Способ обработки поверхности карбида кремния с помощью ультрафиолетового лазерного излучения

Иллюстрации

Показать все

Настоящее изобретение относится к области получения наноструктур на поверхности карбида кремния. Cпособ получения наноструктур на поверхности карбида кремния содержит этапы, на которых устанавливают твердую мишень в рабочую кювету с жидкостью, устанавливают рабочую кювету с твердой мишенью на координатный столик, осуществляют лазерную абляцию при помощи Nd:YAG лазера, работающего в импульсном режиме, при этом Nd:YAG лазер осуществляет облучение твердой мишени ультрафиолетовым излучением на длине волны 355 нм, с длительностью импульса 10 пс, с частотой повторения импульса 50 кГц и со средней мощностью 3,5 Вт, и в качестве жидкости используют воду, прошедшую этап очистки в системе обратного осмоса. Технический результат изобретения заключается в увеличении коэффициента пропускания карбида кремния. 2 ил.

Реферат

Предлагаемое изобретение относится к области получения наноструктур на поверхности карбида кремния.

Из уровня техники известен способ получения наноструктур на поверхности твердых тел, включающий лазерную абляцию в кювете с твердой мишенью, закрепленной на дне кюветы (см., например, Е.В. Бармина, М. Барбероглоу, В. Зорба, А.В. Симакин, Е. Стратакис, Г.А. Шафеев, К. Фотакис.- Квантовая электроника, 39, 89-93, (2009)). В качестве рабочей жидкости использовался этанол, пропанол или вода. В качестве материала мишеней использовались Al, Та, Ti, W и др.

Недостатками известного способа является то, что невозможно получить достаточный коэффициент, пропуская в случае использования подложки из применяемых качестве материала мишеней Al, Та, Ti, W и др, например, в светодиодах системы flip-chip.

Технический результат предлагаемого способа заключается в увеличении коэффициента пропускания, что является важной характеристикой в случае использования подложки из карбида кремния в светодиодах системы flip-chip.

Технический результат достигается тем, что применяют способ получения наноструктур на поверхности карбида кремния согласно настоящему изобретению. Способ содержит этапы, на которых устанавливают твердую мишень в рабочую кювету с жидкостью, устанавливают рабочую кювету с твердой мишенью на координатный столик, осуществляют лазерную абляцию при помощи Nd:YAG лазера, работающего в импульсном режиме, при этом Nd:YAG лазер осуществляет облучение твердой мишени ультрафиолетовым излучением на длине волны 355 нм, с длительностью импульса 10 пс, с частотой повторения импульса 50 кГц и со средней мощностью 3,5 Вт, и в качестве жидкости используют воду, прошедшую этап очистки в системе обратного осмоса.

Указанный технический результат достигается тем, что за счет рельефа, возникающего после воздействия ультрафиолетового лазерного излучения, меняется эффективный относительный показатель преломления на границе карбид кремния - воздух. Средний размер наноструктур, получаемых в ходе облучения карбида кремния ультрафиолетовым лазерным излучением, меньше, чем длина волны излучения светодиода.

Указанный технический результат достигается также тем, что облучение происходит в воде, очищенной обратным осмосом. В случае облучения на воздухе абляция протекает неконгруэнтно - карбид кремния разлагается на кремний и углерод, соответственно. Указанный неконгруэнтный режим является нежелательным, так как в этом случае за счет химического состава облученной поверхности коэффициент поглощения карбида кремния увеличится.

Сущность способа поясняется чертежами, на которых на Фиг.1:

1 - пучок лазерного излучения;

2 - кварцевая фокусирующая линза (фокусное расстояние 5 см);

3 - кювета с водой, очищенной обратным осмосом;

4 - мишень из карбида кремния;

5 - X-Y координатный столик.

На Фиг.2 представлена морфология поверхности карбида кремния после воздействия ультрафиолетового лазерного излучения. Изображение получено с помощью атомно-силового микроскопа. Глубина рельефа зависит от числа лазерных импульсов и плотности энергии на образце, которая обычно составляет несколько Джоулей на квадратный сантиметр.

Характерный поперечный размер наноструктур составляет 180-250 нанометров, в зависимости от плотности энергии лазерного излучения на образце.

Предлагаемым способом получения наноструктур является облучение ультрафиолетовым излучением (1) мишени (4) из карбида кремния (4H-SiC) в воде, очищенной обратным осмосом. Лазерное излучение фокусируется на мишени (4) посредством кварцевой фокусирующей линзы (2) с фокусным расстоянием 5 см.

Мишень (4) в свою очередь находится в кювете (3) с водой, очищенной обратным осмосом, которая стоит на X-Y координатном столике (5) для возможности ее перемещения с заданной скоростью.

Лазерное излучение фокусировалось на мишени (4) сквозь слой воды толщиной несколько миллиметров, а площадь сечения пучка в плоскости мишени (4) определялась по размерам модифицированной области.

В качестве источника излучения используется Nd:YAG лазер (третья гармоника). Длина волны - 355 нм, длительность импульса - 10 пс, частота повторений - 50 кГц, средняя мощность - 3,5 Вт. За счет того, что величина кванта лазерного излучения (3,48 эВ) больше, чем размер запрещенной зоны в карбиде кремния (3,2 эВ), реализуется случай поверхностного поглощения. В результате возможно плавление материала мишени и образование наноструктур на ее поверхности.

Способ получения наноструктур на поверхности карбида кремния, содержащий этапы, на которых:- устанавливают твердую мишень в рабочую кювету с жидкостью;- устанавливают рабочую кювету с твердой мишенью на координатный столик;- осуществляют лазерную абляцию при помощи Nd:YAG лазера, работающего в импульсном режиме, отличающийся тем, что- Nd:YAG лазер осуществляет облучение твердой мишени ультрафиолетовым излучением на длине волны 355 нм, с длительностью импульса 10 пс, с частотой повторения импульса 50 кГц и со средней мощностью 3,5 Вт; и- в качестве жидкости используют воду, прошедшую этап очистки в системе обратного осмоса.