (ЕРХПГ), ультразвуковую эндоскопию (эндоУЗИ), ангиографию и пр. Из этих методов ЕРХПГ и эндоУЗИ являются инвазивными и могут быть обременительными для пациента.

[0003]

Согласно последним отчетам, при развитии рака поджелудочной железы фукоза присоединяется к сахарным цепям гаптоглобина, являющегося типом гликопротеинов (непатентная литература 1 и 2, и патентная литература 1). Согласно непатентной литературе 1, указанный патологический гаптоглобин повышен на стадии развития рака поджелудочной железы, и он исчезнет после хирургического удаления раковой опухоли.

[0004]

Гаптоглобин человека - это гликопротеин, состоящий из 406 аминокислот, включающих четыре N-связанные сайта гликозилирования в своей бета-цепи (молекулярная масса 40000). У здорового взрослого человека высокая концентрация сыворотки гаптоглобина, составляющая от 0.7 до 1.7 мг/мл. Патологический гаптоглобин как маркер рака поджелудочной железы, в том числе для диагностики рака на ранней стадии, позволяет точно отличать патологический гаптоглобин от других молекул гаптоглобина.

[0005]

Предположительно, можно использовать сахарсвязывающий белок-лектин для получения данных об изменениях в структуре и транспозиции сахарных цепей на поверхности клетки, которые связаны с развитием раковой опухоли. Традиционно, лектин Aleuria aurantia (AAL), лектин Lens culinaris (LCA), лектин Lotus japonicus (Lotus), лектин Ulex europaeus (UEA-I) и другие считаются лектинами для выявления фукозы. Однако способы диагностики рака с помощью традиционных лектинов часто не позволяют выявить значимую разницу между здоровыми пациентами и пациентами с раком поджелудочной железы.

Лист цитирования

Патентная литература

[0006]

Патентная литература 1: нерассмотренная публикация заявки на патент Японии №2009-168470

Непатентная литература

[0007]

Непатентная литература 1: Фукозилированный гаптоглобин - ранее неизвестный маркер для диагностики рака поджелудочной железы: подробный анализ олигосахаридной структуры и возможный механизм фукозилирования. См. Международный Журнал Рак: Fucosylated haptoglobin. Okuyama N, et. al., Int J Cancer. 2006 Jun 1; 118 (11): 2803-8.

Непатентная литература 2: Сайт-специфический анализ N-гликанов на гаптоглобин в сыворотке крови больных раком поджелудочной железы: новый подход к разработке онкомаркеров. См. Международный Журнал Рак: Nakano М, et.al., Int J Cancer. 2008 May 15; 122 (10): 2301-9.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Техническая проблема

[0008]

Цель данного изобретения - создать метод точной диагностики патологического гаптоглобина, при котором лектин особым образом связывается с патологическим гаптоглобином.

Решение проблемы

[0009]

Проведя обширные исследования, изобретатели пришли к выводу, что достичь цели можно с помощью следующего (-их) изобретения (-ий). Данное изобретение предлагает метод диагностики рака поджелудочной железы, при котором фукозный α1→6 специфичный лектин воздействует на патологический гаптоглобин, присутствующий в образце, взятом у живого организма; указанный лектин:

(1) выделен из базидиомицетов;

(2) имеет молекулярную массу от 4000 до 40000, установленную с помощью додецилсульфата натрия электрофероза в полиакриламидном геле (в дальнейшем именуемый как ДСН электрофероз в полиакриламидном геле), и

(3) имеет сродство с фукозными α1→6 сахарными цепями, константа связывания которых составляет 1.0×104М-1 или более при температуре 25°C.

[0010]

Кроме того, фукозный α1→6 специфичный лектин предпочтительно (4) не связывается прочно с длинной маннозной сахарной цепью и/или гликолипидом без α1→6 сахарной цепи.

[0011]

Базидиальный гриб предпочтительно принадлежит к семейству строфариевых (Strophariaceae), трихоломовых (Tricholomataceae), аманитовых (Amanitaceae) или полипоровых (Polyporaceae). В частности, к базидиальным грибам относятся следующие: чешуйчатка землистая (Pholiota terrestris Overholt), чешуйчатка ворсистая (Pholiota squarrosa), чешуйчатка золотистая (Pholiota aurivella), строфария морщинисто-кольцевая (Stropharia rugosoannulata), опенок кирпично-красный (Naematoloma sublateritium), леписта грязная (Lepista sordida) или мухомор красный (Amanita muscaria).

[0012]

Образцом, например, является человеческая сыворотка крови, или плазма.

[0013]

В частности, метод диагностики рака поджелудочной железы в данном изобретении предпочтительно обнаруживает патологический гаптоглобин с помощью испытания, в котором используются фукозный α1→6 специфичный лектин и антитело к антигаптоглобину.

[0014]

Фукозный α1→6 специфичный лектин предпочтительно маркировать.

[0015]

Более того, предлагается метод, с помощью которого можно распознать рак поджелудочной железы от ее воспаления (панкреатита). Согласно этому методу, фукозный α1→6 специфичный лектин может воздействовать на патологический гаптоглобин из образца, взятого у живого организма с 30 Ед/мл или большей концентрацией онкомаркера СА19-9 в сыворотке крови. Концентрация СА19-9 в сыворотке крови предпочтительно должна составлять 32 Ед/мл или более, а еще предпочтительнее, если она составляет 35 Ед/мл или более. Соответственно, исходя из этих показателей, можно безошибочно определить здорового человека, больного раком поджелудочной железы и больного панкреатитом.

[]

Данное изобретение предоставляет диагностический препарат или набор для диагностики рака поджелудочной железы и/или панкреатита, включающий фукозный α1→6 специфичный лектин, который:

(1) выделен из базидиомицетов;

(2) имеет молекулярную массу от 4000 до 40000, установленную ДСН электрофероза в полиакриламидном геле, и

(3) имеет сродство с фукозными α1→6 сахарными цепями с константой связывания 1.0×104 М-1 или более при 25°C. Предпочтительно набор включает антитела к антигаптоглобину и/или антитела к анти-СА19-9.

Эффективность изобретения

[0017]

Данное изобретение - метод диагностики рака поджелудочной железы, способен более точно выявлять патологический гаптоглобин, чем традиционные фукозные специфичные лектины. Предполагается, что патологический гаптоглобин может служить маркером рака поджелудочной железы. Ранее было трудно диагностировать этот вид рака, но благодаря данному изобретению это стало возможно. Так, метод, предлагаемый в данном изобретении, удобнее, поскольку его можно использовать в обследованиях на выявление онкологических заболеваний, в которых используется сыворотка крови. Более того, согласно испытанию, в котором используются фукозный α1→6 специфичный лектин данного изобретения и антитело к антигаптоглобину, стала возможна более быстрая и простая диагностика рака поджелудочной железы. Отличить рак поджелудочной железы от панкреатита, используя только традиционный онкомаркер СА19-9, сложно. С другой стороны, метод данного изобретения позволяет более эффективно отличать рак поджелудочной железы от панкреатита как с помощью фукозного α1→6 специфичного лектина, так и онкомаркера СА19-9.

КРАТКОЕ ОПИСАНИЕ ДИАГРАММ

[0018]

Фиг.1 изображает профиль элюции ионообменной хроматографии для PTL в Образце Приготовления 1.

Фиг.2 изображает профиль элюции аффинной хроматографии для PTL в Образце Приготовления 1.

Фиг.3 изображает профиль элюции гидрофобной хроматографии для SRL в Образце Приготовления 2.

Фиг.4 изображает профиль элюции хроматографии с обращенной фазой для SRL в Образце Приготовления 2.

На Фиг.5 приведены значения реакции (поглощения), при которых, в соответствии с настоящим изобретением, гаптоглобин из сыворотки крови человека (Serum HP) и из надосадочной жидкости клеток рака поджелудочной железы (Cancer cell HP) соответственно мог связаться с PTL (pinellia ternata lectin).

На Фиг.6 приведены значения реакции, при которых Сыворотка HP и Клетки рака HP соответственно могли связаться с LCA-антигеном сравнительного образца, как на Фиг.5.

На Фиг.7 приведены значения реакции, при которых Сыворотка HP и Клетки рака HP могли соответственно связаться с AAL (Aleuria Aurantia Lectin) сравнительного образца, как на Фиг.5.

На Фиг.8, в соответствии с настоящим изобретением, приведены значения реакции (поглощения) из исследований о связи гаптоглобина в сыворотке крови здорового человека и больного раком поджелудочной железы с PTL.

На Фиг.9 приведены значения реакции из исследований о связи, в которых PTL заменили на AAL сравнительного образца.

На Фиг.10 приведены результаты исследований о количестве СА19-9 в сыворотке крови здоровых людей, больных раком поджелудочной железы и больных панкреатитом, полученные в ходе промежуточного исследования с использованием моноклональных антител мышей (анти-СА19-9) и поликлональных антител кроликов (анти-СА19-9).

На Фиг.11 приведено относительное количество гаптоглобина в сыворотке крови, рассчитанное на основе исследований о связи с антителом к антигаптоглобину (Anti-HP antibody).

На Фиг.12 приведены значения, рассчитанные в результате деления значений PTL-реакций на Фиг.8 на соответствующую относительную величину концентрации гаптоглобинов на Фиг.11.

На Фиг.13 приведены значения, рассчитанные в результате деления значений AAL-реакций на Фиг.9 на соответствующую относительную величину концентрации гаптоглобинов на Фиг.11.

ОПИСАНИЕ ВАРИАНТОВ ВЫПОЛНЕНИЯ ИЗОБРЕТЕНИЯ

[0019]

Пример варианта метода настоящего изобретения для диагностики рака поджелудочной железы детально описывается ниже. Метод настоящего изобретения можно охарактеризовать с помощью допущения о том, что фукозный α1→6 специфичный лектин имеет следующие физические свойства:

(1) выделен из базидиомицетов;

(2) имеет молекулярную массу от 4000 до 40000, установленную с помощью ДСН электрофероза в полиакриламидном геле, и

(3) имеет сродство с фукозными α1→6 сахарными цепями с константой связывания 1.0×104 М-1 или более при температуре 25°C, способный воздействовать на патологический гаптоглобин, содержащийся в образцах, взятых у живого организма, и обнаруживать, таким образом, патологический гаптоглобин.

[0020]

Метод диагностики настоящего изобретения требует использования лектина, который точно распознает фукозную α1→6 связь в следующей формуле.

[Формула 1]

где Man означает маннозу, GlcNAc - N-ацетилглюкозамин, а Fuc - фукозу.

[0021]

При помощи нового фукозного α1→6 специфичного лектина, открытого изобретателями, диагностика рака поджелудочной железы может стать проще. Физические и химические свойства лектина подробно описываются ниже.

(1) Происхождение лектина

Источником фукозного α1→6 специфичного лектина могут быть базидиомицеты. Предпочтительно лектин принадлежит к следующим семействам базидиомицетов: строфариевым, трихоломовым, полипоровым, аманитовым. Стофариевые включают чешуйчатку землистую (Pholiota terrestris Overholt), строфарию морщинисто-кольцевую (Stropharia rugosoannulata), опенок кирпично-красный (Naematoloma sublateritium), чешуйчатку ворсистую (Pholiota squarrosa), чешуйчатку золотистую (Pholiota aurivella) и чешуйчатку толстую (Pholiota adiposa). Трихоломовые включают леписту грязную (Lepista sordida). Полипоровые включают трихаптум продолговатый (Trichaptum elongatum) и верни-ципес микропоровый (Microporus vernicipes). Аманитовые включают мухомор красный (Amanita muscaria). Вследствие специфики распознавания лектина для фукозной α1→6 сахарной цепи и эффективности очистки лектина наиболее предпочтительными из этих базидиомицетов являются строфариевые, трихоломовые или аманитовые. А из них предпочтительны следующие: Pholiota terrestris Overholts, Pholiota squarrosa, Pholiota aurivella, Stropharia rugosoannulata, Naematoloma sublateritium, Lepista sordida или Amanita muscaria.

(2) Молекулярная масса лектина

[0022]

Молекулярная масса фукозного α1→6 специфичного лектина составляет от 4000 до 40000, предпочтительно от 4000 до 20000, как установлено с помощью ДСН электрофероза в полиакриламидном геле. Молекулярная масса по ДСН электрофероза в полиакриламидном геле в этом документе была определена по методу Лэмли (Nature, 227: 680,1976).

(3) Константа связывания лектина [0023]

Константа связывания фукозного α1→6 специфичного лектина для фукозных α1→6 сахарных цепей составляет 1.0×104 M-1 или более, предпочтительно 1.0×103 M-1 или более, или еще более предпочтительно 1,0×106 M-1 и более. Иными словами, она существенно выше, чем константа у AAL, аспергилус-лекстина Aspergillus lectins (AOL), LCA, лектин нарцисса (Daffodil lectins (NPA)) и Pisum sativum лектинов (PSA), которые, как было известно ранее, имеют сродство с фукозой α1→6. Это означает, что фукозный α1→6 специфичный лектин связывается с фукозной α1→6 сахарной цепью с чрезвычайно высокой избирательностью по сравнению с обычными лектинами.

[0024]

Упомянутые выше константы связывания можно измерить, например, при помощи метода фронтальной аффинной хроматографии (FAC). Этот FAC метод подробно описывается в PCT/JP2009/003346. Здесь PCT/JP2009/003346 приводится в качестве ссылки.

[0025]

Фукозные α1→6 сахарные цепи могут содержать сиаловую кистоту на нередуцированном конце. Обычные фукозные α1→6 специфичные лектины (например, LCA, NPA и PSA) обнаружили меньшее сродство с фукозными α1→6 сахарными цепями, содержащими сиаловую кистоту на ее нередуцированном конце. С другой стороны, фукозный α1→6 специфичный лектин имеет превосходство над обычными лектинами, поскольку он обнаруживает большее сродство с такими сахарными цепями.

(4) Специфичность лектина связывать сахар

[0026]

Фукозный α1→6 специфичный лектин предпочтительно не образует прочную связь с длинной маннозной сахарной цепью и/или гликолипидом без фукозной α1→6 сахарной цепи. Это позволяет фукозному α1→6 специфичному лектину иметь еще более высокую специфичность связывания. Используемое в настоящей работе выражение «не образует прочную связь» означает, что константа связывания равна 1.0×103 M-1 или менее, предпочтительно 1.0×102 М-1 или менее, и особенно предпочтительно, если она равна 0.

(5) Связь лектина с разветвленной цепью

[0027]

Фукозный α1→6 специфичный лектин предпочтительно имеет сродство с моно-, би-, три- или/и тетра-антеннальными сахарными цепями с фукозной α1→6 N-связью, имеющими константу связывания, равную 1.0×104 M-1 или более при температуре 25°C и еще более предпочтительно равную 1,0×105 M-1 или более.

(6) Аминокислотная последовательность лектина

[0028]

Фукозные α1→6 специфичные лектины имеют общую аминокислотную структуру, представленную в Таблице 1, номер последовательности 1. SEQ ID No. Xaa в положениях 4, 5, 6 и 7 последовательности SEQ ID No: 1 обозначает Asp/Asn/Glu/Thr, Thr/Ser/Ala, Tyr/Phe и Gln/Lys/Glu соответственно, где косая черта означает «или».

[0029]

Конкретные образцы фукозного α1→6 специфичного лектина, который можно применять в методе данного изобретения, показаны в последовательности SEQ ID N 2-6. Лектин, показанный в последовательности SEQ ID No: 2, - это новый лектин с молекулярной массой 4500, который можно выделить из Pholiota terrestris Overholts (PTL). Xaa в положениях 10 и 17 последовательности SEQ ID No: 2 может быть любым аминокислотным остатком, но предпочтительно Cys. Xaa в положениях 20, 23, 27, 33, 35 и 39 - это Tyr/Ser, Phe/Tyr, Arg/Lys/Asn, Asp/Gly/Ser, Asn/Ala и Thr/Gln соответственно.

[0030]

Лектин, показанный в последовательности SEQ ID No: 3, - это новый лектин с молекулярной массой 4500, который можно выделить из Slropharia rugosoannulata (SRL). Xaa в положениях 10 и 17 последовательности SEQ ID No: 3 может быть любым аминокислотным остатком, но предпочтительно Cys. Xaa в положениях 4, 7, 9, 13, 20, 27, 29, 33, 34 и 39 - это Pro/Gly, Glu/Lys, Val/Asp, Asn/Asp/Glu, His/Ser, Lys/His, Val/Ile, Gly/Asn/Ser, Ala/Thr and Arg/Thr соответственно.

[0031]

Лектин, показанный в последовательности SEQ ID No: 4, - это новый лектин с молекулярной массой 4500, который можно выделить из Lepista sordida (LSL). Xaa в положениях 10 и 17 последовательности SEQ ID No: 4 может быть любым аминокислотным остатком, но предпочтительно Cys. Xaa в положениях 1, 4, 7, 8, 9, 13, 16, 20, 22, 25, 27, 31 и 34 - это Ala/Gin, Pro/Lys, Ala/Ser, Met/Ile/Val, Туг/Thr, Asp/Asn, Lys/Glu, Ala/Asn, Val/Asp/Asn, Asp/Asn, Arg/His/Asn, Gln/Arg and Thr/Val соответственно.

[0032]

Лектин, показанный в последовательности SEQ ID No: 5, - это новый лектин, который можно выделить из Naematoloma sublateritium (NSL). Xaa в положениях 10 и 17 последовательности SEQ ID No: 5 может быть любым аминокислотным остатком, но предпочтительно Cys. Xaa в положениях 13,14 и 16 - это Asp/Thr, Ser/Ala and Gln/Lys соответственно.

[0033]

Лектин, показанный в последовательности SEQ ID No: 6, - это также новый лектин с молекулярной массой 4500, который можно выделить из Naematoloma sublateritium (NSL). Последовательность SEQ ID No: 6 - это вариант, в котором Asn вставляется в пептид последовательности SEQ ID No: 5. Следовательно, Xaa в положениях 10 и 18 последовательности SEQ ID No: 6 может быть любым аминокислотным остатком, но предпочтительно Cys. Xaa в положениях 14,15 и 17 - это Asp/Thr, Ser/Ala и Gln/Lys соответственно.

[0034]

Фукозный α1→6 специфичный лектин обычно может содержать 2-10, предпочтительно 2-4 субъединицы лектинов в последовательности SEQ ID Nos: 2-6, которые связаны между собой.

[0035]

Таблица 1
Название Аминокислотная последовательность Номер последовательности (SEQ ID No):
Cys Asp Gly Xaa Xaa Xaa Xaa Cys 1
PTL Ala Pro Val Pro Val Thr Lys Leu Val Xaa Asp Gly Asp Thr Tyr Lys Xaa Thr Ala Xaa Leu Asp Xaa Gly Asp Gly Xaa Trp Val Ala Gin Trp Xaa Thr Xaa Val Phe His Xaa Gly 2
SRL Ala Pro Val Xaa Val Thr Xaa Leu Xaa Xaa Asp Gly Xaa Ser Tyr Lys Xaa Thr Ala Xaa Leu Asp Tyr Gly Asp Gly Xaa Trp Xaa Ala Gin Trp Xaa Xaa Asn Val Phe His Xaa 3
LSL Xaa Pro Val Xaa Val Lys Xaa Xaa Xaa Xaa Asp Gly Xaa Thr Tyr Xaa Xaa Thr Ala Xaa Leu Xaa Tyr Gly Xaa Gly Xaa Trp Val Ala Xaa Trp Ser Xaa Ala Val Phe His Gin Ser 4
NSL Ala Pro Val Pro Val Thr Lys Leu Val Xaa Asp Gly Xaa Xaa Phe Xaa Xaa Thr Ala Asn Leu Asp Phe Gly Asp Gly Asn Trp Val Ala Gin Trp Ser Thr Asn Val Phe His Asn 5
NSL Ala Pro Val Pro Val Thr Lys Leu Val Xaa Asp Asp Gly Xaa Xaa Phe Xaa Xaa Thr Ala Asn Leu Asp Phe Gly Asp Gly Asn Trp Val Ala Gin Trp Ser Thr Asn Val Phe His Asn 6

[0036]

Фукозный α1→6 специфичный лектин может быть (а) белком или пептидом, имеющими аминокислотную последовательность, расположенную в любом порядке SEQ ID Nos: 2-5, а также (б) белком или пептидом, в котором одна аминокислота или более в аминокислотной последовательности, показанной в любой последовательности SEQ ID Nos: 2-5, удалена, вставлена или заменена; и, кроме того, функциональный аналог белка или пептида, имеющий аминокислотную последовательность, показанную в любом порядке SEQ ID Nos: 2-5. Здесь «функциональный аналог» означает, что белок или пептид имеет сродство с фукозной α1→6 сахарной цепью, константа связывания которой составляет 1.0 х 104 М-1 или более, предпочтительно 1.0×105 M-1 или более, а еще предпочтительнее 1.0×106 M-1 или более. Образец варианта (б) - это белок или пептид, показанный в последовательности SEQ ID No: 6.

[0037]

Фукозный α1→6 специфичный лектин является предпочтительно одним из следующих лектинов: PTL, SRL, NSL, LSL и Amanita muscaria (AML), среди которых наиболее предпочтительным являются PTL и SRL. PTL и SRL более всего подходят для фукозного α1→6 специфичного лектина, используемого в дискриминационном методе настоящего изобретения, потому что они связываются исключительно с фукозой α1→6, и не связываются с длинными маннозными сахарными цепями без фукозы, обнаруживая отличные от традиционных фукозных лектинов со сродством α1→6 свойства.

[0038]

Фукозный α1→6 специфичный лектин можно отделить от базидиомицетов при помощи экстракционного метода, метода разделения или очистки, а также соответствующего сочетания этих методов. Например, они включают этап получения экстракта водной среды из базидиомицетов при помощи водной среды, используемой как экстрагирующий растворитель. Лектин можно получить из экстракта; лектин имеет молекулярную массу от 4000 до 40000, предпочтительно 4000-20000, измеренную с помощью ДСН электрофероза в полиакриламидном геле, а также сродство с фукозными α1→6 сахарными цепями, константа связывания которых составляет 1.0×104 M-1 или более, предпочтительно 1.0×105 M-1 или более, и еще предпочтительнее 1.0×106 M-1 или более при 25°C.

[0039]

Предпочтительно выбирать базидиомицет, по крайней мере, из одного из следующих семейств: строфариевых, трихоломовых, полипоровых и аманитовых. В частности предпочтительно, чтобы он принадлежал к следующим видам из семейства строфариевых: Pholiota terrestris Overtoils, Pholiota squarrosa (Pholiota squarrosa (фр.) Kummer), Pholiota adiposa (Pholiota adiposa (фр.) Kummer), Nameko mushroom (Pholiota nameko (T. Ito) S.Ito & Imai), Stropharia rugosoannulata (Stropharia rugosoannulata Farlow in Murr.), Naematoloma sublateritium (Naematoloma sublateritium (фр.) Karst или Hypholoma sublateritium (фр.) Quel); к следующим видам из семейства трихоломовых: Lepista sordida (Lepista sordida (Schum.:(фр.) Sing.); к следующим видам из семейства полипоровых: Trichaptum elongatum и Microporus vernicipes, и к следующим видам из семейства аманитовых: Amanita muscaria. Часть базидиомицетов для использования - предпочтительно плодоносящее тело гриба.

[0040]

Не существует каких-либо ограничений по методу получения растворимого в воде экстракта из водной среды и плодоносящего тела базидиомицета, если водная среда может контактировать с плодоносящим телом базидиомицета. С точки зрения эффективности экстрагирования предпочтительным методом будет метод растрескивания плодоносящего тела базидиомицета в водной среде до эмульсии. Более того, методы растрескивания включают традиционные методы с использованием миксера, гомогенизатора и подобные им.

[0041]

Водный раствор может включать буферный раствор и состав из смешиваемого с водой органического растворителя и воды или буферного раствора. Предпочтительно это должен быть буферный раствор или смесь буферного раствора с органическим растворителем.

[0042]

В качестве буферного раствора можно использовать любой буферный раствор без каких-либо ограничений. В частности, буферные растворы, имеющие буферную емкость между pH 3 и 10, и более предпочтительную - между pH 6 и 8. В частности, они содержат фосфатный буфер, нитратный буфер, буфер уксусной кислоты и трис буфер. Фосфатный буфер предпочтителен с точки зрения эффективности экстрагирования.

[0043]

Концентрации соли в буферных растворах не имеют каких-либо ограничений, но предпочтительно составляют 1-100 ммоль, а еще предпочтительнее 5-20 ммоль, с точки зрения эффективности экстрагирования и улучшения буферной емкости.

[0044]

Буферные растворы могут дополнительно содержать соли. Например, физиологический раствор с фосфатным буфером, в котором к фосфатному буферу дополнительно добавляется хлорид натрия, предпочтителен как водная среда.

[]

В качестве органического растворителя можно использовать любые смешиваемые с водой органические растворители без ограничений. В частности, предпочтительны ацетон, метиловый спирт, этиловый спирт, 2-пропанол и ацетонитрил. При смешивании органического растворителя с водой или буферным раствором содержание органического растворителя предпочтительно составляет 10-40% по массе.

[0046]

Предпочтительно, этап экстрагирования дополнительно включает этап удаления нерастворимых материалов из смеси водной среды и плодоносящего тела базидиомицета. Способы удаления нерастворимых материалов могут включать следующие: фильтрация и центрифугирование, из которых, с точки зрения эффективности удаления, предпочтительнее центрифугирование.

[0047]

В частности, этап экстрагирования предпочтительно является этапом растрескивания плодоносящего тела базидиомицета в физиологическом растворе с фосфатным буфером и удаления нерастворимых материалов с помощью центрифугирования, чтобы получить экстракт водной среды.

[0048]

Для производства фукозного α1→6 специфичного лектина применение любого из следующих методов очистки обеспечивает более эффективное очищение.

Метод очистки 1

Экстракт водной среды, полученный с помомщью метода на описанном выше этапе, подвергается фракционированию сульфатом аммония, чтобы получить лектин содержащую фракцию, которая затем очищается с помощью гидрофобной хроматографии и хроматографии с обращенными фазами.

Метод очистки 2

[0049]

Экстракт водной среды, полученный на описанном выше этапе, подвергается аффинной хроматографии, с использованием опор-подложек, где тиреоглобулин иммобилизируют на агарозе и подобных веществах.

Метод очистки 3

[0050]

Растворимый в воде экстракт, полученный с помощью метода на описанном выше этапе, подвергается фракционированию сульфатом аммония, чтобы получить лектин содержащую фракцию, которая затем диализируется и лиофилизируется. Грубая фракция лектина затем растворяется в Трис-буферном растворе и впоследствии подвергается ионообменной хроматографии. Полученная активная фракция затем концентрируется и впоследствии отделяется с помощью гельфильтрационной хроматографии.

[0051]

Способ производства фукозного α1→6 специфичного лектина может включать этап диализа лектин содержащей фракции, полученной на описанном выше этапе очистки, и этап лиофилизации диализированного раствора лектина. Таким образом, можно легко выделить лектин в чистом виде. Этап диализа и лиофилизации осуществляются с помощью широко используемых известных способов.

[0052]

Фукозный α1→6 специфичный лектин может быть (а) белком или пептидом, имеющими аминокислотную последовательность, расположенную в любом порядке SEQ ID Nos: 2-5, или (б) белком или пептидом, в котором одна аминокислота или более в аминокислотной последовательности, показанной в любой последовательности SEQ ID Nos: 2-5, удалена, вставлена или заменена; и, кроме того, функциональный аналог белка или пептида, имеющий аминокислотную последовательность, показанную в любом порядке SEQ ID Nos: 2-5, можно выделить из природного растения, а также искусственно выразить в неродном растении-хозяине или химически синтезировать. Выражение в растении-хозяине и химический синтез можно осуществить с помощью широко используемых известных способов.

[0053]

Предпочтительно средство маркировки заранее вводится в фукозный α1→6 специфчный лектин, используемый в диагностических целях. Такой лектин в дальнейшем именуется как меченый лектин. Меченый лектин включает, по крайней мере, фукозный α1→6 специфчный лектин и средство маркировки, являясь явно маркированным.

[0054]

Для вышеупомянутых средств маркировки могут использоваться любые без ограничений известные методы маркировки, например радиоизотопная маркировка и меченое соединение.

[0055]

Для вышеупомянутых меченых соединений могут использоваться любые без ограничений традиционно применяемые в этих целях соединения, например прямо или косвенно меченое соединение, энзим и флуоресцентное соединение. В частности, они могут включать биотин, дигоксигенин, производную пероксидазу хрена, флуоресцинизотиоцианат и CyDye. Эти меченые соединения могут крепиться к лектину традиционным образом.

[0056]

Для указанных выше образцов не существует никаких ограничений, при условии, что они взяты у живого организма, включая животных и человека; образцы могут включать, например, кровь, плазму, сыворотку крови, слезы, слюну, жидкость организма, молоко, мочу, культуру клеток надосадочной жидкости, вещества секреции, взятые у генетически модифицированных животных. Когда метод диагностики настоящего изобретения используется в ходе обследования на выявление рака поджелудочной железы, сыворотка крови или плазма, взятые у человека, могут использоваться в качестве образца. Сыворотку крови можно получить традиционным способом из крови.

[0057]

Фукозные α1→6 специфчные лектины обнаружат высокое сродство с любыми сахарными цепями, имеющими фукозную α1→6 связь (например, иммуноглобулин G, а-фетопротеин, специфический антиген простаты и др., показанные в Таблице 1). Чтобы избежать выявления этих сахарных цепей, метод настоящего изобретения предпочтительно обнаруживает патологический гаптоглобин с помощью промежуточного исследования с использованием фукозного α1→6 специфичного лектина и антител к антигаптоглобину.

[]

Прежде всего, в промежуточном исследовании, антитело к антигаптоглобину может вступить в реакцию с образцом, например надосадочной жидкостью культуры клеток и сывороткой крови, чтобы получить комплекс гаптоглобина или патологический гаптоглобин с антителом к антигаптоглобину. Эти комплексы изолируются и очищаются с помощью аффинной хроматографии, иммунопреципитации и др. способов. Затем комплекс может вступить в реакцию с фукозным α1→6 специфичным лектином, чтобы получить лектин-патологический комплекс с антителом к антигаптоглобину.

[0059]

Как вариант, в промежуточном исследовании фукозный α1→6 специфичный лектин может сначала вступить в реакцию с образцом, содержащим патологический гаптоглобин, чтобы получить лектин-патологический гаптоглобин комплекс, который затем может вступить в реакцию с антителом к антигаптоглобину, чтобы получить лектин-патологический комплекс с антителом к гаптоглобин-антигаптоглобину.

[0060]

Антитело к антигаптоглобину, которое, как правило, может распознать гаптоглобин, можно получить с помощью традиционных методов. Образцом может быть метод иммунизированного животного с гаптоглобином в качестве антигена для получения антитела к антигаптоглобину. Антитело к антигаптоглобину может быть как поликлональным, так и моноклональным.

[0061]

Методы выявления связи фукозного α1→6 специфичного лектина с патологическим гаптоглобином включают иммуцоферментный анализ (ИФА) (промежуточный анализ ИФА и др.), лектин-хроматографию, лектин-блоттинг, лектин-окрашивание, лектин-чип, метод конденсации и поверхностный плазмонный резонанс, например Биакор(R) система. В частности, предпочтительными методами диагностики являются методы с использованием системы авидин-биотина или системы стрептавидин-биотина, поскольку они являются высокочувствительными.

[0062]

В ходе промежуточного анализа ИФА добавляется антитело к антигаптоглобину и обездвиживается на пластинке, до добавления образцов сыворотки крови. Затем добавляют биотин-меченый фукозный α1→6 специфичный лектин, позволяющий фукозному α1→6 специфичному лектину вступить в реакцию с патологическим гаптоглобином, содержащимся в сыворотке крови. Меченный пероксидазой хрена (HRP) раствор стрептавидина добавляют как вторичное меченое соединение, позволяя биотину вступить в рекцию со стрептавидином. Затем добавляют HRP хромоген для измерения интенсивности цвета с помощью абсорбциометра (для HRP длина волны составляет 450 нанометров). Если калибровочная кривая построена заранее с использованием стандартного образца, в котором содержится известная концентрация патологического гаптоглобина, то также возможно определить его количество.

[0063]

Лектин хроматография - это аффинная хроматография, которая использует свойство иммобилизированного на носителе лектина для связи с сахарной цепью. В сочетании с ВЭЖХ (высокоэффективной жидкостной хроматографией) можно ожидать высокую пропускную способность.

[0064]

В качестве носителя обычно используются гелевые материалы, такие как агароза, декстран, целлюлоза, крахмал и полиакриламид, на которых иммобилизуется фукозный α1→6 специфичный лектин. В этих целях без каких-либо ограничений можно использовать имеющиеся в наличии продукты, включая Сефарозу 4B и Сефарозу 6B (оба продукта относятся к GE healthcare bioscience). Колонки для лектин хроматографии включают такие, в которых лектин иммобилизован на микропластине или нано-ячейке.

[0065]

Концентрация иммобилизируемого фукозного α1→6 специфичного лектина обычно составляет от 0.001 до 100 мг/ мл, предпочтительно от 0.01 до 20 мг/ мл. Когда носителем является гель агарозы, его активируют с помощью CNBr и др., а затем к ним контактрует лектин. Лектин можно иммобилизовать в геле, куда вводится активированный спейсер. Кроме того, после иммобилизации лектина в геле, куда ввели формильную группу, гель можно восстановить с помощью NaCNBH3. Более того, можно использовать имеющийся в наличии активированный гель NHS-Сефарозу (GE healthcare bioscience).

[0066]

Образец из фукозных α1→6 сахарных цепей загружается в колонку, которая затем для промывки заливается буферным раствором. Типичный буферный раствор имеет молярную концентрацию от 5 до 100 mM, предпочтительно от 10 до 500 mM; значение pH от 4.0 до 10.0, предпочтительно от 6.0 до 9.0; содержание NaCl от 0 до 0.5 М, предпочтительно от 0.1 до 0.2 М; содержание CaCl2, MgCl2 или MnCl2 от 0 до 10 mM, предпочтительно от 0 до 5 mM.

[0067]

Элюция фукозных α1→6 сахарных цепей после промывки колонки для аффинной хроматографии осуществляется в нейтральном неденатурированном буфере с использованием элюционного агента, например хлорида натрия, гаптен-сахара и им подобных. Этот буферный раствор может быть таким же, как вышеописанный. Концентрация элюционного агента предпочтительна от 1 до 500 mM, в частности предпочтительна от 10 до 200 mM.

[0068]

Настоящее изобретение также предлагает метод, позволяющий отличить рак поджелудочной железы от панкреатита, который состоит в том, что фукозный α1→6 специфичный лектин может воздействовать на патологический гаптоглобин, содержащийся в образце, взятом у живого организма с СА 19-9 в сыворотке крови 30 Ед/мл или более. Лектин:

(1) выделен из базидиомицетов;

(2) имеет молекулярную массу от 4000 до 40000, установленную с помощью ДСН электрофероза в полиакриламидном геле, и

(3) имеет сродство с фукозными α1→6 сахарными цепями с константой связывания 1.0×104 М-1 или более при 25°C.

Принцип действия метода отличительных признаков такой же, что и принцип действия описанного выше метода диагностики рака поджелудочной железы, за исключением использования образца, взятого у живого организма с СА19-9 в сыворотке крови 30 Ед/мл или более. Как показано в Таблице 3 и на Фиг.10, рак поджелудочной железы трудно отличить от панкреатита, используя только традиционный онкомаркер СА19-9. С другой стороны, в соответствии с методом, представленным в данном изобретении и сочетающим маркер СА19-9 и фукозный α1→6 специфичный лектин, рак поджелудочной железы легко отличить от панкреатита, как показано на Фиг.8.

[0069]

Данное изобретение предоставляет диагностический препарат или набор для диагностики рака поджелудочной железы и/или панкреатита, включающий фукозный α1→6 специфичный лектин, который:

(1) выделен из базидиомицетов;

(2) имеет молекулярную массу от 4000 до 40000, установленную с помощью ДСН электрофероза в полиакриламидном геле, и

(3) имеет сродство с фукозными α1→6 сахарными цепями с константой связывания 1.0×104 M-1 или более при 25°C.

Вышеупомянутый лектин предпочтительно маркировать. Вышеупомянутый диагностический реагент или набор факультативно включает элементы, входящие в состав известных диагностических наборов реагентов. К ним относятся метка (энзим и хромогенное вещество, радиоизотоп, люминесцентное вещество, флуоресцентное вещество, окрашенное вещество), буферный раствор, меченая пластинка и гасящий раствор. В частности, он предпочтительно содержит реагент для выделения гаптоглобина из образца, взятого у живого организма (например, антитела к антигаптоглобину).

Образцы

[]

Образцы настоящего изобретения приведены ниже в целях его подробного пояснения. Однако данное изобретение не ограничивается исключительно этими образцами. Образец приготовления 1: Производство PTL

В соответствии с этапом очистки, описанным ниже, лектин Pholiota terrestris Overholts (PTL) изолировали и очистили от Pholiota terrestris Overholts.

Выделение

[0071]

Лиофилизированный порошок (2.5 г), полученный в результате лиофилизации Pholiota terrestris Overholts (7.5 г), был выделен с получением 50 мл из 10 мМ Трис-буфера (pH 7.2) при температуре 4°C в течение 2 часов. Полученный экстракт центрифугировали (15, 000 об/мин, 20 мин, 4°C). Затем надосадочную жидкость пропускали через марлевый фильтр, чтобы таким образом получить первый экстракт. Эт