Разрядная система эксимерного лазера (варианты)

Иллюстрации

Показать все

Изобретение относится к лазерной технике. Разрядная система эксимерного лазера включает в себя расположенную в лазерной камере (1) зону объемного разряда (4) между первым и вторым электродами (2), (3), продольные оси которых параллельны друг другу, каждый блок предыонизации (5) содержит систему формирования однородного завершенного скользящего разряда (CP) по поверхности протяженной диэлектрической пластины (6), имеющей в поперечном сечении изогнутую форму. Изогнутая диэлектрическая пластина (6) может быть выполнена в виде диэлектрической трубки. Технический результат заключается в обеспечении возможности увеличения энергии и мощности лазера. 2 н. и 19 з.п. ф-лы, 13 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ.

Изобретение относится к квантовой электронике, в частности к импульсно-периодическим эксимерным лазерам с УФ предыонизацией скользящим разрядом и может быть использовано при проектировании и изготовлении эксимерных лазеров и лазерных систем с высокой средней мощностью излучения.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

В мощных эксимерных лазерах возбуждение активной среды осуществляется импульсно-периодическим объемным разрядом высокого (2,5-5 атм) давления в смесях инертных газов (Ne, He, Xe, Kr, Ar) с галогеносодержащими молекулами F2, HCl при высокой ~1 МВт/см3 плотности мощности накачки. Такой разряд принципиально неустойчив, и время сохранения объемным разрядом однородной формы обычно не превышает нескольких десятков наносекунд. При этом обеспечение оптимального уровня предыонизации активной среды, подверженной ряду изменений в процессе долговременной непрерывной работы, относится к основным факторам, определяющим достижение высоких выходных характеристик эксимерных лазеров. Кроме этого, конфигурация блока УФ предыонизации в многом определяет геометрию разрядной системы лазера и, соответственно, условия накачки активной среды.

В соответствии с потребностями современных высокопроизводительных технологий с использованием эксимерных лазеров их мощность постоянно возрастает. Однако повышение энергии и средней мощности излучения газоразрядных эксимерных лазеров имеет фундаментальные физические ограничения, которые при превышении оптимальных значений энергии генерации и частоты повторения импульсов обусловливают уменьшение эффективности лазера, снижение надежности и стабильности его работы и, в конечном счете, увеличение затрат на эксплуатацию лазера.

Все это определяет актуальность поиска решений, позволяющих оптимизировать конструкцию и метод работы эксимерных лазеров, повысить их мощность и стабильность работы, снизить затраты на получение энергии генерации.

Известна разрядная система эксимерного лазера [1], в которой УФ предыонизация осуществляется зажигаемыми сбоку от высоковольтного электрода коронными разрядами. При использовании в эксимерном лазере разрядная система позволяет эффективно получать энергию генерации при высокой частоте следования импульсов. Недостатком указанного устройства является малый уровень предыонизации, ограничивающий возможность увеличения апертуры основного разряда, повышения энергии генерации и средней мощности лазера.

Этого недостатка лишена разрядная система эксимерного лазера с УФ предыонизацией, осуществляемой излучением от двух рядов искр, автоматически зажигаемых при зарядке импульсных конденсаторов сбоку от высоковольтного электрода, расположенного со стороны стенки лазерной камеры [2]. Данная система обеспечила достижение высокой (600 Вт) средней мощности лазерного УФ излучения в эксимерном KrF лазере. Недостатком электродной системы с УФ предыонизатором в виде рядов отдельных искровых промежутков является пространственная неоднородность предыонизации по длине электродов, что уменьшает КПД лазера, и ее сложность из-за необходимости герметизировать десятки токовводов предыонизатора. Кроме того, искровые промежутки обусловливают повышенное поступление в газ продуктов эрозии электродов блока предыонизации, что уменьшает время жизни газовой смеси лазера.

Частично этих недостатков лишена разрядная система эксимерного лазера с предыонизацией, осуществляемой через частично прозрачный электрод УФ излучением завершенного скользящего разряда (СР) по поверхности плоской диэлектрической. пластины [3]. В данной электродной системе обеспечивается высокий уровень и пространственная однородность предыонизации разрядной зоны между высоковольтным и заземленным электродами лазера. Достигается возможность повышения энергии генерации и средней мощности излучения лазера. При этом реализуется возможность в несколько раз уменьшить прокачиваемую через блок предыонизации энергию, что, в свою очередь, повышает время жизни газовой смеси. При генерации на XeCl средняя мощность эксимерного лазера с данной электродной системой достигала более 1 кВт. Однако частично прозрачный электрод с блоком предыонизации, расположенным с его обратной стороны, имеет относительно большие поперечные размеры, что повышает индуктивность разрядного контура. Этот фактор ограничивает получение высокоэффективной генерации в эксимерных лазерах на фторидах инертных газов (KrF, ArF), для которых наблюдается резкая зависимость эффективности лазера от индуктивности разрядного контура. Кроме этого, частично прозрачные электроды сложны и дороги в изготовлении.

Частично этих недостатков лишена разрядная система эксимерного лазера, содержащая расположенные в лазерной камере протяженные первый электрод, установленный со стороны стенки лазерной камеры, второй электрод, зону объемного разряда между первым и вторым электродами, продольные оси которых параллельны друг другу, блок предыонизации, содержащий, систему формирования однородного завершенного скользящего разряда (CP), включающую в себя диэлектрическую пластину,

поджигающий электрод, установленный на лицевой поверхности диэлектрической пластины вдоль нее, и протяженный инициирующий электрод, примыкающий к обратной стороне диэлектрической пластины [4]. Система формирования CP по поверхности протяженной диэлектрической (сапфировой) пластины расположена сбоку от второго электрода, выполненного сплошным. УФ предыонизация от скользящего разряда обеспечивает пространственно однородную предыонизацию зоны разряда между электродами лазера оптимально высокой интенсивности, при относительно малом энерговкладе в скользящий разряд. Все это позволяет получать высокоэффективную генерацию лазера с высокой (до 5 кГц) частотой следования импульсов при большом времени жизни газовой смеси.

Однако, система формирования CP, интегрированная в систему циркуляции газового потока лазера, обладает большими поперечными размерами, что увеличивает затраты на прокачку газа. Кроме этого, не вся зона основного разряда, примыкающая ко второму электроду, соединенному с инициирующим электродом, оптически связана с частью поверхности плоской пластины, используемой для зажигания CP, осуществляющего УФ предыонизацию. Это обусловливает возможность получения лишь относительно узкого, шириной £ 3мм, разряда между первым и вторым электродами и ограничивает возможности получения высоких (свыше ~0,1 Дж/импульс) значений выходной энергии лазера при генерации на экимерных молекулах.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей изобретения является создание разрядных систем, интегрируемых в наиболее мощные эксимерные лазеры и лазерные системы различных конфигураций с целью высокоэффективного повышения энергии генерации и средней мощности лазерного УФ излучения.

Техническим результатом изобретения является улучшение разрядной системы эксимерного лазера, повышение энергии генерации, средней мощности излучения при высоком КПД лазера и снижение эксплуатационных затрат.

Для решения указанных задач предлагается разрядная система эксимерного лазера, включающая в себя расположенные в лазерной камере протяженные первый электрод, установленный со стороны стенки лазерной камеры и второй электрод, зону объемного разряда между первым и вторым электродами, продольные оси которых параллельны друг другу, по меньшей мере, один блок предыонизации, содержащий систему формирования однородного завершенного скользящего разряда (CP) между расположенными на поверхности протяженной диэлектрической пластины протяженными поджигающим электродом и либо инициирующим электродом, либо дополнительным электродом, соединенным с инициирующим электродом, при этом протяженная диэлектрическая пластина имеет в поперечном сечении изогнутую форму, поджигающий электрод установлен на лицевой поверхности изогнутой диэлектрической пластины вдоль нее, протяженный инициирующий электрод примыкает к обратной поверхности

диэлектрической пластины и, по меньшей мере, примыкающая к инициирующему электроду протяженная часть обратной поверхности изогнутой диэлектрической пластины является цилиндрической.

В вариантах изобретения система формирования CP установлена так, чтобы образующие цилиндрической поверхности изогнутой диэлектрической пластины были параллельны продольным осям первого и второго электродов.

В вариантах изобретения лицевая и обратная стороны изогнутой диэлектрической пластины являются цилиндрическими.

В вариантах изобретения, по меньшей мере, часть поверхности изогнутой диэлектрической пластины, совмещенная с поверхностью инициирующего электрода, является кругло- цилиндрической.

В вариантах изобретения изогнутая диэлектрическая пластина выполнена в виде протяженной части цилиндрической тонкостенной диэлектрической трубки, заключенной между двумя продольными сечениями трубки, параллельными ее продольной оси.

В вариантах изобретения два идентичных блока предионизации расположены по бокам либо первого электрода, выполненного сплошным, либо второго электрода, выполненного сплошным.

В вариантах изобретения лицевая поверхность изогнутой диэлектрической пластины выпуклая.

В вариантах изобретения в качестве материала изогнутой диэлектрической пластины используется либо сапфир, либо керамика, в частности, Al2O3.

В вариантах изобретения инициирующий электрод выполнен охлаждаемым либо потоком газа, либо жидким теплоносителем.

В вариантах изобретения каждая точка зоны разряда между первым и вторым электродами находится в зоне прямой видимости, по меньшей мере, части поверхностности изогнутой диэлектрической пластины, используемой для формирования СР.

В вариантах изобретения лицевая поверхность изогнутой диэлектрической пластины вогнутая.

В вариантах изобретения часть изогнутой диэлектрической пластины, не используемая для формирования CP, расположена с обратной стороны либо первого электрода, либо второго электрода.

В вариантах изобретения изогнутая диэлектрическая пластина выполнена в виде цилиндрической тонкостенной диэлектрической трубки с продольным разрезом.

В вариантах изобретения изогнутая диэлектрическая пластина выполнена в виде цилиндрической тонкостенной диэлектрической трубки с продольным разрезом, инициирующий электрод размещен внутри диэлектрической трубки, и дополнительный электрод соединен с инициирующим электродом через продольный разрез диэлектрической трубки.

В вариантах изобретения система формирования CP содержит в качестве изогнутой диэлектрической пластины цельную диэлектрическую трубку, внутри которой, размещен

инициирующий электрод, при этом на наружной поверхности цельной диэлектрической трубки размещен дополнительный электрод.

При этом предпочтительно, что дополнительный электрод, подсоединен к инициирующему электроду через торец диэлектрической трубки.

В вариантах изобретения либо поджигающий электрод, либо дополнительный электрод, соединен либо с первым электродом, либо со вторым электродом.

В вариантах изобретения поджигающий электрод, либо дополнительный электрод совмещен либо с первым электродом, либо со вторым электродом.

В вариантах изобретения либо первый электрод, либо второй электрод выполнен частично прозрачным, имеющим с обратной стороны протяженную нишу, в которой, по меньшей мере, частично, размещен протяженный блок предыонизации, при этом в блоке предыонизации система формирования CP выполнена симметричной относительно плоскости, включающей в себя продольные оси первого и второго электродов, и содержит две зоны CP, симметрично расположенные по обе стороны указанной плоскости.

При этом предпочтительно, что в протяженной нише, по меньшей мере, частично, размещен керамический изолятор с п-образным, либо П-образным поперечным сечением, и система формирования CP, по меньшей мере, частично размещена в протяженном керамическом изоляторе.

В другом аспекте изобретение относится к разрядной системе эксимерного лазера, включающей в себя расположенные в лазерной камере протяженные первый электрод, установленный со стороны стенки лазерной камеры, второй электрод, зону объемного разряда между первым и вторым электродами, продольные оси которых параллельны друг другу, и, по меньшей мере, один блок предыонизации, при этом каждый блок предыонизации содержит систему формирования однородного завершенного CP на поверхности цельной диэлектрической трубки между протяженными поджигающим электродом и дополнительным электродом, установленными на лицевой поверхности диэлектрической трубки вдоль нее, причем внутри диэлектрической трубки размещен протяженный инициирующий электрод, примыкающий к обратной поверхности диэлектрической трубки.

Предпочтительно, что дополнительный электрод подсоединен к инициирующему электроду через торец диэлектрической трубки.

В вариантах изобретения на лицевой поверхности цельной диэлектрической трубки вдоль нее диаметрально противоположно размещены поджигающий электрод и дополнительный электрод.

Вышеупомянутые и другие объекты, аспекты, особенности и преимущества изобретения станут более очевидными из последующего описания и формулы изобретения.

Описание дается в виде, достаточном для понимания принципов изобретения специалистами в области лазерной техники. Детальное описание компонент экимерных газоразрядных лазеров можно найти в [1-3, 5].

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Существо изобретения поясняется прилагаемыми чертежами, которые представлены в виде достаточном для понимания принципов изобретения и ни в коей мере не ограничивают объема настоящего изобретения.

Фиг.1 - схема разрядной системы с одним блоком предыонизации.

Фиг.2 - схема лазера с разрядной системой, включающей два блока предыонизации, установленные по бокам второго электрода.

Фиг.3 - схема разрядной системы с двумя блоками предыонизации, установленными по бокам первого электрода.

Фиг.4 - схема лазера с разрядной системой, включающей два блока предыонизации, установленные по бокам первого электрода.

Фиг.5 - схема разрядной системы с блоками предыонизации, включающими систему формирования СР по вогнутой поверхности диэлектрика.

Фиг.6 - схема лазера с предыонизацией излучением СР на вогнутой поверхности диэлектрика.

Фиг.7 - схема разрядной системы с блоками предыонизации, включающими систему формирования СР по поверхности диэлектрической трубки с продольным разрезом.

Фиг.8 - схема лазера с блоками предыонизации, включающими систему формирования СР по поверхности диэлектрической трубки с продольным разрезом.

Фиг.9 - схема разрядной системы с двумя блоками предыонизации, включающими систему формирования СР по поверхности цельной диэлектрической трубки.

Фиг.10 - схема разрядной системы с предыонизацией через частично прозрачный первый электрод.

Фиг.11 - схема лазера с предыонизацией через частично прозрачный первый электрод.

Фиг.12 - схема разрядной системы с частично прозрачным первым электродом и системой формирования СР по поверхности цельной диэлектрической трубки.

Фиг.13 - схема лазера с частично прозрачным первым электродом и системой формирования СР по поверхности цельной диэлектрической трубки.

На чертежах совпадающие элементы устройства обозначены одинаковыми номерами позиций.

ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

В соответствии с изобретением разрядная система эксимерного лазера содержит расположенные в лазерной камере 1 протяженные первый электрод 2, установленный со стороны стенки лазерной камеры 1, второй электрод 3, зону объемного разряда 4 между первым и вторым электродами 2, 3, продольные оси которых, перпендикулярные плоскости Фиг. 1, параллельны друг другу. Разрядная система также содержит блок предыонизации 5 с системой формирования однородного завершенного скользящего разряда (CP). Система формирования CP включает в себя протяженную диэлектрическую пластину 6, поджигающий (как мы его называем) электрод 7, установленный на лицевой поверхности 8 диэлектрической пластины 6 вдоль нее, протяженный инициирующий (как мы его называем) электрод 9, примыкающий к обратной стороне 10 диэлектрической пластины 6 и расположенный на поверхности диэлектрической пластины протяженный дополнительный (как мы его называем) электрод 14, который либо соединен, либо совмещен (Фиг. 1) с инициирующим электродом 9. Необходимая для высокоэффективной высокостабильной работы лазера однородность завершенного CP достигается, когда межэлектродное расстояние l системы формирования CP на поверхности диэлектрической пластины (6) между поджигающим электродом (7) и дополнительным электродом (14) не меньше определенного характерного значения: l≥1,5 см. При этом протяженная диэлектрическая пластина 6 имеет в поперечном сечении изогнутую форму и, по меньшей мере, часть обратной поверхности 10 диэлектрической пластины 6, примыкающая к протяженному инициирующему электроду 9, является цилиндрической.

Разрядная система эксимерного лазера также содержит набор конденсаторов 12, подсоединенных к первому и второму электродам 2, 3, и импульсный источник питания 11, подключенный к конденсаторам 12 и предназначенный для их импульсной зарядки до напряжения пробоя, обеспечивающего газовый разряд между первым и вторым электродами 2, 3 для возбуждения газовой смеси лазера и генерации луча лазера с помощью резонатора (не показан). Предпочтительно, что импульсный источник питания 11 связан с блоком предыонизации 5 через дополнительные конденсаторы 13, предназначенные для обеспечения автоматической предыонизации при их импульсной зарядке через CP блока предыонизации 5.

Использование изогнутой диэлектрической пластины в системе формирования завершенного скользящего разряда обеспечивает компактность разрядной системы лазера, что обусловливает уменьшение индуктивности разрядного контура и возможность высокоэффективного повышения энергии генерации, а также

увеличения частоты следования импульсов и повышения средней мощности излучения лазера. Выполнение, по меньшей мере, части диэлектрической пластины, примыкающей к инициирующему электроду, цилиндрической обеспечивает относительную простоту изготовления изогнутой диэлектрической пластины 6 и упрощает совмещение ее обратной поверхности 10 с поверхностью протяженного инициирующего электрода 9, что необходимо для высокой однородности СР.

В предпочтительных вариантах изобретения система формирования СР установлена так, чтобы образующие цилиндрической поверхности 10 изогнутой диэлектрической пластины 6 были параллельны продольным осям первого и второго электродов 2, 3. При этом зона СР параллельна зоне объемного разряда 4. Это обеспечивает однородный уровень предыонизации по всей длине протяженной зоны объемного разряда 4 и, соответственно, его высокую однородность и устойчивость к акустическим возмущениям в режиме с высокой частотой следования импульсов.

В варианте изобретения (Фиг.1) блок предыонизации 5 установлен вблизи второго электрода 3. При этом в соответствии с одним из вариантов изобретения инициирующий электрод 9 системы формирования СР соединен со вторым электродом 3 лазера. Это обеспечивает компактность устройства, уменьшает индуктивность разрядного контура лазера, повышая его эффективность.

В вариантах изобретения (Фиг 1) изогнутая диэлектрическая пластина 6 выполнена в виде протяженной части цилиндрической тонкостенной диэлектрической трубки, заключенной между двумя продольными сечениями трубки, параллельными ее продольной оси. Это упрощает изготовление изогнутой диэлектрической пластины 6.

В вариантах изобретения (Фиг.1) лицевая 8 и обратная 10 стороны изогнутой диэлектрической пластины 6 являются кругло цилиндрическими. Это обеспечивает дальнейшее упрощение изготовления изогнутой диэлектрической пластины 6 при использовании в качестве заготовки кругло-цилиндрической диэлектрической трубки.

Для повышения энергии генерации и мощности лазера в вариантах изобретения (Фиг.2-9) устройство содержит два идентичных блока предионизации 5, расположенные по бокам выполненного сплошным либо первого электрода 2, либо второго электрода 3.

Особенности и преимущества разрядной системы более наглядно иллюстрируются при ее рассмотрении в составе эксимерного лазера. Газоразрядный эксимерный лазер или лазер на молекулярном фторе, поперечное сечение которого показано на Фиг.2, содержит лазерную камеру 1, заполненную газовой смесью. В примере реализации изобретения (Фиг.2) лазерная камера 1 выполнена на основе керамической трубы, в которой размещены отстоящие друг от друга протяженные первый электрод 2, расположенный со стороны стенки лазерной камеры 1, и второй электрод 3.

Два идентичных блока предионизации 5 расположены по бокам второго электрода 3, выполненного сплошным, что обеспечивает относительную простоту электрода, его высокую надежность и большое время жизни.

Как правило, размещение систем формирования CP вблизи второго электрода 3 позволяет минимизировать индуктивность разрядного контура, что повышает КПД высокоэнергетичного эксимерного лазера.

В каждом блоке предыонизации 5 завершенный CP формируется на поверхности изогнутой диэлектрической пластины 6 между поджигающим электродом 7 и дополнительным электродом 14. При этом на инициирующий электрод 9 замыкается только ток зарядки емкости части диэлектрической пластины, на которой зажигают СР. В связи с этим протяженный массивный инициирующий электрод 9 может быть изготовлен из относительно дешевого материала, предпочтительно с высокой теплопроводностью, например, из А1. Дополнительный электрод 14, на который замыкается основной ток завершенного CP выполняется из эрозионно-стойкого металла, например, из Ni, Cu-W и др. В связи с этим в вариантах изобретения дополнительный электрод 14 системы формирования CP совмещен со вторым электродом 3 лазера (Фиг. 2), либо с первым электродом 2. В вариантах изобретения дополнительный электрод 14 соединен со вторым электродом 3, либо с первым электродом 2 В предпочтительных вариантах изобретения дополнительный электрод 14 соединен с инициирующим электродом 9 (Фиг 2). Все это упрощает электрическую цепь системы формирования СР.

Вне лазерной камеры 1 вдоль нее расположен набор конденсаторов 12, подсоединенных к первому и второму электродам 2, 3 через подсоединенные к обкладкам конденсаторов токоведущие шины, электрические вводы 15, 16 лазерной камеры 1 и газопроницаемые обратные токопроводы 17, расположенные в лазерной камере 1 по обе стороны от электродов 2, 3. К конденсаторам 12 подключен импульсный источник питания 11. Также импульсный источник питания 11 связан с блоком предыонизации 5 через дополнительные электрические вводы 18 лазерной камеры 1 и газопроницаемые дополнительные обратные токопроводы 19.

Для обновления газа в зоне объемного разряда 4 между очередными разрядными импульсами в лазерной камере 1 размещена система циркуляции газа, содержащая

диаметральный вентилятор 20, охлаждаемые водой трубки 21 теплообменника, два протяженных спойлера 22, выполненных в варианте изобретения керамическими, и протяженные направляющие лопасти 23 для формирования газового потока (Фиг.2).

Для генерации луча лазера снаружи лазерной камеры 1 размещен резонатор (для упрощения не показан). Лазерная камера также может содержать фильтр (не показан), в частности, электростатический для чистки газовой смеси лазера от продуктов эрозии элементов лазерной камеры.

В вариантах изобретения (Фиг 1, Фиг.2) лицевая поверхность 8 изогнутой диэлектрической пластины 6 выпуклая. В отличие от известного из [4] использования плоской диэлектрической пластины реализуется возможность интеграции высокоэффективного блока предыонизации 5 в систему циркуляции газа таким образом, что поджигающий и дополнительный электроды 7, 14 системы формирования СР не препятствуют формированию высокоскоростного потока газа в зоне объемного разряда 4.

Кроме этого, в отличие от известной из [4] разрядной системы с плоской диэлектрической пластиной системы формирования СР, устраняются неосвещаемые области зоны объемного разряда 4 вблизи второго электрода 3. Для реализации возможности высокоэффективного повышения энергии генерации лазера в вариантах изобретения каждая точка зоны объемного разряда 4 находится в зоне прямой видимости, по меньшей мере, части разрядного промежутка на поверхностности изогнутой диэлектрической пластины 6, используемой для формирования СР. Для этого изогнутые диэлектрические пластины 6 двух блоков предыонизации 5 должны быть установлены так, чтобы касательная к поверхности первого второго электрода 3, перпендикулярная плоскости, включающей в себя продольные оси первого и второго электродов 2, 3, касалась или пересекала часть поверхностности каждой изогнутой диэлектрической пластины 6, используемой для зажигания СР. Высокий однородный уровень предыонизация зоны объемного разряда 4, обеспечиваемый УФ излучением двух СР улучшает однородность и устойчивость объемного разряда, обеспечивает повышение стабильности выходных характеристик лазера, а также возможность увеличения апертуры лазерного пучка, энергии генерации и средней мощности излучения лазера.

Выполнение протяженной диэлектрической пластины изогнутой в поперечном сечении, в частности, с выпуклой лицевой поверхностью позволяет удалять электроды 7, 9, 14 систем формирования СР от зоны объемного разряда 4 (Фиг.2). Это минимизирует искажения, вносимые блоками предыонизации 5 в распределение напряженности электрического поля в зоне объемного разряда 4, обеспечивая однородность объемного разряда и устойчивость его однородной формы к акустическим возмущениям в режиме с высокой частотой следования импульсов. В результате достигается высокая стабильность энергии лазерного излучения от импульса к импульсу и высокое качество лазерного луча.

Для эксимерных лазеров газ, заполняющий лазерную камеру при характерном давлении в диапазоне от 2,5 до 5 атм представляет собой смесь инертных газов с донорами галогенов. В связи с этим в вариантах изобретения в качестве материала изогнутой диэлектрической пластины 6 каждого блока предыонизации 5 предпочтительно используются эрозионностойкие и галогеностойкие диэлектрики: либо сапфир, либо керамику, в частности, Al2O3, которые обеспечивают большое время жизни диэлектрической пластины в составе блока предыонизации, а также большое время жизни газовой смеси лазера, содержащей чрезвычайно химически активные компоненты F2 или HCl.

В варианте изобретения (Фиг.2) инициирующий электрод 9 и примыкающая к нему изогнутая диэлектрическая пластина 6, нагреваемая СР охлаждаются, по меньшей мере, частично за счет передачи тепла массивной металлической протяженной направляющей лопасти 23, в свою очередь охлаждаемой газовым потоком, циркулирующим в лазерной камере 1.

В вариантах изобретения инициирующий электрод 9 может быть охлаждаемым жидким теплоносителем. Для этого инициирующий электрод может либо иметь канал для циркуляции охлаждающей жидкости.

В вариантах изобретения инициирующий электрод 9 может быть охлаждаемым частью потока газа, циркулирующего в лазерной камере 1, имея с тыльной стороны инициирующего электрода 9 ребра или штыри радиатора.

Возможности достижения максимальной мощности лазерного УФ излучения в лазерах и лазерных системах с использованием лазерных камер, выполненных на основе керамической трубы, подробнее рассмотрено в [6].

В вариантах изобретения, иллюстрируемых Фиг.3 два идентичных блока предыонизации 5 расположены по бокам первого электрода 2. Как правило, такое размещение систем формирования СР упрощает систему токопроводов в лазерной камере 1.

В вариантах изобретения (Фиг.3) в каждом блоке предыонизации 5 дополнительный электрод 14 установлен с обратной стороны 10 изогнутой диэлектрической пластины 6. Установка дополнительного электрода 14 с обратной стороны 10 изогнутой диэлектрической пластины 6 на небольшом расстоянии от ее края позволяет дополнительно уменьшить поперечный размер системы формирования однородного СР. За счет этого достигается компактность разрядной системы и ее малая индуктивность, что повышает КПД высокоэнергетичного широкоапертурного эксимерного лазера.

В вариантах изобретения дополнительного электрод 14 совмещен с инициирующим электродом 9, что в ряде случаев упрощает систему формирования СР и разрядную систему лазера в целом. С этой же целью в вариантах изобретения поджигающий электрод 7 совмещен с первым электродом 2 (Фиг.3).

Разрядная система (Фиг.3), выполненная в соответствии с настоящим изобретением, применима для мощных эксимерных лазеров различных конструкций, в том числе, для конструкции лазера, представленной на Фиг.2.

Для иллюстрации на Фиг.4 показана разрядная система, выполненная в соответствии с вариантом настоящего изобретения, применительно к мощному эксимерному лазера с конструкцией, отличной от рассмотренной ранее. Для этого варианта изобретения лазерная камера 1, выполненная преимущественно металлической, содержит протяженные керамические контейнеры 24, установленные вблизи первого электрода 2. Концевые части каждого керамического контейнера 24 герметично закреплены на торцах лазерной камеры 1. В керамических контейнерах 24 размещены конденсаторы 12 малоиндуктивно подсоединенные к первому и второму электродам 2, 3 через токовводы 15, 16 и газопроницаемые обратные токопроводы 17. Со стороны первого электрода 2 в металлической стенке лазерной камеры 1 вдоль нее установлены герметичные высоковольтные токовводы 25, каждый из которых снабжен керамическим изолятором 26. Внутри лазерной камеры 1 по обе стороны керамических контейнеров 24 размещены протяженные заземленные токопроводы 27, соединенные с металлической стенкой лазерной камеры 1. При этом источник питания 11 малоиндуктивно подключен к конденсаторам 12 через высоковольтные токовводы 25 и заземленные токопроводы 27, а также через высоковольтные и заземленные токовводы 15, 16 каждого керамического контейнера 24. Такое малоиндуктивное подсоединение источника питания 11 к конденсаторам 12 обеспечивает высокие значения скорости нарастания электрического поля и величины напряженности электрического поля в области разряда 4 на стадии пробоя. Это улучшает однородность объемного разряда лазера и повышает устойчивость однородной формы разряда к акустическим возмущениям, возникающих в лазерной камере при высокой частоте повторения разрядных импульсов. В результате достигается увеличение КПД лазера.

По обе стороны от первого электрода 2, выполненного сплошным, установлены два идентичных блока предыонизации 5, каждый из которых содержит систему формирования СР по поверхности изогнутой диэлектрической пластины 6, выполненной в виде протяженной части кругло-цилиндрической тонкостенной трубки, заключенной между ее двумя продольными сечениями. При этом в каждом блоке предыонизации 5 поджигающий электрод 7 системы формирования СР, установленный на выпуклой лицевой поверхности изогнутой диэлектрической пластины 6 соединен с первым электродом 2, а дополнительный электрод 14 соединен с инициирующим электродом 9, примыкающим к обратной стороне изогнутой диэлектрической пластины 6.

Для автоматической предыонизации, упрощающей эксплуатацию лазера, в керамических контейнерах 24 размещены дополнительные конденсаторы 13, емкость которых многократно меньше емкости конденсаторов 12, и они занимают незначительную часть объема контейнеров 24. Дополнительные конденсаторы 13 связаны с блоком предыонизации 5, а именно соединены с дополнительным электродом 14 системы формирования СР через дополнительные токовводы 18.

На Фиг.4 каждый керамический контейнер 24 имеет форму прямоугольной трубы, что обеспечивает компактность керамических контейнеров 24 с высокой степенью их заполнения керамическими конденсаторами 12, используемыми для мощных газоразрядных лазеров. В результате достигается малая индуктивность разрядного контура и повышение КПД лазера.

В вариантах изобретения, иллюстрируемых Фиг.4, с целью уменьшения индуктивности разрядного контура конденсаторы 12 максимально приближены к области разряда 4. В этих вариантах изобретения протяженные керамические контейнеры 24 размещены сбоку от области разряда 4, образуя своими поверхностями, обращенными к зоне разряда 4, расположенные вверх и вниз по потоку от области разряда 4 направляющие газового потока или спойлеры, значительно изменяющие направление газового потока при прохождении области разряда 4. Такая геометрия газового потока может быть эффективна, поскольку она устраняет нежелательный эффект отрыва газового потока от второго электрода 3 после прохождения потоком области разряда 4. Как это более подробно рассмотрено в [7], использование керамических контейнеров с размещенными в них конденсаторами позволяет оптимизировать геометрию газового потока, разрядного контура и разрядной системы эксимерного лазера в более широких по сравнению с известными аналогами пределах. Наряду с этим, за счет размещения керамических контейнеров 24 по бокам области разряда 4, расположенные в них конденсаторы 12 могут быть максимально приближены к области разряда 4. При этом в предложенном изобретении стенка контейнера может быть тоньше, чем стенка керамической разрядной камеры лазеров, известных из [1] и применяемых в мощной двулучевой лазерной системе VYPER [8]. Соответственно, индуктивность разрядного контура может быть уменьшена. Кроме этого, за счет применения блоков предыонизации 5, выполненных в соответствии с настоящим изобретением (Фиг.4) уровень предыонизации выше, чем в аналогах [1, 7], использующих предыонизацию коронным разрядом. Все это обеспечивает возможность повышения стабильности выходных характеристик эксимерного лазера, а также возможность увеличения апертуры объемного разряда, энергии и мощности лазерного излучения при высоком КПД лазера.

В вариантах реализации изобретения (Фиг.5) в двух идентичных блоках предыонизации 5, расположенных по бокам первого электрода 2, лицевая поверхность 8 изогнутой диэлектрической пластины 6 вогнутая. Изогнутая диэлектрическая пластина 6 предпочтительно выполнена в виде протяженной части кругло-цилиндрической тонкостенной трубки, заключенной между двумя сечениями трубки, параллельными ее продольной оси. При этом обратная поверхность 10 изогнутой диэлектрической пластины 6, выполненной из керамики или сапфира, является частью наружной поверхности кругло цилиндрической трубки, что облегчает возможность ее обработки с высокой точностью при вращении трубки-заготовки. Наряду с этим протяженная поверхность инициирующего электрода, примыкающая к обратной стороне диэлектрической пластины 6 является вогнутой кругло-цилиндрической, что также облегчает возможность ее точной обработки фрезерным инструментом. Все это упрощает технологию изготовления системы формирования СР с точным совмещением поверхностей изогнутой диэлектрической пластины 6 и протяженного инициирующего электрода 9. В результате достигается высокоэффективная работа блока предыонизации 5 за счет обеспечения высокой однородности СР и эффективного охлаждения изогнутой диэлектрической пластины 6 посредством инициирующего электрода 9.

В соответствии с вариантами изобретении часть изогнутой диэлектрической пластины, не используемая для формирования СР, расположена с обратной стороны либо первого электрода 2 (Фиг.5), либо второго электрода 3 (Фиг.6), что также обеспечивает компактность разрядного контура лазера.

Фиг.6 иллюстрирует вариант реализации изобретения с двумя идентичными блоками предыонизации 5, установленными по бокам второго электрода 3. В варианте изобретения (Фиг.6) лазерная камера 1 выполнена преимущественно керамической. Для автоматической предыонизации импульсный источник питания 11 связан с каждым блоком предыонизации 5 через дополнительные конденсаторы 13, дополнительны