Способ получения слоев кубического оксида циркония

Иллюстрации

Показать все

Изобретение относится к получению на подложке слоя на основе диоксида циркония. Применяют реактивное дуговое распыление с пульсирующим током искрового разряда и/или приложением ортогонального искровой мишени магнитного поля. Для получения слоя используют смешанную мишень, включающую элементарный цирконий и по меньшей мере один стабилизатор, или циркониевую мишень из элементарного циркония при использовании кислорода и азота в качестве реакционного газа, или смешанную мишень при использовании в качестве реакционного газа азота и кислорода. Обеспечивается получение слоев на основе диоксида циркония с кубической и/или тетрагональной структурой, обладающих требуемыми свойствами. 7 н. и 19 з.п. ф-лы, 26 ил., 5 табл.

Реферат

Изобретение относится к способу получения слоев кубического оксида циркония, а также к слоям и/или системам слоев, которые содержат оксид циркония. Изобретение также относится к продуктам со слоями оксида циркония и вариантам их применения.

Слои на основе оксида циркония, прежде всего с его кубической и/или тетрагональной кристаллической структурой, представляют интерес, например, для применения в области твердоэлектролитных топливных элементов.

Но ионная проводимость слоев на основе оксида циркония и их термическая устойчивость позволяют использовать их также в области сенсорной техники.

Здесь также предпочтительно делают упор на кубическую кристаллическую структуру, как, например, описано в патентном документе US 20040084309: этот документ описывает сенсор, который основывается на Zr-O-слое, который является тетрагональным или кубическим и содержит менее 5 мольных процентов примесной моноклинной фазы. Необходимость в ограничении моноклинной фазы обосновывается тем, что этим можно избежать растрескивания при воздействии переменных температур, которое возникает вследствие изменений объема при фазовом переходе. Моноклинную фазу устраняют с помощью стабилизаторов. В разделе 101 также описано, что в слое предпочтителен маленький средний размер зерен (менее 2,5 мкм), поскольку он ведет себя более стабильно в отношении фазовых превращений. В разделе 103 приведены предпочтительные отношения кубической фазы к тетрагональной фазе (400) для кубической фазы и (004) и (220) для тетрагональной фазы.

Однако вследствие хороших механических свойств в сочетании с хорошими термическими барьерными характеристиками слои могли бы быть эффективно использованы также в области покрытий на инструментах, особенно предпочтительно для нанесения покрытий на конструкционные детали. При этом первостепенным является формирование трибологических систем. Регулируемые морфологические характеристики в сочетании с регулируемой твердостью слоев и простое комбинирование с другими оксидными слоями могут быть применены для оптимизации износа покрытой обрабатываемой заготовки/конструкционной детали и износа сопряженной детали.

Дополнительный вариант применения описан в патентном документе US 20070004589: там использована смесь из тетрагонального и кубического Zr-O с добавкой стабилизаторов для применения в катализаторах.

Слои на основе оксида циркония в отношении их состава могут быть описаны, прежде всего как Zr-O, Zr-O-N, Zr-St-O, Zr-St-O-N, причем St означает стабилизирующие элементы, которые способствуют стабилизации кубической или тетрагональной структуры ZrO2. В качестве стабилизатора предпочтительно применяется иттрий (Y). В прототипе известны разнообразные способы получения слоев на основе оксида циркония, которые в последующем должны быть вкратце рассмотрены.

а) Слои, полученные спеканием:

В патентных документах US 05709786 и ЕР 00669901 описан способ получения спеканием твердых электролитов из Zr-O. При этом обсуждается введение стабилизаторов для повышения ионной проводимости Zr-O, а также совместное спекание с металлическими и керамическими порошками для получения контактов в соединении с твердыми электролитами. Согласно этому прототипу, как существенное описано то, что порошки с размерами зерен в нанометровом диапазоне снижают температурную зависимость ионной проводимости, и что малый размер зерен порошка является благоприятным для процесса спекания и понижает необходимую для спекания температуру. Это обсуждается прежде всего в том контексте, что некоторые предпочтительные для повышения ионной проводимости стабилизаторы при обычных размерах зерен порошков могут быть подвергнуты спеканию только при очень высоких температурах. Документ описывает трудности получения слоя при процессе спекания и показывает подход к их устранению сокращением размера зерен порошка. Слои аналитически не охарактеризованы, но продемонстрирована необходимость того, что для определенных вариантов применения является предпочтительным сообразно приспосабливать твердость слоя и прочие механические свойства Zr-O-слоя к трибологической системе.

Слои Zr-O патентного документа US 20040084309, которые пригодны для применения в сенсоре, тоже получены в процессе спекания.

Правда, необходимые в процессе спекания высокие температуры обусловливают значительные недостатки. Чтобы сократить их, в качестве исходных материалов используются дорогостоящие порошки с зернистостью в нанометровом диапазоне. При высокоплавких материалах обычные температуры спекания (около 1500°С) повышаются еще больше, чтобы сделать возможным процесс спекания. Прежде всего, это имеет место тогда, когда должны быть введены высокоплавкие стабилизирующие элементы, как это описано в патентном документе US 05709786. Из этого документа также ясно, что важно комбинировать слой твердого электролита с дополнительными функциональными слоями (например, электродами), и, соответственно, с механическими и термическими защитными слоями. Это значит, что для применения необходимо изготавливать весь пакет слоев с взаимно согласованными функциями, причем производственные температуры должны быть согласованы между собой для достижения хорошего пакета слоев (например, в отношении проблем, связанных с поверхностями раздела фаз, стабильностью слоев). Из этого документа также ясно, что с материальной точки зрения высокие температуры в процессе изготовления являются предпочтительными для встраивания стабилизаторов, но они не могут быть реализованы простым путем, и являются еще более труднореализуемыми для связывания слоев.

Следует добавить, что полученные способом спекания слои рассматриваются скорее как плотные материалы. Часто они должны быть еще и стабилизированы (например, с помощью смачивающего средства), чтобы тем самым обеспечить механическое связывание. От температуры спекания зависит, какая будет достигнута структура Zr-O, и потребуются стабилизаторы, чтобы получить кубическую или тетрагональную структуру. Фазы, которые образуются в этом способе, по существу соответствуют тому, что можно выявить из фазовой диаграммы, поскольку процессы в любом случае происходят по существу при термическом равновесии. Есть стабилизаторы, которые могут быть подвергнуты спеканию только при очень высоких температурах, и тем самым являются технически труднореализуемыми или вообще неисполнимыми. Ввиду этого возможное разнообразие слоев является ограниченным.

«Связывание» полученного спеканием слоя с другими материалами затруднительно, так как необходимы различные температуры, чтобы обеспечить связывание, и температурный диапазон ограничивается связываемым материалом. Слои являются хрупкими, почти как фарфор, и почти невозможно изготовить многослойные структуры. Размеры зерен полученных материалов определяются исходным порошком и способом спекания. Простое нанесение термических защитных слоев или металлических электродов едва ли можно выполнить в одном процессе.

При спекании решающее значение имеют исходные материалы (размер зерен), чтобы получить высококачественные слои из кубического или тетрагонального ZrO2. В обоих случаях должны быть приложены огромные усилия, чтобы гарантировать воспроизводимость в отношении исходного материала. Поэтому необходимо обеспечить улучшенный способ получения в отношении как процесса приготовления исходного материала (мишени), так и постоянного во времени качества материала во время процесса нанесения покрытия.

b) Слои, полученные плазменным напылением:

В патентном документе US 20040022949 раскрыт защитный противоизносный слой для газовых турбин из кубического или тетрагонального Zr-O, который получен плазменным напылением. Обработка водяным паром преобразует этот слой в более пластичную моноклинную структуру, которая при работе газовой турбины опять переходит в кубическую или тетрагональную структуру. Смысл этой дополнительной обработки слоя состоит в таком обеспечении прирабатываемости конструкционной детали, чтобы сопряженная деталь не подвергалась износу, и чтобы происходила приработка пластичного слоя. Опять же использованы обычные стабилизаторы, причем указан оксид иттрия (Y-O) в диапазоне между 0,3 и 20 мольными процентами.

В патентном документе US 20050170200 описан термический барьерный защитный слой, который состоит из адгезивного слоя, частично стабилизированного слоя Zr-O и дополнительного полностью стабилизированного слоя Zr-O. Тем самым хорошие механические свойства частично стабилизированного слоя Zr-O скомбинированы с хорошими термическими защитными свойствами полностью стабилизированного слоя Zr-O. Слои получены путем плазменного напыления.

Упомянутые в связи со способом спекания проблемы с поверхностями раздела фаз действительны также для термических способов напыления. Здесь также затруднительно достигнуть хорошего сцепления между осажденным слоем и покрываемой подложкой. К тому же в этом способе трудно реализовать поэтапные переходы между различными материалами.

Как и при спекании, при электронно-лучевом испарении (тигельный материал с предварительной обработкой) также решающее значение имеют исходные материалы, чтобы получить высококачественные слои из кубического или тетрагонального ZrO2. В обоих случаях должны быть приложены огромные усилия, чтобы гарантировать воспроизводимость в отношении исходного материала. Поэтому необходимо обеспечить улучшенный способ получения в отношении как процесса приготовления исходного материала (мишени), так и постоянного во времени качества материала во время процесса нанесения покрытия.

с) Слои, полученные электронно-лучевым испарением:

Патентный документ US 20060171813 описывает применение слоев из Zr-O на турбинных лопатках. На внутренний плотный слой, который содержит кубический Zr-O или Hf-O, наносят дополнительный термический защитный слой, который состоит из многослойного покрытия, которое состоит из Zr-O и оксида металла, например, Ta-O или Nb-O. Слои осаждены с помощью электронно-лучевого испарения.

В патентном документе US 20080090100 А1 описан термический барьерный слой, который получен с использованием электронно-лучевого испарения.

В патентном документе US 05418003 описан PVD-способ (электронно-лучевое испарение), который служит для получения термических барьерных слоев на основе Zr-O. Чтобы сократить разбрызгивание при испарении, в патентном документе US 06042878 А указана специальная предварительная обработка тигельного материала (слитка).

В патентном документе US 6586115, без приведения более подробных сведений о процессе, названы различные методы PVD (физического осаждения из газовой фазы) и CVD (химического осаждения из газовой фазы) для нанесения термических барьерных слоев (TBC). При этом также упомянуто электронно-лучевое испарение стабилизированного иттрием оксида.

Электронно-лучевое испарение в принципе обеспечивает возможность хорошего сцепления, поскольку оно происходит в вакууме, и поверхности подложки могут быть очищены и активированы плазменной обработкой. Правда, степень ионизации испаряемого материала при электронно-лучевом испарении является малой, что чаще всего допускает только столбчатый рост слоев, который является желательным для термических защитных слоев, но неблагоприятен для других вариантов применения и в плане сцепления. Более высокая степень ионизации пара была бы благоприятной также в том аспекте, что она вводила бы более высокую энергию при синтезе слоя путем создания потенциала смещения на подложке и тем самым создавала бы наилучшие условия для того, чтобы можно было получить тетрагональные или кубические структуры ZrO2 даже без внедрения стабилизаторов. Но это до сих пор не удавалось ни здесь, ни в других PVD-методах. Еще одним существенным недостатком этого способа являются усилия, которые нужно приложить для того, чтобы добиться испарения по возможности без разбрызгивания. То есть, чтобы осажденные слои могли быть полностью окисленными, в тигельный материал вносят оксиды или используют только оксиды. Поскольку они являются изолирующими, расплавление или возгонка оксидов электронным пучком не являются беспроблемными в отношении брызг, но также ликвации тигельного материала. Оба фактора проявляются в усложнении технологического процесса. К тому же в процесс должен быть введен еще и дополнительный кислород в качестве реакционного газа, чтобы обеспечить слой достаточным количеством кислорода.

Дополнительная проблема проявляется в том, что при электронно-лучевом испарении материал расплавляется мгновенно. Вследствие этого в тигле возникает большой градиент температур, который нередко приводит к разрушению тигля и делает его непригодным к применению. Эта проблема разрешена в патентном документе US 06143437 в связи с цирконием. Использованный там тигель уже включает порошок оксида циркония в кубической фазе.

Таким же образом патентный документ US 20070237971 описывает применение мишени со специальным составом керамического порошка для электронно-лучевого испарения. Дорогостоящий способ получения этой мишени описан в патентном документе US 20080088067. Естественно, что связанные с этим затраты значительно препятствуют промышленному применению способа.

Следует еще раз подчеркнуть, что слои, которые получены способом электронно-лучевого испарения, главным образом допускают только столбчатую морфологию слоя, так как степень ионизации паров металла является слишком низкой, чтобы увеличить подвижность на поверхности подложки. Конечно, это также ограничивает влияние на структуру слоя. Еще одним слабым местом способа является поддержание расплава в рабочем состоянии. Он требует очень тщательного и трудоемкого обращения, чтобы не допустить никаких расслоений, которые тогда проявились бы в составе слоя. Испарение сплавов едва ли возможно, то есть, потребовалось бы использовать гораздо более технологически трудное испарение оксидов с добавлением кислорода, чтобы достигнуть получения сколько-нибудь стехиометрических слоев.

d) Слои, полученные стимулированным ионным пучком осаждением (IBAD):

В патентном документе US 20020031686, помимо всего прочего, раскрыт способ IBAD, который позволяет получать высокоориентированные (биаксиально) покрытия из YSZ (стабилизированного иттрием оксида циркония) на слое SiO2. Фигуры показывают рентгеновскую дифрактограмму (XRD) для YSZ с рефлексами (200) и (400). В этом варианте применения YSZ служит в качестве ростовой подложки для последующего слоя, в данном варианте применения Ce-O, Ru-O и/или LSCO (оксидов лантана-стронция-кобальта). Цель состоит в получении электропроводных оксидов из этих материалов, для чего используется YSZ-подложка. В этом документе приведены примеры получения YSZ-слоев, которые были осаждены при температуре подложки 700°С. Без конкретного доказательства дополнительно утверждается, что процесс может быть распространен на более низкие температуры между 450°С и 600°С. Низкая температура обработки представляет собой желательное свойство или условие в том случае, если слои должны быть осаждены на уже предварительно изготовленные подложки, например, кремниевые пластины в области производства полупроводников. Патентный документ US 20020031686 раскрывает рентгеновскую дифрактограмму (XRD) с рефлексами (200) и (400) для YSZ в области углов 2θ между 20° и 80°. Способ IBAD описан в патентном документе US 05872070.

Способ IBAD основывается на бомбардировке поверхностей, во-первых, для вытравливания материала, во-вторых, чтобы стимулировать рост осаждаемого в вакууме материала в определенном направлении. При этом проблема состоит в том, что в этом способе скорости роста малы и непригодны для вариантов применения, в которых большое количество материала должно быть осаждено на большой поверхности и экономичным путем.

Следует отметить, что, как представляется, рефлексы в патентном документе US 20020031686, для которых ожидалась наибольшая интенсивность при тетрагональном или кубическом ZrO2 (при 2θ=30° и 50°), почти не обнаруживаются. Это является признаком того, что в способе IBAD в результате ионной бомбардировки получаются высокотекстурированные слои, и является спорным вопрос, насколько, в самом деле, велика доля кубического YSZ. Но это также является показателем того, что в этом способе уже температуры подложки на уровне 700°С все-таки недостаточны для создания явственной кубической фазы в YSZ. Это является существенным ограничением при современных методах PVD: температуры подложки в области между 200°С и 600°С недостаточны, чтобы сформировать кубическую фазу в ZrO2.

е) Слои в комбинированных способах PVD (ионно-плазменное дуговое распыление)

В работе авторов J. Cyviene и др., Surface and Coatings Technology, том 180-181 (2004), стр. 53-58, описана комбинация ионно-плазменного напыления и дугового распыления. При этом в устройстве для дугового распыления использована мишень из Zr, и в качестве источника для ионно-плазменного напыления мишень из Y. Процесс протекает при технологическом давлении 0,2 Па, причем к аргону добавлен кислород до максимального парциального давления 0,08 Па.

Правда, в описании комбинированного способа ионно-плазменного напыления и дугового распыления, приведенном в статье Cyviene Surf.Coat.Tech 180-181 2004, освещены некоторые проблемы, которые касаются как способа получения, так и осажденного слоя. Документ подробно обсуждает проблематику отравления распыляемой мишени, то есть, описывает, что при эксплуатации распыляемой мишени необходимо работать на краю диапазона в режиме, когда мишень находится в металлическом состоянии, что обусловливает дорогостоящее регулирование процесса. Как в режиме ионно-плазменного напыления, так и в режиме дугового распыления рабочим газом является аргон, и вводится только кислород в малых количествах. Работа в чистом кислороде не описана, но без дополнительных мер при описываемых условиях привела бы к полной нестабильности: почти полное подавление ионно-плазменного напыления, нестабильное дуговое распыление вследствие окисления искровой мишени и искрового анода, и в конце концов нарушение искрового разряда в режиме постоянного тока.

В статье автора Cyviene описаны проблемы на стороне слоя при комбинированном способе ионно-плазменного напыления и дугового распыления, которые устранены данным изобретением. Описано, что искровой разряд с Zr-мишенью в аргоне с добавлением кислорода при синтезируемом слое ведет не к кубической или тетрагональной фазе, а к образованию только моноклинной структуры. Лишь добавлением иттрия (Y) в качестве стабилизатора с помощью процесса ионно-плазменного распыления может быть обнаружен YSZ в кубической или тетрагональной фазе. Впрочем, это также близко к экспериментам авторов настоящего изобретения, которым, как это раскрыто в патентном документе US 20080090099 А1 (Таблица 3, Пример № 29), также удалось получить ZrO2 в стабильном дуговом процессе в исключительно кислородной атмосфере и при значительно более высоких давлениях, но также не удалось обнаружить кубическую или тетрагональную структуру ZrO2, совершенно в противоположность «высокотемпературным» корундовым структурам в описанной там системе материалов Al-Cr-O.

Из рентгеновской дифрактограммы (XRD) в статье Cyviene Surf.Coat.Tech 180-181 2004 ясно еще одно дополнительное обстоятельство. Видны Брегговские пики гексагональной фазы Y-O и гексагонального Zr. Это такие компоненты слоя, которые в значительной мере могут способствовать нестабильности слоя в случае возникновения переменных термических нагрузок, что является обычным в вариантах применения в качестве твердого электролита или термического барьерного слоя.

Эти проблемы также частично совпадают с проблемами, связанными с IBAD: явления отравления мишени, составы слоя, которые содержат еще и другие материалы, и, как следствие, затрудненное регулирование кристаллической структуры синтезированного слоя при более низких температурах подложки между 200°С и 600°С.

Кроме того, как уже упомянуто выше, рефлексы в патентном документе US 20020031686, для которых ожидалась наибольшая интенсивность при тетрагональном или кубическом ZrO2 (при 2θ=30° и 50°), почти не обнаруживаются. Однако при этом весьма вероятно, что имеется только очень малая доля кубического YSZ.

f) Другие способы:

Патентный документ US 20060009344 описывает получение Zr-O-подложки, которая включает компоненты как моноклинной, так и кубической структуры Zr-O, и поэтому особенно пригодна для получения лучшего сцепления со слоем из подлинно кубического Zr-O. Способ представляет собой способ аэрозольного «CVD». Опять же значение придается тому, чтобы иметь размеры зерен между 5 нм и 1000 нм, и опять Zr-O стабилизирован с помощью Y-O на уровне между 4 мольными процентами и 8 мольными процентами.

Все описанные способы позволяют сделать вывод, что существует большая потребность в улучшенных сравнительно с прототипом слоях оксида циркония, так же как потребность в экономичных и технически управляемых способах получения таких слоев.

Тем самым, положенной в основу настоящего изобретения задачей является создание способа получения слоев оксида циркония, в котором устранены или лишь в незначительной степени проявляются вышеописанные проблемы прототипа.

Настоящим изобретением также должен быть представлен способ получения слоев оксида циркония, который позволяет в широких пределах и по существу без значительного изменения состава слоя управлять морфологическими характеристиками и, в частности, размерами кристаллитов.

В основу настоящего изобретения также положена задача создания слоев оксида циркония, которые по существу имеют кубическую и/или тетрагональную структуру, и которые, по сравнению с прототипом, включают в значительно меньшей степени компоненты, которые не являются кубическим оксидом циркония или тетрагональным оксидом циркония. Это относится как к слоям, которые содержат один или более классических стабилизаторов, так и к слоям без классических стабилизаторов.

В качестве классических стабилизаторов в рамках этого описания указаны стабилизаторы, которые в чистом виде при комнатной температуре и при нормальном давлении находятся в форме твердых веществ. Примерами таких классических стабилизаторов являются иттрий, магний, кальций, скандий и/или редкоземельные металлы Группы IIIA Периодической системы. Здесь следует дополнительно упомянуть Sr, Ba, Ni, Fe, Co, La, Nd, Gd, Dy, Ce, Al, Bi, Ti, Tb, Eu, Sm. Кроме того, эти указанные стабилизаторы находятся в синтезированном слое в виде оксидов или смешанных оксидов. К понятию «классические стабилизаторы» должны быть также отнесены смеси упомянутых выше в качестве примера материалов.

Задача решена с помощью способа, который основывается на реактивном дуговом распылении, при котором или пульсирует ток искрового разряда, и/или предпочтительно используется слабое ортогональное магнитное поле на искровой мишени. Соответствующие этому типу способы получения слоев уже были описаны в патентных заявках US 20070000772 А1 и US 20080020138 А1, и здесь считаются известными. В частности, патентный документ US 20080090099 А1 также описывает соответствующее получение слоев из ZrO2. Процесс прокомментирован настолько стабильным, что искровые мишени могут быть обработаны при давлениях реакционного газа между 0,1 Па и 10 Па.

В отличие от описанного там способа, теперь же соответственно изобретению приняты дополнительные меры, чтобы оксид циркония осаждался на подложке в кубической и/или тетрагональной кристаллической структуре.

В первом варианте осуществления настоящего изобретения задача решена с помощью способа получения слоя на основе оксида циркония на покрываемой подложке, с использованием реактивного дугового распыления, с пульсирующим током искрового разряда и/или приложением ортогонального искровой мишени магнитного поля, причем применяется смешанная мишень, включающая элементарный цирконий и по меньшей мере один стабилизатор.

При этом в одной модификации этого варианта исполнения получается слой с кубической и/или тетрагональной кристаллической структурой.

Таким образом, согласно первому варианту осуществления настоящего изобретения, одна соответствующая изобретению мера состоит в том, что для дугового распыления применяется смешанная мишень, которая включает элементарный цирконий и один или несколько классических стабилизаторов в желательном для слоя концентрационном соотношении. Как это ни удивительно, оказалось, что такая смешанная мишень из циркония и стабилизатора может быть беспроблемно обработана с помощью импульсного искрового источника и/или с использованием слабого ортогонального магнитного поля при величинах давления кислорода, которые также составляют явно больше 0,1 Па и даже до 10 Па, и могут превышать это значение.

Таким образом, в одной модификации этого варианта исполнения парциальное давление кислорода выбирают на уровне выше 0,1 Па, предпочтительно по меньшей мере 10 Па.

Концентрационные соотношения смешанной мишени по существу воспроизводятся в концентрационных соотношениях, нанесенных на подложки слоев, а именно, по существу независимо от давления кислорода.

В одной модификации этого варианта исполнения тем самым концентрационное соотношение оксида циркония и стабилизатора в слое по меньшей мере предварительно задается по существу концентрационным соотношением элементарного циркония и стабилизатора в смешанной мишени.

При достаточно высокой концентрации стабилизатора автоматически обеспечивается наличие кубической и/или тетрагональной кристаллической структуры. В отношении давления кислорода речь может идти о парциальном давлении или общем давлении.

Таким образом, в одной модификации этого варианта исполнения кубическая и/или тетрагональная кристаллическая структура достигается выбором концентрации стабилизатора в смешанной мишени.

Тем самым давление кислорода в способе можно рассматривать и регулировать как произвольный параметр в отношении состава слоя. Напротив, различные эксперименты показали, что давление или величина расхода потока кислорода, как это ни удивительно, можно рассматривать как весьма важный фактор влияния на морфологию слоя. Таким образом, авторами настоящего изобретения был найден способ, который путем выбора концентрационного соотношения смешанной мишени позволяет выбрать состав слоя, и по существу независимо от этого, выбором парциального давления кислорода, обеспечивает возможность выбора морфологии слоя, например, как размер кристаллитов или вопрос столбчатого роста. При этом дополнительно достойно внимания, что это может происходить при относительно умеренных температурах подложки.

В одной модификации этого варианта исполнения парциальное давление кислорода, как по существу произвольный регулировочный параметр по меньшей мере в отношении создания кубической и/или тетрагональной кристаллической структуры, задается для предварительного задания морфологии слоя.

В дополнительной модификации этого варианта исполнения, которая ниже будет обсуждена дополнительно, реакционный газ помимо кислорода включает азот.

Во втором варианте осуществления настоящего изобретения упомянутая задача решена с помощью способа получения слоя на основе оксида циркония на покрываемой подложке, с использованием реактивного дугового распыления с пульсирующим током искрового разряда и/или с приложением ортогонального искровой мишени магнитного поля, в котором используется циркониевая мишень из элементарного циркония, и наряду с кислородом, применяется азот в качестве реакционного газа.

При этом в одной модификации этого варианта исполнения получается слой с кубической и/или тетрагональной кристаллической структурой.

Согласно этому второму варианту осуществления настоящего изобретения, можно отказаться от применения классических стабилизаторов, когда в качестве второй соответствующей изобретению меры к реакционному газу добавлен азот. Сообразно этому в качестве мишени может быть использована мишень из элементарного циркония. Без этих дополнительных мер, то есть, без азота, в условиях нынешнего дугового распыления на подложках осаждались бы слои моноклинного оксида циркония. Как неожиданно было обнаружено, при определенных условиях давления и параметрах течения газа применение азота и кислорода в качестве реакционного газа приводит к содержащим цирконий, кислород и азот слоям, которые имеют кубическую или тетрагональную кристаллическую структуру. Условия давления и параметры течения газа при этом могут быть выбраны так, что рентгеновские дифракционные спектры соответствующих слоев имеют четкие рефлексы кристаллизованного в кубической форме ZrO2.

Таким образом, в одной модификации этого варианта исполнения регулированием условий давления при дуговом распылении получен слой, который содержит цирконий, кислород и азот, с кубической и/или тетрагональной кристаллической структурой.

В этом способе предпочтительно устанавливают долю кислорода путем регулирования величины расхода потока газа, тогда как долю азота выбирают соответственно регулированию общего давления. При нанесении покрытия согласно этому второму варианту исполнения в соответствии с изобретением было показано, что основанные на кристаллизованном в кубической форме цирконии, содержащие азот и кислород слои могут покрывать слои чистого ZrO2, то есть, совершенно без стабилизатора, которые, хотя и будучи тонкими, но представлены кубической кристаллической структурой.

Таким образом, в одной модификации этого варианта исполнения слой на основе оксида циркония в виде слоя чистого ZrO2 с кубической кристаллической структурой осаждают на кристаллизованный в кубической форме слой, содержащий цирконий, азот и кислород.

То обстоятельство, что толстые слои из чистого ZrO2, то есть, без содержания азота, в конечном итоге опять превращаются в пластичную моноклинную фазу, может быть с выгодой использовано для некоторых вариантов применения, в которых, например, требуется снижающая трение приработка, и должно также рассматриваться как составная часть настоящего изобретения. Таким образом, применение этого варианта получения слоя, который может переходить в моноклинную фазу, является предпочтительным для снижающей трение приработки.

Как вскользь упомянуто выше, согласно третьему варианту осуществления настоящего изобретения второй вариант исполнения соответственно изобретению, то есть, применение азота в качестве дополнительного реакционного газа, выполняют в комбинации с первым вариантом исполнения соответственно изобретению, то есть, применением содержащей классический стабилизатор циркониевой смешанной мишени. Это позволяет получать слои кубического и/или тетрагонального оксида циркония с меньшими, чем обычно, концентрациями стабилизатора. По сравнению с описанным вторым вариантом исполнения, благодаря наличию уменьшенной при известных условиях концентрации классического стабилизатора можно в большей степени целенаправленно регулировать величину расхода потока газообразного кислорода и тем самым морфологию нанесенного слоя.

Теперь изобретение будет описано подробно в порядке примера и с помощью нижеследующих иллюстраций, таблиц и фигур.

Теперь, прежде всего, более подробно обсуждается один из возможных вариантов применения, чтобы четко обозначить, каким требованиям предпочтительно должны удовлетворять соответствующий способ и/или соответствующий слой. При этом перечень требований по существу не следует понимать как совокупный, причем, конечно, может быть достоинством, когда одновременно исполняются многие из этих характеристик или вообще все.

Затем вкратце будет описана особенность применяемой для примерного способа установки для нанесения покрытий, которая должна быть предпочтительно исполнена и ведет к особенно стабильным процессам нанесения покрытий.

Затем будут в порядке примера перечислены различные процессы нанесения покрытий.

Лишь после этого будут охарактеризованы полученные тем самым слои.

После охарактеризования последует обсуждение и интерпретация найденных характеристик.

Одна тема в связи с возможным, также соответствующим изобретению применением настоящего изобретения относится к получению материала в форме слоя, который имеет высокую проводимость для ионов кислорода и особенно пригоден для твердоэлектролитных топливных элементов.

Типичный твердоэлектролитный топливный элемент описан, например, в докладе автора S.C.Singhal, Недавние успехи в развитии топливных элементов на основе циркония для производства электроэнергии, материалы Пятой Международной Конференции по научным основам и технологии циркония, 16-22 августа 1992 года, Мельбурн, Австралия. Из него следует, что собственно слой твердого электролита должен быть с обеих сторон снабжен еще и пористыми электродами (катодом с воздушной стороны, анодом с топливной стороны), и что затем еще требуются дополнительные «непроницаемые» межкомпонентные соединения, чтобы изготовить завершенный топливный элемент. Таким образом, конструкция топливного элемента основывается на комплектной системе слоев, которая подвергается интенсивной термической переменной нагрузке. Эксплуатация элемента в этих условиях предъявляет чрезвычайные требования к стабильности всего пакета слоев в отношении исключения диффузии и в плане стабильности структуры слоев. Особенно важными являются химическая стабильность твердого электролита и его кристаллическая структура. Эта температурная стабильность, в частности, предполагает, что обеспечивается отсутствие или незначительная степень обусловленных температурой фазовых преобразований в твердом электролите. Также является важным регулирование или исключение диффузионных процессов внутри элемента, чтобы противостоять «явлениям старения» или потерям производительности. Огромное значение для стабильности элемента имеет согласование коэффициентов теплового расширения среди различных покровных материалов, которые составляют элемент.

Из этих общих соображений авторы настоящего изобретения вывели следующие конкретные требования к слою твердого электролита и всему пакету слоев топливного элемента, и тем самым получилось соответствующее изобретению применение обсуждаемого до сих пор способа получения слоя твердого электролита в топливном элементе.

Если слой оксида циркония применяется в качестве слоя твердого электролита, то он предпочтительно должен состоять главным образом из кубического и/или тетрагонального ZrO2, чтобы избежать фазового превращения в моноклинную структуру.

При применении классических стабилизаторов их введение предпочтительно не должно создавать проблем, и свободный выбор классических стабилизаторов не должен ограничиваться способом получения.

Таким образом, для одного варианта соответствующего изобретению применения указанных способов справедливо следующее: стабилизатор выбирается свободно.

Как состав слоя, так и фазовый состав, а также морфология слоя предпочтительно должны варьироваться в значительной мере независимо друг от друга посредством просто регулируемого параметра способа получения.

Таким образом, для одного варианта соответствующего изобретению применения указанных способов справедливо следующее: по меньшей мере состав слоя, фазовый состав и морфология слоя устанавливаются в значительной мере независимо друг от друга путем регулирования параметров процесса распыления.

Морфология слоя и кристаллическая структура слоя должны формироваться предпочтительно в диапазоне температур подложки между 200°С и 700°С, чтобы они, во-первых, были совместимыми с обычными материалами подложек, и, во-вторых, чтобы температуру подложки можно было свободно выбирать так, что возможно согласование различных коэффициентов теплового расширения внутри всего пакета слоев, то есть, температура подложки могла бы быть выбрана так, чтобы растягивающее и сжимающее напряжение отдельных слоев, по меньшей мере частично, компенсировалось, например, в середине рабочего диапазона.

Таким об