Способ измерения концентрации примесей в нейтральных газах

Иллюстрации

Показать все

Изобретение предназначено для определения чистоты нейтральных газов, используемых при производстве изделий электронной техники. Способ измерения концентрации примесей в нейтральных газах заключается в том, что анализируемый нейтральный газ подают в камеру, где находится чувствительный элемент, измеряют его электрическое сопротивление, по изменению величины которого судят о концентрации примеси, при этом в качестве чувствительного элемента используют деионизованную воду. Изобретение обеспечивает расширение диапазона определяемых концентраций в сторону меньших значений, а также упрощение конструкции используемого оборудования, уменьшение его стоимости и затрат на обслуживание. 2 ил.

Реферат

Изобретение предназначено для определения чистоты нейтральных газов (азота, аргона и др.), используемых при производстве изделий электронной техники.

Производство изделий электронной техники (интегральных схем) невозможно без контроля той среды, в которой они производятся. Надежность, качество и процент выхода годных изделий в значительной степени зависят от уровня содержания примесей в используемых технологических средах (химических реактивах, деионизованной воде, газах). Нейтральные газы - это газы, обладающие очень низкой химической активностью. К ним относятся такие газы, как азот, аргон и другие. Самым распространенным и недорогим нейтральным газом является азот. В промышленности его получают из воздуха. В состав воздуха входит 78% азота и 21% кислорода, поэтому основной примесью промышленного азота является кислород.

Известен способ измерения объемной доли кислорода в азоте /1/. Способ заключается в том, что анализируемую смесь подают в камеру, в которую затем добавляют раствор вещества-индикатора. По изменению окраски вещества-индикатора судят о концентрации кислорода. К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что известный способ имеет узкий диапазон определяемых концентраций примеси кислорода (до 0,5% при объеме камеры 100 см3, до 0,005% при объеме камеры 1000 см3 и до 0,001% при объеме камеры 5000 см3). Кроме того, в нем применяется сложное по конструкции и в обслуживании оборудование. В качестве вещества-индикатора используется аммиачный раствор хлористой меди, при работе с которым требуется вытяжная вентиляция и специально обученный персонал.

Известен способ измерения концентрации примесей в азоте, водороде и кислороде /2/. Способ заключается в том, что анализируемую смесь подают в камеру спектрометра подвижности ионов, где молекулы газов ионизируют. Затем измеряют скорости образовавшихся ионов и по ним определяют состав смеси и искомую концентрацию примеси. К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе применяется дорогое и сложное в обслуживании оборудование. Спектрометр подвижности ионов содержит источник радиоактивного излучения или коронного разряда, для работы с которыми требуется специально обученный персонал.

Известен способ измерения кислорода в азоте /3/. Способ заключается в том, что анализируемую смесь подают в камеру, где находится чувствительный элемент. По изменению величины электродвижущей силы (ЭДС), возникающей на чувствительном элементе судят о концентрации кислорода в азоте. К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в нем применяется дорогое и сложное по конструкции оборудование. Чувствительный элемент выполнен в виде высокотемпературной потенциометрической ячейки с твердым электролитом. Для обеспечения точности измерения требуется нагрев чувствительного элемента до температуры выше 600°С и поддержание этой температуры с высокой точностью.

Наиболее близким к заявляемому изобретению по максимальному количеству сходных признаков является способ определения кислорода /4/. Способ заключается в том, что анализируемую смесь подают в камеру, где находится чувствительный элемент. По изменению величины электрического сопротивления чувствительного элемента судят о концентрации кислорода в азоте. Этот способ принят за прототип. К причинам, препятствующим достижению указанного ниже технического результата при использовании этого способа, относится то, что известный способ имеет узкий диапазон определяемых концентраций (не более 0,001%) и в нем применяется дорогое и сложное оборудование. Чувствительный элемент выполнен в виде терморезистора из вольфрама, покрытого слоем гексаборида лантана. При этом требуется нагрев чувствительного элемента выше 1000°С.

В основу изобретения положена задача, заключающаяся в создании способа измерения концентрации примесей в нейтральных газах, лишенного вышеизложенных недостатков. В нем обеспечивается расширение диапазона определяемых концентраций в сторону меньших значений (0,0001% и менее), упрощение конструкции используемого оборудования, уменьшение его стоимости и затрат на обслуживание.

Указанный технический результат достигается тем, что в известном способе, в котором путем измерения величины сопротивления чувствительного элемента судят о концентрации примеси, в качестве чувствительного элемента используют деионизованную воду.

Деионизованная вода - это вода высокой степени очистки. Содержание примесей в ней не более 0,00001%. Кроме того, деионизованная вода обладает способностью впитывать ионы примесей из окружающей среды. Если пропустить через такую воду нейтральный газ, то его примеси будут постепенно переходить в воду, вызывая ее загрязнение. Чистоту воды контролируют по величине ее удельного электрического сопротивления. Количество примесей, перешедших в воду, зависит от концентрации примеси и от объема прошедшего через воду газа. Чем больше объем газа, прошедшего через воду, тем точнее определяется в нем малая концентрация примеси. Таким образом, диапазон определяемых концентраций расширяется в сторону меньших значений (0,0001% и менее). Кроме того, деионизованная вода широко используется при производстве изделий электронной техники, поэтому технология ее получения и контроль параметров хорошо отработаны. Таким образом, для реализации заявляемого способа не требуется специального сложного и дорогостоящего оборудования. Требования к квалификации обслуживающего персонала снижаются. То есть можно упростить конструкцию используемого оборудования, уменьшить его стоимостЬ и затраты на обслуживание.

На фиг.1 показана схема реализации заявляемого способа.

На фиг.2 показана временная диаграмма процессов, происходящих при реализации заявляемого способа.

Способ осуществляют следующим образом.

Вначале открывают кран 1 и через ротаметр 2 подают газ в камеру 3. С помощью ротаметра 2 устанавливают фиксированное значение потока газа. В момент времени t0 открывают кран 4 и подают в камеру 3 деионизованную воду, которая сливается затем через трубу 5. По мере поступления в камеру 3 деионизованной воды ее удельное сопротивление будет увеличиваться, т.к. происходит очистка камеры. Измерение удельного сопротивления воды осуществляют с помощью блока контроля 6. Подачу деионизованной воды осуществляют до момента времени t1, когда удельное сопротивление воды в камере вырастет до величины R1. В момент времени t1 кран 4 закрывают, прекращая тем самым подачу воды. Начинается плавное снижение величины удельного сопротивления деионизованной воды, находящейся в камере, обусловленное ее постепенным загрязнением примесями из газа. В момент времени t2, когда удельное сопротивление снизится до величины R2, включают секундомер 7. В момент времени t3, когда удельное сопротивление достигнет величины R3, секундомер 7 выключают. Фиксируют время, которое покажет секундомер Т=t3-t2. Затем производят расчет концентрации примеси в газе по формуле:

К=K0·(R2-R3)/Т,

где К - концентрации примеси в газе, К0 - калибровочный коэффициент, (R2-R3) - величина снижения удельного сопротивления деионизованной воды за время Т=t3-t2.

Величину калибровочного коэффициента К0 предварительно рассчитывают. Для этого проводят калибровку всего комплекса измерительного оборудования с использованием образцовых измерительных приборов.

При осуществлении заявляемого способа используют известные устройства и материалы. Краны 1 и 4, камера 3, труба для слива 5 изготовлены из полипропилена. В качестве ротаметра 2 используют ротаметр типа РМ-0,25ГУЗ. В качестве блока контроля 6 используют блок контроля удельного сопротивления воды БКВР-24. В качестве секундомера 7 используют реле времени «Веха-Д2».

Источники информации

1. ГОСТ 9293-74.

2. Патент РФ №2277238, G01N 27/62.

3. Газоанализатор кислорода ФЛЮОРИТ-Ц. Руководство по эксплуатации 5К1.552.045 РЭ.

4. Патент SU 1742700, G01N 27/18.

Способ измерения концентрации примесей в нейтральных газах, заключающийся в том, что анализируемый нейтральный газ подают в камеру, где находится чувствительный элемент, измеряют его электрическое сопротивление, по изменению величины которого судят о концентрации примеси, отличающийся тем, что в качестве чувствительного элемента используют деионизованную воду.