Топливная форсунка (варианты) и способ работы топливной форсунки

Настоящее изобретение относится к встроенным форсункам/запальным свечам, обеспечивающим эффективный впрыск, воспламенение и полное сгорание различных типов топлива. Согласно одному из вариантов выполнения такая форсунка/запальная свеча может содержать корпус, имеющий основную часть, противоположную сопловой части, и топливопровод, проходящий от основной части к сопловой части. Генератор усилия и первый клапан расположены в основной части. Первый клапан выполнен с возможностью перемещения в ответ на приведение в действие со стороны генератора усилия для перемещения между закрытым и открытым положениями. Форсунка/запальная свеча также содержит второй клапан, расположенный в сопловой части, которая выполнена с возможностью деформации в ответ на давление в топливопроводе для деформирования между закрытым положением и открытым положением. Технический результат заключается в возможности использования различных видов топлива, оптимизации впрыска и сгорания различных видов топлива на осовании условий в камере сгорания. 4 н. и 32 з.п. ф-лы, 78 ил, 2 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение в целом относится к встроенным топливным форсункам и запальным свечам и связанным с ними компонентам для хранения, впрыска и воспламенения различных видов топлива.

УРОВЕНЬ ТЕХНИКИ

Возобновляемые источники энергии, необходимые для изготовления замещающей энергии в различных формах, такой как электроэнергия, водород, моторные спирты и метан, являются непостоянными. Солнечная энергия действует только в дневное время, и ее дневная концентрация меняется в зависимости от сезона и погодных условий. Энергия ветра в большинстве областей является неустойчивой, и ее величина сильно меняется. Ресурсы падающей воды зависят от сезона и подвержены обширному истощению из-за засухи. Биомасса на большей части земной суши варьируется от сезона к сезону и истощается в засуху. Во всем мире значительная энергия, которую можно было бы извлечь гидроэлектростанциями, ветроэлектростанциями, преобразованием биомассы и солнечными коллекторами, тратится впустую из-за нехватки практических способов сохранения кинетической энергии, топлива и/или электроэнергии до момента ее использования.

Население мира и потребность в энергии выросли до предела, за которым нефти требуется больше, чем может быть произведено. Будущие объемы производства будут уменьшаться, в то время как расширение потребностей увеличивающегося населения и рост зависимости от энергоемких товаров и услуг будут ускоряться. Это будет наращивать скорость истощения ископаемых ресурсов. Города страдают от смога, вызванного сжиганием ископаемого топлива. Использование в нетопливных целях природного газа, включая жидкие углеводороды, полученные из природного газа, такие как этан, пропан и бутан, экспоненциально растет в частности для изготовления упаковки, тканей, ковровых покрытий, красок и оборудования, которое в значительной степени содержит термопластичные и термореактивные полимерные материалы.

Уголь имеет относительно низкое отношение водорода к углероду. Нефть имеет более высокое отношение водорода к углероду, и природный газ имеет самое высокое отношение водорода к углероду из всех ископаемых углеводородов. Используя нефть в качестве репрезентативного носителя, можно сказать, что мировые темпы сжигания ископаемых углеводородов в настоящее время превышают эквивалент объемом 200 миллионов баррелей (31800 миллионов литров) нефти в день.

Мировая добыча нефти постоянно растет для удовлетворения растущих потребностей, но темпы разведки нефтяных месторождений отстают от темпов ее добычи. Достигнут максимальный уровень добычи нефти, и темпы ее добычи в почти всех известных месторождениях неизменно падают. После достижения пика добычи нефти мировая экономика переживает падение в каждой энергоемкой и связанной с нефтехимией отрасли производства. Борьба за оставшиеся запасы ископаемого топлива и использование нефти в качестве топлива и смазки для боевых машин явились причиной Первой и Второй мировых войн, а также всех последующих войн. Эквивалентная замена ископаемого топлива в объеме 200 миллионов баррелей (31800 миллионов литров) нефти каждый день потребует усовершенствования фактически каждого практического подхода к изготовлению, распределению, хранению и использованию возобновляемой энергии.

Загрязнения воздуха и воды, вызванные добычей и сжиганием ископаемого топлива, в настоящее время отравляет каждый большой город с пригородами, а также рыбные угодья, сельские районы и леса. Отравление ртутью и другими тяжелыми металлами рыбных угодий и плодородных почв все больше является следствием сжигания угля. Глобальные изменения климата, проявляющиеся в мощных ураганах и торнадо, обильных ливнях, и увеличение убытков от вызванных молниями пожаров в лесах и городах, тесно связаны с увеличением концентрации в атмосфере "парниковых" газов, выделяющихся при сжигании ископаемого топлива. Увеличение сбора солнечной энергии парниковыми газами, присутствующими в атмосфере, увеличивает работу, которую совершает глобальная атмосферная машина, включая повышенное испарение морской воды, таяние ледников и полярных ледяных шапок, с последующими чрезвычайными метеорологическими явлениями, которые приводят к огромным потерям созданных человечеством ценностей и природных ресурсов.

Предшествующие попытки использования мультитопливных вариантов, включая водород, генераторный газ, и топлива с более высоким отношением водорода к углероду, такого как метан, топливные спирты и различные другие альтернативные виды топлива наряду с бензином и дизельным топливом или вместо них, сталкивались с различными проблемами, которые не могли решить, причем эти попытки оказались дорогими, приводили к нежелательным результатам и часто вызывали ухудшение характеристик двигателя или его повреждение, включая:

(1) Увеличение собственного веса для повышения степени сжатия и соответствующих требований для более дорогих, более прочных и более тяжелых поршней, шатунов, коленчатых валов, подшипников, маховиков, блоков двигателя и опорной конструкции для приемлемой выработки энергии и таким образом более тяжелых рессор подвески, амортизаторов, стартеров, батарей, и т.п.

(2) Необходимость использования более дорогих клапанов, упрочненных седел клапанов и установки в заводских условиях для предупреждения усиленного износа клапанов и седел.

(3) Необходимость использования турбонаддува для компенсации потерь мощности и дорожных качеств автомобиля из-за уменьшения удельной энергии топлива и для повышения ухудшенных объемного и теплового КПД.

(4) Многоступенчатое регулирование давления газообразного топлива с максимально тонкой фильтрацией и чрезвычайно небольшим допуском на изменение качества топлива, включая давление пара, а также и октановое и цетановое числа.

(5) Теплообменники в системе охлаждения двигателя для предотвращения замерзания в зимний период регулятора давления газообразного топлива.

(6) Дорогие и громоздкие системы управляемого соленоидом клапана отключения бака (TSOV) и редукционного клапана (PRD).

(7) Значительно увеличенные системы для регулирования расхода.

(8) Остаточная капельная подача топлива в бесполезные периоды времени, а также в периоды действия обратного вращающего момента.

(9) Остаточная капельная подача топлива во вредоносные периоды времени, такие как выхлопной такт, влекущая за собой снижение экономии топлива и взывающая повреждение двигатели или выхлопной системы.

(10) Ухудшение характеристик двигателя или его повреждение из-за раннего воспламенения и детонации.

(11) Перебои в работе двигателя или его повреждение из-за неточного соблюдения вязкости топлива, давления пара, октанового или цетанового чисел и скорости сгорания.

(12) Ухудшение характеристик двигателя или его повреждение из-за смывания топливом, испарения и выгорания масляной пленки со стенок цилиндра и кольцевых или роторных уплотнений.

(13) Невозможность предотвращения формирования оксидов азота во время сгорания.

(14) Невозможность предотвращения формирования макрочастиц из-за неполного сгорания.

(15) Невозможность предотвращения загрязнения из-за формирования аэрозоля из смазки в верхних областях цилиндров.

(16) Невозможность предотвращения перегрева поршней, стенок цилиндра и клапанов, вызванного увеличением трения, и ухудшения характеристик.

(17) Невозможность предотвращения взывающей повреждения обратной вспышки во впускном коллекторе и компонентах воздушного фильтра.(18) Невозможность предотвращения вызывающих повреждения воспламенения и/или взрывов в выхлопной системе.

(19) Невозможность предотвращения перегрева компонентов выхлопной системы.

(20) Невозможность предотвращения блокировки паров топлива и вытекающих из нее перебоев в работе или отказа двигателя.

Кроме того, для топлива с низкой удельной энергоемкостью требуются специальные топливные баки. К резервуарам-хранилищам, предназначенным для бензина, пропана, природного газа и водорода, предъявляются разные требования, соответствующие широкому разнообразию химических и физических свойств каждого вида топлива. Для каждого вида топлива, которое использует транспортное средство, требуется отдельный топливный бак. Такой подход с отдельным баком для каждого вида топлива требует значительного места, приводит к увеличению веса, требует дополнительного усиления пружин и амортизаторов, смещает центр тяжести и центр осевого давления и увеличивает затраты.

В традиционных решениях дозированная подача в двигатель альтернативных видов топлива, таких как бензин, метанол, этиловый спирт, пропан, этан, смесь бутан-водород или метан, может быть достигнута с использованием по меньшей мере одного газового карбюратора, топливных форсунок, расположенных в корпусе дроссельных заслонок, или топливных форсунок для фазированной поцилиндровой подачи топлива. Потеря мощности, вызванная каждым из указанных традиционных подходов, варьируется из-за большого процентного содержания объема впускного воздуха, который занимают расширяющиеся молекулы газообразного топлива.Таким образом, при уменьшении подачи впускного воздуха сгорает меньше топлива и вырабатывается меньше энергии.

При нормальных температуре и давлении (НТП) газообразный водород занимает объем, который в 2800 раз больше объема жидкого бензина, обеспечивающего при сгорании равную энергию. Газообразный метан занимает объем примерно в 900 раз больше объема жидкого бензина, обеспечивающего равную энергию сгорания.

Создание устройств для прокачки таких больших объемов газообразного водорода или метана через вакуумную область впускного коллектора, через впускной клапан или впускные клапаны и подачи в вакуумную область цилиндра во время впускного периода, а также для выполнения всего этого одновременно с подачей достаточного количества воздуха для поддержания полного сгорания топлива и получения тепловой энергии, эквивалентной характеристикам бензина, представляет собой очень сложную задачу, которая до сих пор полностью не решена. Некоторая степень восстановления мощности может быть достигнута путем использования двигателей с большим рабочим объемом. Другой подход требует использования дорогих, более тяжелых, более сложных и менее надежных компонентов для достижения намного более высоких степеней сжатия и/или турбонаддува впускной системы. Однако указанные подходы сокращают срок службы двигателя и намного увеличивают исходные затраты и/или затраты на техническое обслуживание, если основная конструкция двигателя не обеспечивает соответствующие конструкционные профили для повышения жесткости и прочности.

Общеизвестно, что бензиновые двигатели являются неэффективными. Основная причина состоит в том, что бензин смешивается с воздухом для формирования однородной смеси, которую подают в камеру сгорания с дроссельным регулированием во время впускного цикла. Затем этот заряд гомогенной смеси сжимают почти до состояния верхней мертвой точки (TDC) и воспламеняют свечой зажигания. Гомогенное сгорание заряда смеси вызывает непосредственную передачу тепла от продуктов сгорания с температурой от 4500°F до 5500°F (от 2482°C до 3037°C) к головке цилиндра, стенкам цилиндра и поршню или соответствующим компонентам роторных двигателей. При этом защитные пленки смазки сжигаются или испаряются, вызывая загрязнение окружающей среды, а цилиндр и поршневые кольца изнашиваются из-за нехватки смазки. При гомогенном сгорании заряда смеси также происходит потеря энергии, поскольку тепло передается к охлаждаемым поверхностям камеры сгорания, температура которых поддерживаются на относительно низком уровне от 160°F до 240°F (от 71°C до 115°C) жидкостной и/или воздушной системами охлаждения.

Использование водорода или метана в качестве гомогенного заряда топливной смеси вместо бензина представляет собой сложную задачу, имеющую дорогостоящее решение, требующее использования достаточно емкого резервуара для горючего для компенсации существенных потерь энергии, которые являются типичными для бензиновых двигателей. Использование такого более чистого сгорания и потенциально многочисленных видов газообразного топлива вместо дизельного топлива является еще более трудной задачей. Дизельное топливо имеет более высокую энергоемкость по сравнению с бензином. Дополнительные трудности связаны с тем, что газообразные виды топлива, такие как водород, генераторный газ, метан, пропан, бутан и топливные спирты, такие как этиловый спирт или метанол, имеют недостаточно высокое цетановое число и воспламеняются в быстро сжатом воздухе не так быстро, как это требуется для эффективной работы дизельного двигателя. Форсунки для дизельного топлива предназначены для работы с защитной пленкой смазки, которую создает дизельное топливо. Кроме того, форсунки для дизельного топлива только циклически пропускают относительно малый объем топлива, который при нормальных температуре и давлении примерно в 3000 раз меньше объема водорода, необходимого для получения эквивалентного количества теплоты.

Большинство современных двигателей проектируют с целью достижения минимального собственного веса и для работы по существу с высоким коэффициентом избытка кислорода в гомогенных смесях воздуха и топлива для уменьшения формирования оксидов азота путем ограничения пиковой температуры сгорания. Для достижения минимального собственного веса используются цилиндры меньшего размера и повышенные скорости поршней. Высокие скорости вращения двигателя для передачи тягового усилия уменьшают до необходимых скоростей вращения вала посредством трансмиссии с высоким передаточным числом и/или дифференциального блока шестерен.

Работа с высоким коэффициентом избыточности кислорода требует подачи большого количества воздуха, и головки камер сгорания часто имеют два или три впускных клапана и два или три выпускных клапана. Такая конструкция оставляет мало места в области головки для топливной форсунки непосредственного впрыска в цилиндр или свечи зажигания. Управление высокоскоростными клапанами посредством верхних распредвалов дополнительно усложняет конструкцию и уменьшает пространство для размещения топливных форсунок непосредственного впрыска и свечей зажигания. Проектировщики фактически использовали все доступное пространство над поршнями для клапанов и устройств управления клапанами, и оставили место для того, чтобы с трудом втиснуть свечи зажигания для воспламенения бензина или дизельные форсунки для двигателей с воспламенением путем сжатия.

Таким образом, чрезвычайно трудно доставить посредством любого трубопровода, имеющего большее поперечное сечение, чем свеча зажигания бензинового двигателя или топливная форсунка дизельного двигателя, равную энергию с использованием альтернативных видов топлива, таких как водород, метан, пропан, бутан, этиловый спирт или метанол, которые имеют более низкую теплотворную способность на единицу объема по сравнению с бензином или дизельным топливом. Проблема ограниченного доступного пространства для свечей зажигания или дизельных форсунок усугубляется большими тепловыми нагрузками, действующими на головку блока цилиндров, из-за большого прироста тепла от трех-шести клапанов, которые передают тепло от камеры сгорания к головке цилиндров и компонентам, которые к ней относятся. Дополнительное усугубление пространственных проблем и проблем, связанных с тепловыми нагрузками происходит из-за большого тепловыделения в тесной основной области, вызванного трением кулачков, клапанных пружин и толкателей клапана при работе двигателя на высоких оборотах.

Во время промышленной революции поршневые двигатели различными способами стали причиной изменений и по существу обеспечили преобразование энергии. В настоящее время поршневые двигатели внутреннего сгорания, работающие по принципу компрессионного воспламенения и использующие высокоцетановое дизельное топливо, приводят в действие большую часть машин в сельском хозяйстве, горной промышленности, рельсовых и морских тяжелогрузных перевозках и стационарных энергетических системах наряду с новыми усилиями, предпринимаемыми в области создания двигателей меньшего размера с более высокой скоростью движения поршней для повышения топливной эффективности пассажирских и легкогрузных автотранспортных средств. Поршневые двигатели внутреннего сгорания с низкой степенью сжатия с искровым зажиганием менее дороги в изготовлении и используют высокооктановые виды топлива для приведения в действие большей части растущей совокупности из 900 миллионов пассажирских и легкогрузных автотранспортных средств.

Применение высокооктановых и высокоцетановых видов углеводородного топлива в традиционных двигателях внутреннего сгорания создает недопустимо высокие уровни эмиссии, загрязняющей окружающую среду, такой как несгоревшие углеводороды, макрочастицы, оксиды азота, монооксид углерода и диоксид углерода.

Традиционное искровое зажигание использует высокое напряжение, но обеспечивает низкую энергию ионизации воздушно-топливной смеси. Традиционные значения энергии искры зажигания в диапазоне примерно от 0,05 джоуля до 0,15 джоуля являются типичными для обычных атмосферных (без наддува) двигателей, оборудованных свечами зажигания, которые работают со степенями сжатия 12:1 или меньше. При более высоком давлении окружающей среды в искровом зазоре соответствующее напряжение для создания такой ионизации должно быть увеличено. Факторы, требующие более высокое напряжение, включая сниженное соотношение компонентов топливной смеси (обедненную смесь) и более широкий искровой зазор, который может быть необходим для воспламенения, ведут к увеличению эффективной степени сжатия, турбонаддува и снижению величины сопротивления впуску воздуха в камеру сгорания. Известные системы искрового зажигания не обеспечивают адекватную выработку напряжения для надежного искрового зажигания например в дизельных двигателях со степенями сжатия от 16:1 до 22:1 и зачастую не обеспечивают адекватное напряжение для недросселируемых двигателей, в которых в целях увеличения выработки энергии и повышения экономии топлива используется турбонаддув.

Невозможность обеспечения адекватного напряжения в искровом зазоре чаще всего вытекает из недостаточной электрической прочности компонентов системы воспламенения, таких как фарфоровый изолятор свечи зажигания и провода высокого напряжения.

Высокое напряжение, приложенное к традиционной свече зажигания, которая по существу расположена в стенке камеры сгорания, вызывает тепловые потери воспламеняющихся гомогенных воздушно-топливных смесей, которые расположены вблизи всех поверхностей камеры сгорания, включая поршень, стенку цилиндра, головку цилиндра и клапаны. Указанные тепловые потери уменьшают эффективность двигателя и могут вызвать повреждение компонентов камеры сгорания, которые подвержены окислению, коррозии, тепловой усталости, увеличенному трению из-за теплового расширения, деформации, короблению и износу из-за потери свойств перегретых или окисленных смазывающих пленок.

Даже если искра зажигания у поверхности камеры сгорания вызывает задержанное сгорание гомогенной воздушно-топливной смеси, ограниченная скорость распространения факела задает предел для полного сгорания. Чем больше количество тепла, которое теряется на поверхности камеры сгорания, тем меньше возможность полного сгорания. Указанная нежелательная ситуация связана с проблемой повышенной концентрации в выхлопном газе несгоревшего топлива, например паров углеводородов, углеводородных макрочастиц и моноксидов углерода.

В результате усилий, направленных на управление соотношением компонентов топливной смеси и обеспечение обедненных условий сгорания для повышения топливной экономичности и снижения пиковой температуры сгорания и возможно для уменьшения образования оксидов азота, возникают многочисленные дополнительные проблемы. Например, топливные смеси с обедненным соотношением компонентов сгорают медленнее по сравнению со стехиометрическими или обогащенными топливными смесями. Кроме того, более медленное сгорание требует больше времени для осуществления двух- или четырехтактной работы двигателя и таким образом снижает потенциальную проектную удельную мощность двигателя. При выборе природного газа в качестве замены бензинового или дизельного топлива следует признать тот факт, что природный газ воспламеняется намного медленнее бензина, и что природный газ не облегчает компрессионное воспламенение, если его используют вместо дизельного топлива.

Кроме того, в современных двигателях оставлено слишком мало пространства для доступа к камере сгорания, оснащенной известными электрическими изолирующими компонентами, имеющими достаточную электрическую прочность и надежность для защиты компонентов, подверженных циклическому приложению высокого напряжения, коронных разрядов и наслаиваемого ухудшения характеристик из-за ударной нагрузки, вибрации и резких тепловых циклических перепадов между высокой и низкой температурами. Кроме того, известные подходы к сгоранию гомогенного заряда топливной смеси с послойным распределением не в состоянии преодолеть ограничения, относящиеся к октановой или цетановой зависимости, и не в состоянии устранить просачивание топлива в течение вредоносных периодов времени или обеспечить соответствующую скорость сгорания для повышения тепловой эффективности, а также не в состоянии предотвратить образование оксидов азота, вызванное сгоранием.

Для обеспечения мультитопливного использования наряду с уменьшением собственного веса и увеличенным впуском воздуха прежде всего необходимо обеспечить возможность недросселируемого впуска воздуха в камеры сгорания, непосредственного впрыска газообразных, полностью сгорающих и недорогих видов топлива и обеспечить сгорание заряда топливной смеси с послойным распределением вместо бензина и дизельного топлива. Однако перечисленные требования сталкиваются с чрезвычайно сложными проблемами, связанными с обеспечением надежного дозирования изменяющихся в широких пределах параметров, таких как плотности топлива, давления паров и вязкости, для обеспечения последующей точной синхронизации воспламенения и полного сгорания. Для достижения принудительного воспламенения необходимо обеспечить воспламеняемую искрой зажигания воздушно-топливную смесь в относительно небольшом зазоре между электродами свечи зажигания.

Если для формирования заряда топливной смеси с послойным распределением в каждую камеру сгорания топливо подают посредством отдельной топливной форсунки, должны быть выполнены тщательно проработанные условия, такие как мгновенное завихрение, рикошетирование или отбрасывание топлива от поверхностей камеры сгорания в искровой зазор, но указанные подходы всегда вызывают увеличение тепловых потерь на поверхности камеры сгорания, поскольку при этом жертвуют преимуществами концепции заряда топливной смеси с послойным распределением. Если топливом управляет дозирующий клапан, расположенный на расстоянии от камеры сгорания, то происходит "остаточное подтекание" топлива в бесполезные или вредоносные периоды времени, включая периоды действия обратного крутящего момента, противоположного рабочему выходному крутящему моменту. Любой из указанных подходов неизбежно вызывает "проливание" либо разбрызгивание большей части топлива на охлажденные стенки цилиндра с целью доставки в искровой зазор некоторого уменьшенного количества топлива в виде воспламеняемой искрой воздушно-топливной смеси в точное время желательного воспламенения. Это приводит к тепловым потерям, потере смазки стенками цилиндра, деформации цилиндров и поршней, вызванной повышенным выделением тепла из-за трения, и потере теплового КПД из-за тепловых потерь, обусловленных работой, совершаемой расширяющимися газами, действующими на нерасширяющиеся компоненты двигателя.

Попытки сформировать завихрение воздуха, поступающего в камеру сгорания, и ввести топливо с низкой плотностью в завихренный воздух страдают двумя существенными недостатками. Возбуждение завихрения вызывает сопротивление потоку воздуха в камеру сгорания и таким образом уменьшает количество воздуха, который поступает в камеру сгорания, и следовательно уменьшает объемную эффективность. После воспламенения продукты сгорания быстро переносятся вихревым потоком на поверхности камеры сгорания, и неблагоприятное действие тепловых потерь усугубляется.

Прошлые попытки обеспечить двигатели внутреннего сгорания мультитопливными возможностями, например возможностью работать на топливе различных видов, таких как бензин, природный газ, пропан, топливные спирты, генераторный газ и водород, оказались чрезвычайно сложными и в высшей степени неудачными. Прошлые подходы привели к отказу от настройки на все виды топлива и отмене способов оптимизации для конкретных топливных характеристик. Такие попытки обнаружили склонность работать со сбоями и требовали использования очень дорогих компонентов и средств управления. Указанные трудности усугубляются значительно различающимися значениями удельной энергии таких видов топлива, широким диапазоном давлений пара и вязкостей, и других различий в физических свойствах между газообразными видами топлива и жидким топливом. Кроме того, требуется мгновенная перенастройка угла опережения зажигания, поскольку метан сгорает медленнее всех перечисленных выше видов топлива, в то время как водород сгорает примерно в 7-10 раз быстрее любого другого из перечисленных видов топлива.

Дополнительные проблемы возникают между использованием низкотемпературных жидкостей или смесей и хранением горючего сжатого газа того же самого топливного вещества. Например, жидкий водород хранят при температуре -420°F (-252°C) при атмосферном давлении, при этом неизолированные питающие трубопроводы, регуляторы давления и форсунки вызывают конденсацию атмосферного водяного пара, замораживают его и превращают в лед, создавая опасность повреждения в результате их контакта с атмосферной влагой. Низкотемпературный метан создает подобные проблемы, связанные с образованием льда и опасностью повреждения. Схожим образом указанные низкотемпературные текучие среды также вызывают сбои в работе и забивку обычных дозирующих отверстий, в частности небольших отверстий.

Очень сложная проблема, которая до сих пор остается нерешенной, состоит в способе быстрой заправки транспортного средства плотным жидким топливом в низкотемпературном состоянии (водородом или метаном) или при температуре окружающей среды (пропаном или бутаном), в способе использования паров топлива таких видов на холостых оборотах или при малой мощности, а также в способе использования жидкой подачи топлива таких видов при высоких уровнях мощности, в соответствии с требованиями выработки энергии.

При атмосферном давлении впрыск низкотемпературного жидкого водорода или метана требует точного дозирования очень малого объема плотной жидкости по сравнению с очень большим объемом подачи газообразного водорода или метана. Кроме того, необходимо обеспечить точное формирование, воспламенение и сгорание заряда топливной смеси с послойным распределением топлива и воздуха независимо от конкретного вида топлива, которое подают в камеру сгорания.

Достижение существенных целей, включая максимально высокий тепловой КПД, максимально высокий механический КПД, максимально высокий объемный КПД и максимально длинный срок службы двигателя с каждым видом топлива требует точного управления синхронизацией подачей топлива, заполнением камеры сгорания и конфигурацией распределения впущенного топлива, а также точной установкой угла опережения зажигания для оптимизации использования воздуха и поддержания избыточного количества воздуха для изоляции процесса сгорания работосовершающего расширяющегося носителя.

Для эффективного удовлетворения энергопотребления мировой экономики необходимо усовершенствовать изготовление, транспортировку и хранение метана и водорода фактически всеми известными способами. Галлон низкотемпературного жидкого метана при температуре -256°C обеспечивает удельную энергоемкость 89000 БТЕ (британских тепловых единиц)/галлон (5902 ккал/дм3), т.е. примерно на 28% меньше, чем галлон бензина. Жидкий водород при температуре -252°C обеспечивает лишь примерно 29700 БТЕ/галлон (1967,3 ккал/дм3), или на 76% меньше, чем бензин.

Уже давно назрела потребность во взаимозаменяемом использовании метана, водорода или смеси метана и водорода в форме низкотемпературных жидкостей или сжатых газов вместо бензина в двигателях с искровым воспламенением. Но эта задача до сих пор не имеет удовлетворительного решения, в результате чего огромное количество транспортных средств вынуждено потреблять бензин даже при том, что затраты на выработку метана и различных других форм из возобновляемого водорода гораздо ниже затрат на выработку бензина. Схожим образом давно существует потребность во взаимозаменяемом использовании метана, водорода или смеси метана и водорода в форме низкотемпературных жидкостей или сжатых газов вместо дизельного топлива в двигателях с компрессионным воспламенением, но эта задача остается еще более трудноразрешимой, и большая часть дизельных двигателей до сих пор потребляет загрязняющее окружающую среду и дорогое дизельное топливо.

Таким образом, согласно первому объекту настоящего изобретения создана топливная форсунка, выполненная с возможностью впрыскивания топлива в камеру сгорания и содержащая: корпус, имеющий основную часть, противоположную сопловой части; топливопровод, проходящий через корпус от основной части до сопловой части; генератор усилия, расположенный в основной части; первый клапан, расположенный в основной части, причем первый клапан выполнен с возможностью перемещения в ответ на приведение в действие со стороны генератора усилия для перемещения из закрытого положения в открытое положение для ввода топлива в топливопровод; и второй клапан, расположенный в сопловой части, причем второй клапан выполнен с возможностью деформирования в ответ на давление в топливопроводе для деформирования из закрытого положения в открытое положение для впрыска топлива в камеру сгорания.

Предпочтительно, первый клапан выполнен из ферромагнитного материала, а второй клапан выполнен из эластомерного полимера.

Предпочтительно, первый клапан содержит проходящий через него топливный канал, причем топливо протекает через клапан по топливному каналу при перемещении клапана из закрытого положения в открытое положение.

Предпочтительно, клапан содержит концевую часть в целом с конической или усеченной конической формой, обращенную к сопловой части.

Предпочтительно, топливная форсунка дополнительно содержит кожух, в котором по меньшей мере частично расположен генератор усилия, причем кожух содержит топливное входное отверстие для ввода топлива в кожух и выходное топливное отверстие для обеспечения возможности выхода топлива из кожуха.

Предпочтительно, в закрытом положении первый клапан блокирует выходное топливное отверстие, а в открытом положении первый клапан открывает выходное топливное отверстие и обеспечивает возможность протекания топлива из выходного топливного отверстия в топливопровод.

Предпочтительно, топливная форсунка дополнительно содержит диэлектрический изолятор, проходящий через часть корпуса коаксиально с топливопроводом.

Предпочтительно, топливопровод содержит топливный канал, сформированный в изоляторе и проходящий продольно вдоль изолятора.

Предпочтительно, размер топливного канала уменьшается при его приближении к сопловой части.

Предпочтительно, топливопровод содержит несколько топливных каналов, сформированных в наружной поверхности изолятора и по окружности расположенных на изоляторе на расстоянии друг от друга.

Предпочтительно, диэлектрический изолятор является первым диэлектрическим изолятором, причем форсунка дополнительно содержит второй диэлектрический изолятор, проходящий через часть корпуса коаксиально и расположенный на расстоянии от первого изолятора.

Предпочтительно, топливопровод выполнен между первым изолятором и вторым изолятором.

Предпочтительно, топливопровод в целом проходит параллельно продольной оси корпуса, причем форсунка дополнительно содержит несколько отверстий для впрыска, выполненных в сопловой части, которые сообщаются по текучей среде с топливопроводом, при этом отдельные отверстия для впрыска в целом непараллельны продольной оси корпуса.

Предпочтительно, топливная форсунка дополнительно содержит магнитную полюсную часть, расположенную в основной части, причем полюсная часть расположена на расстоянии от клапана, если клапан находится в закрытом положении.Предпочтительно, генератор усилия намагничивает полюсную часть для перемещения первого клапана из закрытого положения в открытое положение.

Предпочтительно, топливная форсунка дополнительно содержит смещающий элемент, расположенный между полюсной частью и клапаном, причем смещающий элемент, выполненный из немагнитного материала, вызывает перемещение клапана в направлении от полюсной части.

Предпочтительно, топливная форсунка дополнительно содержит электрический проводник, проходящий продольно через центральную часть корпуса, причем проводник выполнен с возможностью соединения с источником энергии для зажигания.

Предпочтительно, топливная форсунка дополнительно содержит зажигающий элемент, расположенный в сопловой части и функционально соединенный с проводником.

Предпочтительно, топливная форсунка дополнительно содержит по меньшей мере одно или несколько оптических волокон, коаксиально расположенных в проводнике, причем по меньшей мере одно или несколько оптических волокон выполнены с возможностью обнаружения по меньшей мере одного параметра камеры сгорания.

Согласно второму объекту настоящего изобретения создана топливная форсунка, выполненная с возможностью впрыскивания топлива в камеру сгорания и содержащая: корпус, имеющий основную часть, противоположную сопловой части, причем основная часть принимает топливо в корпус, а сопловая часть выполнена с возможностью расположения рядом с камерой сгорания; кожух, расположенный в основной части, в котором по меньшей мере частично размещен генератор усилия, причем кожух содержит входное топливное отверстие и выходное топливное отверстие, при этом входное топливное отверстие выполнено с возможностью приема топлива от топливного источника, а выходное топливное отверстие выполнено с обеспечением возможности выхода топлива из кожуха; топливопровод, сообщающийся по текучей среде с выходным топливным отверстием в кожухе, проходящий продольно через корпус от основной части к сопловой части; первый клапан, расположенный рядом с генератором усилия, причем первый клапан выполнен с возможностью перемещения в ответ на приведение в действие со стороны, генератора усилия для перемещения между закрытым положением и открытым положением и таким образом обеспечения возможности протекания топлива из выходного топливного отверстия в топливопровод; и второй клапан, расположенный в сопловой части, причем второй клапан выполнен с возможностью перемещения в ответ на заданное давление топлива в топливопроводе для перемещения в целом радиально наружу от продольной оси корпуса между закрытым положением и открытым положением и таким образом впрыскивания топлива в камеру сгорания.

Предпочтительно, первый клапан является ферромагнитным клапаном, а второй клапан является деформируемым полимерным клапаном.

Предпочтительно, корпус имеет продольную ось, причем первый клапан перемещается в целом параллельно продольной оси между закрытым и открытым положениями, а второй