Способ и устройство для передачи и приема кадра на основе передачи с выбором частоты

Иллюстрации

Показать все

Изобретение относится к беспроводной связи, изобретение раскрывает способ для передачи кадра данных через канал, включающий в себя множество подканалов, посредством отправителя в системе беспроводной локальной сети. Способ содержит этапы: захват первой информации состояния канала относительно каждого из множества подканалов от первого приемника, распределение по меньшей мере одного первого подканала распределения из множества подканалов первому приемнику на основе первой информации состояния канала; захват второй информации состояния канала относительного каждого из множества подканалов от второго приемника, если по меньшей мере один первый подканал распределения соответствует части множества каналов; распределение по меньшей мере одного второго подканала распределения из множества подканалов второму приемнику на основе второй информации состояния канала; и передача блока данных на первый приемник и второй приемник. Блок данных включает в себя первый кадр данных и второй кадр данных, причем первый кадр данных передают по меньшей мере через один первый подканал распределения, и второй кадр данных передают по меньшей мере через один второй подканал распределения. 2 н. и 4 з.п. ф-лы, 10 ил., 5 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ НАСТОЯЩЕЕ ИЗОБРЕТЕНИЕ

[1] Настоящее изобретение относится к беспроводной связи, более конкретно к способу для передачи и приема кадра на основе передачи с выбором частоты посредством станции в системе беспроводной локальной сети (WLAN) и к устройству, поддерживающему его.

УРОВЕНЬ ТЕХНИКИ

[2] С развитием технологии передачи информации недавно были развиты различные технологии беспроводной связи. Среди прочих выделяют технологию беспроводной локальной сети (WLAN), которая обеспечивает беспроводной доступ к Интернету в доме, или на предприятии, или в специфичной зоне обслуживания, используя переносной терминал, такой как персональный цифровой ассистент (PDA), ноутбук, портативный мультимедийный проигрыватель (PMP) и т.д.

[3] IEEE 802.11n является стандартом технологии, который был недавно установлен, чтобы преодолеть ограничение скорости связи, которая была распознана как недостаток WLAN. IEEE 802.11n стремится увеличить скорость и надежность сети и расширить зону охвата беспроводной сети. Более конкретно, система IEEE 802.11n принимает технологию MIMO (с множественными входами и множественными выходами), которая использует множественные антенны как в своем блоке передачи, так и в блоке приема таким образом, чтобы оптимизировать скорость передачи данных и уменьшить ошибки передачи, в то же время поддерживая высокую пропускную способность (HT) скорости обработки данных вплоть до 540 Мбит/сек.

[4] В то же время, так как распространенность беспроводной локальной сети (WLAN) была активизирована, появляется среда, в которой единственная AP обеспечивает большое количество станций не-AP. Характеристики WLAN, поддерживающей такую среду, могут быть представлены низкой скоростью передачи данных, низкой мощностью и широкой зоной охвата. С этой целью устройства, работающие в соответствующей среде WLAN, могут передавать и принимать радиосигналы посредством использования более низкого частотного диапазона.

[5] Так как используется более низкий частотный диапазон, полоса пропускания канала, используемая для передачи и приема радиосигнала, может быть сужена относительно случая использования существующего высокочастотного диапазона. Таким образом, могут потребоваться рассмотрения передачи и приема данных, связанных со способом доступа к каналу, способом предотвращения помех и т.п., в случае использования узкополосного канала.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[6] Аспект настоящего изобретения обеспечивает способ и устройство для передачи и приема кадров на основе передачи с выбором частоты в системе беспроводной локальной сети (WLAN).

[7] В одном аспекте обеспечен способ для передачи кадра данных через канал, включающий в себя множество подканалов, посредством передатчика в системе беспроводной локальной сети (WLAN). Способ включает в себя захват первой информации состояния канала относительно каждого из множества подканалов от первого приемника, распределение одного или более первых подканалов распределения, среди множества подканалов, первому приемнику на основе первой информации состояния канала, когда один или более первых подканалов распределения соответствуют части множества каналов, захват второй информации состояния канала относительно каждого из множества подканалов от второго приемника, распределение одного или более вторых подканалов распределения, среди множества подканалов, второму приемнику на основе второй информации состояния канала, и передачу блока данных на первый и второй приемники. Блок данных содержит первый и второй кадры данных. Первый кадр данных передают через один или более первых подканалов распределения. Второй кадр данных передан через один или более вторых подканалов распределения.

[8] Блок данных может дополнительно включать в себя часть преамбулы, и эта часть преамбулы содержит информацию индикации распределения подканалов, указывающую подканалы, распределенные первому и второму приемникам.

[9] Первая информация о состоянии канала может включать в себя отношение сигнала к шуму (SNR), оцененное между передатчиком и первым приемником относительно каждого подканала. Вторая информация о состоянии канала может включать в себя отношение сигнала к шуму (SNR), оцененное между передатчиком и вторым приемником относительно каждого подканала.

[10] Этап распределения одного или более первых подканалов распределения первому приемнику может включать в себя распределение конкретного подканала, имеющего самое высокое SNR, оцененное между передатчиком и первым приемником, в качестве первого подканала распределения.

[11] Этап распределения одного или более первых подканалов распределения приемнику может включать в себя один или более подканалов распределения, имеющих SNR, оцененное между передатчиком и первым приемником, выше, чем конкретное пороговое значение, в качестве первого подканала распределения.

[12] Этап захвата первой информации состояния канала может включать в себя передачу кадра объявления пакета нулевых данных (NDP) (NDPA), указывающего передачу NDP для зондирования канала, передачу NDP и прием первого кадра обратной связи, включающего в себя информацию состояния канала, захваченную на основе NDP, от первого приемника.

[13] Этап захвата второй информации состояния канала содержит передачу кадра опроса обратной связи, указывающего представление в виде отчета второй информации состояния канала, на второй приемник и прием второго кадра обратной связи, включающего в себя вторую информацию состояния канала, захваченную на основе NDP, от второго приемника.

[14] Кадр NPDA может включать в себя информацию, идентифицирующую первый и второй приемники в качестве целевых приемников зондирования канала.

[15] Кадр NDPA может быть передан в формате дублированного блока данных, одновременно переданного через каждый из множества подканалов.

[16] NDP может быть передан в формате дублированного блока данных, переданного через каждый из множества подканалов.

[17] Один или более вторых подканалов распределения выбирают из числа подканалов, исключая один или более первых подканалов распределения, среди множества подканалов.

[18] Способ может дополнительно включать в себя передачу первого кадра данных на первый приемник через каналы, когда все множество каналов распределено в качестве одного или более первых подканалов распределения.

[19] Способ может дополнительно включать в себя прием первого кадра подтверждения (ACK) через один или более первых подканалов распределения в ответ на первый кадр данных и прием второго кадра ACK через один или более первых подканалов распределения в ответ на второй кадр данных.

[20] Первый кадр ACK и второй кадр ACK передают одновременно.

[21] В другом аспекте обеспечено беспроводное устройство, функционирующее в системе беспроводной локальной сети (WLAN). Беспроводное устройство включает в себя приемопередатчик, сконфигурированный для передачи и приема беспроводного сигнала через канал, включающий в себя множество подканалов, и процессор, оперативно подсоединенный к приемопередатчику. Процессор сконфигурирован для захвата первой информации состояния канала относительно каждого из множества подканалов от первого приемника, распределения одного или более первых подканалов распределения, среди множества подканалов, первому приемнику на основе первой информации состояния канала, захвата второй информации состояния канала относительно каждого из множества подканалов от второго приемника, когда один или более первых подканалов распределения соответствуют части множества каналов, распределения одного или более вторых подканалов распределения второму приемнику на основе второй информации состояния канала и передачи блока данных на первый и второй приемники. Блок данных содержит первый и второй кадр данных. Первый кадр данных передают через один или более первых подканалов распределения. Второй кадр данных передают через один или более вторых подканалов распределения.

[22] В соответствии с вариантами осуществления настоящего изобретения точка доступа (AP) может захватить информацию состояния канала относительно подканала между индивидуальной STA и упомянутой AP с помощью процедуры зондирования канала. AP может определить соответствующий подканал, который должен быть использован для передачи кадра данных на специфичную STA, на основе информации состояния канала подканала. AP может передать кадр данных на одну или более станций STA в соответствии со схемой DL-FDMA через подканал, определенный для распределения. AP может выборочно распределить канал с хорошим условием конкретной STA и передать кадр данных на одну или более станций STA через него. Такой способ передачи кадра данных может повысить надежность передачи и приема данных и пропускную способность общей системы WLAN.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[23] ФИГ. 1 является видом, иллюстрирующим конфигурацию общей системы беспроводной локальной (WLAN), к которой может применяться вариант осуществления настоящего изобретения.

[24] ФИГ. 2 является видом, иллюстрирующим архитектуру физического уровня системы WLAN, поддерживаемой IEEE 802.11.

[25] ФИГ. 3 и 4 являются блок-схемами, иллюстрирующими формат PPDU, используемый в системе WLAN, к которому может применяться вариант осуществления настоящего изобретения.

[26] ФИГ. 5 является видом, иллюстрирующим способ зондирования канала, используя NDP в системе WLAN следующего поколения.

[27] ФИГ. 6 является видом, иллюстрирующим пример разделения каналов системы WLAN M2M в соответствии со схемами распределения диапазонов частот относительно каждой страны и каждой области.

[28] ФИГ. 7 является видом, иллюстрирующим понятие механизма доступа к каналу с выбором частоты в среде с узкой полосой частот системы WLAN M2M в соответствии с вариантом осуществления настоящего изобретения.

[29] ФИГ. 8 является видом, иллюстрирующим пример каналов, используемых в системе WLAN, в соответствии с вариантом осуществления настоящего изобретения.

[30] ФИГ. 9 является видом, иллюстрирующим основанный на DL-FDMA способ передачи и приема кадра в соответствии с вариантом осуществления настоящего изобретения.

[31] ФИГ. 10 является блок-схемой беспроводного устройства, к которому применяется вариант осуществления настоящего изобретения.

ОПИСАНИЕ ПРИМЕРНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

[32] Фиг. 1 является видом, иллюстрирующим конфигурацию общей системы беспроводной локальной сети (WLAN), к которой может применяться вариант осуществления настоящего изобретения.

[33] Ссылаясь на Фиг. 1, система WLAN включает в себя один или более наборов базовых услуг (наборы BSS). BSS является набором станций (станций STA), которые могут быть успешно синхронизированы друг с другом и могут связываться друг с другом, и не является понятием, указывающим конкретную область.

[34] Инфраструктура BSS включает в себя одну или более станций не-точки доступа (AP) (STA1 (21) не-AP, STA2 (22) не-AP, STA3 (23) не-AP, STA4 (24) не-AP и STAa (30) не-AP), AP 10, предоставляющую услугу распределения, и систему распределения (DS), связывающую множественные точки AP. В инфраструктуре BSS AP управляет станциями STA не-AP упомянутой BSS.

[35] Напротив, независимый BSS (IBSS) является BSS, работающим в режиме ad hoc («для конкретного случая»). IBSS не включает в себя AP и, таким образом, испытывает недостаток объекта централизованного управления. Таким образом, в IBSS станции STA не-AP управляются распределенным образом. В IBSS все станции STA могут быть мобильными станциями STA, и из-за отсутствия разрешения получить доступ к DS, могут составлять отдельную сеть.

[36] STA является любым функциональным объектом, который включает в себя управление доступом к среде (MAC) и интерфейс физического уровня для радионосителя, которые придерживаются стандартов института инженеров по электротехнике и радиоэлектронике (IEEE) 802.11 и в более широком понятии включают в себя AP и станцию не-AP.

[37] STA не-AP является STA, которая не является AP, и может также называться мобильным терминалом, беспроводным устройством, блоком беспроводной передачи/приема (WTRU), пользовательским оборудованием (UE), мобильной станцией (MS), мобильным блоком абонента или просто пользователем. В дальнейшем, для простоты описания STA не-AP обозначается как STA.

[38] AP является функциональным объектом, который обеспечивает доступ к DS с помощью радионосителя для STA, ассоциированной с AP. В инфраструктуре BSS, включающего в себя AP, связь между станциями STA в принципе достигается с помощью AP, но в случае, если установлена прямая линия связи, станции STA могут выполнять непосредственную связь друг с другом. AP может также называться центральным контроллером, базовой станцией (BS), узлом B, BTS (базовой приемо-передающей станцией), контроллером соты или управляющей STA.

[39] Множество наборов BSS, включающих в себя BSS, показанный на Фиг. 1, может быть соединено друг с другом с помощью системы распределения (DS). Множество наборов BSS, связанных друг с другом через DS, называется расширенным набором услуг (ESS). Точки AP и/или станции STA, включенные в ESS, могут связываться друг с другом, и в одном и том же ESS станции STA могут перемещаться от одного BSS к другому BSS, в то же время поддерживая «бесшовную» связь.

[40] В системе WLAN в соответствии с IEEE 802.11 механизм базового доступа управления доступом к среде (MAC) является механизмом множественного доступа с контролем несущей и предотвращением конфликтов (CSMA/CS). Механизм CSMA/CS также называется функцией распределенной координации (DCF) согласно MAC IEEE 802.11, и в основном он принимает механизм доступа к "прослушиванию перед разговором”. Следуя такому типу механизма доступа, AP и/или STA воспринимает радиоканал или носитель до передачи. Если в результате восприятия носитель определяется как находящийся в режиме ожидания, передача кадра инициируется через носитель. Напротив, если носитель воспринимается как находящийся в режиме бездействия, AP и/или STA назначает отсроченное время для доступа к носителю и ожидает не начиная свою собственную передачу.

[41] Механизм CSMA/CS включает в себя восприятие виртуальной несущей в дополнение к физическому восприятию несущей, в котором AP и/или STA непосредственно воспринимают носитель. Восприятие виртуальной несущей должно решить проблему, которая может иметь место в связи с доступом к носителю, например проблему скрытого узла. Для виртуального восприятия несущей MAC системы WLAN использует вектор назначения сети (NAV). NAV является значением, посредством которого AP и/или STA, в настоящее время использующая носитель или имеющая полномочия использовать носитель, информирует другую AP и/или STA о времени, оставшемся до того, пока носитель не станет доступным. Соответственно, значение, установленное посредством NAV, соответствует периоду, в течение которого запланировано использование носителя посредством AP и/или STA, передающей кадр.

[42] Протокол MAC IEEE 802.11 вместе с DCF предлагает функцию гибридной координации (HCF), которая основана на функции координации точек (PCF), которая периодически выполняет опрос таким образом, чтобы все принимающие точки AP и/или станции STA могли принять пакеты данных в основанной на опросе синхронизированной схеме доступа с DCF. HCF имеет расширенный распределенный доступ к каналу (EDCA), который имеет основанную на конкуренции схему доступа для обеспечения пакетов данных многочисленным пользователям и HCCA (доступ к управляемому каналу HCF), который использует не основанную на конкуренции схему доступа к каналу, использующую механизм опроса. HCF включает в себя механизм доступа к носителю для повышения качества услуг (QoS) WLAN и может передавать данные QoS как в периоде конкуренции (CP), так и в периоде без конкуренции (CFP).

[43] В системе беспроводной связи STA не может немедленно знать о существовании сети из-за характеристик радионосителя, когда STA включается и начинает работать. Соответственно, чтобы получить доступ к сети, STA, неважно, какого она типа, должна пройти через процесс обнаружения сети. При обнаружении сети через процесс обнаружения сети STA выбирает сеть, чтобы подписаться, с помощью процесса выбора сети. После этого STA подписывается на выбранную сеть и выполняет обмен данными в конце передачи/конце приема.

[44] В системе WLAN процесс обнаружения сети реализован как процедура сканирования. Процедура сканирования разделена на пассивное сканирование и активное сканирование. Пассивное сканирование достигается на основании сигнального кадра, который периодически вещается посредством AP. В целом, AP в системе WLAN передает сигнальный кадр в конкретном интервале (например, 100 мс). Сигнальный кадр включает в себя информацию о BSS, управляемом посредством него. STA пассивно ожидает приема сигнального кадра в конкретном канале. При получении информации относительно сети посредством приема сигнального кадра STA заканчивает процедуру сканирования в конкретном канале. STA не должна передавать отдельный кадр при достижении пассивного сканирования, и пассивное сканирование вместо этого выполняется, как только принят сигнальный кадр. Соответственно, пассивное сканирование может сократить общие служебные расходы. Однако оно страдает от того, что время сканирования увеличивается в пропорции к периоду передачи сигнального кадра.

[45] Активное сканирование состоит в том, что STA активно вещает кадр запроса опроса в конкретном канале, чтобы запросить, чтобы все точки AP приняли кадр запроса опроса, чтобы послать сетевую информацию на STA. При приеме кадра запроса опроса AP ожидает в течение случайного времени таким образом, чтобы предотвратить конфликт кадров, и затем включает сетевую информацию в кадр ответа опроса, затем передает кадр ответа опроса на STA. STA принимает кадр ответа опроса, чтобы таким образом получить сетевую информацию, и затем процедура сканирования заканчивается. Активное сканирование может получить сканирование, сделанное относительно быстро, но может увеличить общие служебные расходы сети из-за необходимости последовательности кадров, которая исходит из запроса-ответа.

[46] При завершении процедуры сканирования STA выбирает сеть для каждого конкретного стандарта относительно себя и затем выполняет процедуру проверки подлинности рядом с AP. Процедура проверки подлинности достигается в течение 2-этапного подтверждения установления связи. При завершении процедуры проверки подлинности STA возобновляет процедуру ассоциации вместе с AP.

[47] Процедура ассоциации выполняется в 2-этапном подтверждении установления связи. Сначала STA посылает кадр запроса ассоциации на AP. Кадр запроса ассоциации включает в себя информацию о возможностях STA. На основании информации AP определяет, разрешить ли ассоциацию со STA. При определении, разрешить ли ассоциацию, AP передает кадр ответа ассоциации на STA. Кадр ответа ассоциации включает в себя информацию, указывающую, разрешить ли ассоциацию, и информацию, указывающую причину для разрешаемой ассоциации или отказа. Кадр ответа ассоциации дополнительно включает в себя информацию о возможностях, поддерживаемых посредством AP. В случае, если ассоциация сделана успешно, нормальный обмен кадрами осуществляется между AP и STA. В случае, если ассоциация дает отказ, процедура ассоциации повторяется на основании информации о причине отказа, включенной в кадр ответа ассоциации, или STA может послать запрос об ассоциации на другую AP.

[48] Чтобы преодолеть ограничение скорости, которое считается недостатком в WLAN, относительно в последние годы был основан IEEE 802.11n. IEEE 802.11n стремится повысить скорость и надежность сети, в то же время расширяя зону охвата беспроводной сети. Более конкретно, IEEE 802.11n поддерживает высокую пропускную способность (HT), которая достигает скорости обработки данных до 540 Мбит/сек и основана на технологии MIMO (с множественными входами и множественными выходами), которая принимает множественные антенны как на передающем конце, так и на принимающем конце, чтобы оптимизировать скорость передачи данных и уменьшить ошибки передачи.

[49] Так как WLAN распространяется и появляются более разнообразные приложения, использующие WLAN, возникает потребность в новой системе WLAN для поддержания более высокой пропускной способности, чем скорость обработки данных, поддерживаемая посредством IEEE 802.11n. Система WLAN, поддерживающая очень высокую пропускную способность (VHT), является последующей версией системы WLAN IEEE 802.11n, которая является новой, недавно предложенной для поддержания пропускной способности больше чем 500 Мбит/сек для единственного пользователя и скорости обработки данных больше чем 1 Гбит/сек для множественных пользователей в точке доступа к услуге (SAP) MAC.

[50] Развиваясь дальше, чем существующая система WLAN, поддерживающая 20 МГц или 40 МГц, система WLAN VHT намеревается поддерживать передачу в полосе 80 МГц, непрерывной полосе 160 МГц, не непрерывной полосе 160 МГц и/или больше передачи полосы частот. Дополнительно, система WLAN VHT поддерживает квадратурную амплитудную модуляцию 250 (QAM), которая являются больше, чем максимум 64QAM существующей системы WLAN.

[51] Так как система WLAN VHT поддерживает способ многопользовательской передачи с множественными входами и множественными выходами (MU-MIMO) для более высокой пропускной способности, AP может передавать кадр данных одновременно на по меньшей мере одну или более спаренных с MIMO станций STA. Количество спаренных станций STA может быть максимально равно 4, и когда максимальное количество пространственных потоков равно восьми, каждой STA может быть назначено до четырех пространственных потоков.

[52] Снова ссылаясь на Фиг. 1, в системе WLAN, показанной на этой фигуре, AP 10 может одновременно передавать данные на группу станций STA, включающую в себя по меньшей мере одну или более станций STA, среди множества станций STA 21, 22, 23, 24 и 30, ассоциированных с AP 10. На Фиг. 1 посредством примера AP выполняет передачу MU-MIMO к станциям STA. Однако в системе WLAN, поддерживающей установление туннелированной прямой линии связи (TDLS) или установление прямой линии связи (DLS), или сотовой сети, STA для передачи данных может послать блок данных протокола (PPDU) процедуры конвергенции физического уровня (PLCP) на множество станций STA, используя схему передачи MU-MIMO. Ниже описан пример, в котором AP передает PPDU на множество станций STA в соответствии со схемой передачи MU-MIMO.

[53] Данные могут быть переданы через различные пространственные потоки на каждую STA. Пакет данных, переданный посредством AP 10, может называться PPDU, который сгенерирован в физическом уровне системы WLAN и передан, или кадром в качестве поля данных, включенного в PPDU. Таким образом, PPDU для однопользовательского способа с множественными входами и множественными выходами (SU-MIMO) и/или MU-MIMO, или поле данных, включенное в PPDU, может называться пакетом MIMO. Среди них PPDU для пользователей MU может называться пакетом MU. В примере настоящего изобретения предположим, что спаренная с MU-MIMO целевая группа станций STA передачи с AP 10 включает в себя STA1 21, STA2 22, STA3 23 и STA4 24. В это время никакой пространственный поток не назначен на конкретную STA в целевой группе станций STA передачи таким образом, чтобы никакие данные не могли быть переданы на конкретную STA. В то же время предположим, что STAa 30 ассоциирована с AP, но не включена в целевую группу станций STA передачи.

[54] Таблица 1, иллюстрированная ниже, представляет информационные элементы, включенные в кадр управления ID группы.

[55] [Таблица 1]

Таблица 1
Порядок Информация
1 Категория
2 Действие VHT
3 Статус членства
4 Позиция пространственного потока

[56] Поле категории и поле действия VHT сконфигурированы таким образом, чтобы кадр соответствовал кадру управления и был в состоянии идентифицировать кадр управления ID группы, используемый в системе WLAN следующего поколения, поддерживающей MU-MIMO.

[57] Как в Таблице 1, информация определения группы включает в себя информацию о статусе членства, указывающую, принадлежать ли к конкретному ID группы, и в случае принадлежности к ID группы, информацию, указывающую номер позиции, которой соответствует набор пространственных потоков STA во всех пространственных потоках в соответствии с передачей MU-MIMO.

[58] Так как одна AP управляет множеством идентификаторов ID группы, информация о статусе членства, выданная в одну STA, должна указывать, принадлежит ли STA каждому из идентификаторов ID группы, управляемых посредством AP. Соответственно, информация о статусе членства может быть выдана в форме множества подполей, указывающих, принадлежит ли она каждому ID группы. Информация о позиции пространственного потока указывает позицию каждого ID группы и, таким образом, может быть выдана в форме множества подполей, указывающих позицию набора пространственных потоков, занятых посредством STA относительно каждого ID группы. Дополнительно, информация о статусе членства и информация о позиции пространственного потока для одного ID группы могут быть реализованы в одном подполе.

[59] AP, в случае посылки PPDU на множество станций STA через схему передачи MU-MIMO, передает PPDU с информацией, указывающей идентификатор группы (ID группы) в PPDU в качестве информации управления. При приеме PPDU STA подтверждает, является ли она членской STA целевой группы станций STA передачи, посредством проверки поля ID группы. Если STA является членом целевой группы станций STA передачи, STA может идентифицировать, какой номер позиции, в которой расположен набор пространственных потоков, передан на STA, во всем пространственном потоке. PPDU включает в себя информацию о количестве пространственных потоков, распределенных для принимающей STA, и, таким образом, STA может принять данные посредством обнаружения пространственных потоков, назначенных на нее.

[60] В то же время WS (свободное пространство) TV привлекает внимание как недавно доступный частотный диапазон в системе WLAN. WS TV относится к неиспользуемому частотному диапазону, который остался, так как аналоговое вещание TV переводится в цифровую форму в США. Например, WS TV включает в себя диапазон 54-598 МГц. Однако это является просто примером, и WS TV может быть разрешенным диапазоном, который может быть сначала использован лицензированным пользователем. Термин “лицензированный пользователь“ обозначает пользователя, которому разрешено использовать разрешенный диапазон, и может также называться лицензированным устройством, первичным пользователем или действующим пользователем.

[61] AP и/или STA, работающая в WS TV, должна предложить функцию защиты относительно лицензированного пользователя, и причина состоит в том, что лицензированный пользователь имеет приоритет относительно использования диапазона WS TV. Например, в случае, если лицензированный пользователь, такой как микрофон, уже использует конкретный канал WS, который является частотным диапазоном, разбитым для каждого протокола, чтобы иметь некоторую полосу пропускания в диапазоне WS TV, AP и/или STA не могут использовать этот частотный диапазон, соответствующий каналу WS, чтобы защитить лицензированного пользователя. Дополнительно, AP и/или STA должны прекратить использование частотного диапазона, если оказывается, что лицензированный пользователь использует частотный диапазон, который используется для передачи и/или приема текущего кадра.

[62] Соответственно, AP и/или STA должны сначала установить, является ли конкретный частотный диапазон в диапазоне WS TV доступным, другими словами, находится ли лицензированный пользователь в этот частотном диапазоне. Установление, находится ли лицензированный пользователь в конкретном частотном диапазоне, является восприятием обозначенного спектра. В качестве механизма восприятия спектра могут быть использованы схема обнаружения энергии или схема обнаружения подписи. Если уровень принятого сигнала выше, чем предварительно определенное значение, определяется, что он используется лицензированным пользователем, или если обнаружена преамбула DTV, он может быть определен как используемый лицензированным пользователем.

[63] Фиг. 2 является видом, иллюстрирующим архитектуру физического уровня системы WLAN, поддерживаемой посредством IEEE 802.11.

[64] Физическая архитектура (PHY) IEEE 802.11 включает в себя объект управления уровня PHY (PLME), подуровень 210 процедуры конвергенции физического уровня (PLCP) и зависящий от физического носителя (PMD) подуровень 200. PLME обеспечивает функцию управления физического уровня вместе с объектом управления уровня MAC (MLME). Подуровень 210 PLCP поставляет блок данных протокола MAC (MPDU), принятый от подуровня 220 MAC, на подуровень PMD в ответ на команду уровня MAC между подуровнем 220 MAC и подуровнем 200 PMD или поставляет кадр, исходящий от подуровня 200 PMD, на подуровень 220 MAC. Подуровень 200 PMD является более низким уровнем PLCP и разрешает передачу и прием объекта физического уровня между двумя станциями через радионоситель. MPDU, поставляемый подуровнем 220 MAC, обозначен физическим блоком данных обслуживания (PSDU) в подуровне 210 PLCP. MPDU аналогичен PSDU, но в случае, если поставляется агрегированный MPDU (A-MPDU), полученный посредством агрегации множества блоков MPDU, каждый MPDU может отличаться от каждого PSDU.

[65] Подуровень 210 PLCP добавляет дополнительное поле, включающее в себя необходимую информацию, посредством приемопередатчика физического уровня, в то же время поставляя PSDU от подуровня 220 MAC на подуровень PMD 200. В этом момент времени добавленное поле может включать в себя преамбулу PLCP к PSDU, заголовок PLCP или концевую комбинацию битов, необходимую для того, чтобы переключить сверточный кодер обратно в нулевое состояние. Подуровень 210 PLCP принимает от подуровня MAC параметр TXVECTOR, включающий в себя информацию управления, необходимую для генерирования и передачи PPDU, и информацию управления, необходимую для STA, чтобы принять и проанализировать PPDU. Подуровень 210 PLCP использует информацию, включенную в параметр TXVECTOR, при генерировании PPDU, включающего в себя PSDU.

[66] Преамбула PLCP играет роль, чтобы позволить приемнику подготовиться к функции синхронизации и разнесению антенн до того, как будет передан PSDU. Поле данных может включать в себя закодированную последовательность, в которой закодированы PSDU, биты заполнения, приложенные к PSDU, поле услуги, включающее в себя последовательность битов для инициализации блока скремблирования, и концевую комбинацию битов. В то же время, в качестве схемы кодирования, в зависимости от схемы кодирования, поддерживаемой посредством STA, принимающей PPDU, могут быть выбраны двоичное сверточное кодирование (BCC) или кодирование кода малой плотности контроля по четности (LDPC). Заголовок PLCP включает в себя поле, включающее в себя информацию о PPDU, который должен быть передан, и это будет описано в дополнительных подробностях ниже со ссылками на Фиг. 3 и 4.

[67] Подуровень 210 PLCP добавляет вышеописанные поля к PSDU, чтобы таким образом генерировать PPDU, и передает PPDU на принимающую станцию с помощью подуровня PMD, и принимающая STA принимает PPDU и получает информацию, необходимую для восстановления данных, из преамбулы PLCP и заголовка PLCP и восстанавливает данные. Подуровень PLCP принимающей станции поставляет на подуровень MAC параметр RXVECTOR, включающий в себя информацию управления, содержащуюся в заголовке PLCP и преамбуле PLCP, и может проанализировать PPDU и получить данные в состоянии приема.

[68] Фиг. 3 и 4 являются блок-схемами, иллюстрирующими формат PPDU, используемый в системе WLAN, к которой может применяться вариант осуществления настоящего изобретения. В дальнейшем STA, работающая в унаследованной системе WLAN на основании IEEE 802.11a/b/g, существующих стандартов WLAN до IEEE 802.11n, относится к унаследованной STA (L-STA). Дополнительно, STA, которая может поддерживать HT в системе WLAN HT на основании IEEE 802.11n, называется HT-STA.

[69] Подфигура (a) Фиг. 3 иллюстрирует формат унаследованного PPDU (L-PPDU), используемого в IEEE 802.11a/b/g, которые являются существующими стандартами системы WLAN до IEEE 802.11n. Соответственно, в системе WLAN HT, к которой применяется стандарт IEEE 802.11n, унаследованная STA (L-STA) может передавать и принимать L-PPDU, имеющий один и тот же формат.

[70] Ссылаясь на подфигуру (a), L-PPDU 310 включает в себя L-STF 311, L-LTF 312, поле 313 L-SIG и поле 314 данных.

[71] L-STF 311 используется для захвата тактирования кадров, конвергенции автоматического управления коэффициентом усиления (AGC) и грубого захвата частоты.

[72] L-LTF 312 используется для смещения частоты и оценки канала.

[73] Поле L-SIG 313 включает в себя информацию управления для демодулирования и расшифровки поля 314 данных.

[74] Подфигура (b) Фиг. 3 является блок-схемой, иллюстрирующей смешанный с HT формат PPDU, который разрешает L-STA и HT-STA сосуществовать. Ссылаясь на подфигуру (b), смешанный с HT PPDU 320 включает в себя L-STF 321, L-LTF 322, поле 23 L-SIG 3, поле 324 HT-SIG, HT-STF 325, множество полей 326 HT-LTF и поле 327 данных.

[75] L-STF 321, L-LTF 322 и поле 323 L-SIG являются теми же, что и таковые, обозначенные номерами позиций 311, 312 и 313 соответственно на подфигуре (a). Соответственно, L-STA, даже при приеме смешанного с HT PPDU 320, может проанализировать поле данных через L-STF 321, L-LTF 322 и L-SIG 323. Однако L-LTF 322 может дополнительно включать в себя информацию для оценки канала, которая должна быть проведена для HT-STA, чтобы принять смешанный с HT PPDU 320 и расшифровать L-SIG 323, HT-SIG 324 и HT-STF 325.

[76] HT-STA может знать, что смешанный с HT PPDU 320 является PPDU для себя с помощью HT-SIG 324, прибывающего после L-SIG 323, и на основании этого может демодулировать и декодировать поле 327 данных.

[77] HT-STF 325 может быть использована для синхронизации тактирования кадров или конвергенции AGC для HT- STA.

[78] HT-LTF 326 может быть использована для оценки канала, чтобы демодулировать поле 327 данных. Так как IEEE 802.11n поддерживает SU-MIMO, может быть множество полей HT-LTF 326 для каждого поля данных, переданного во множестве пространственных потоков.

[79] HT-LTF 326 может состоять из HT-LTF данных, используемой для оценки канала для пространственного потока, и HT-LTF расширения, дополнительно используемой для полного зондирования каналов. Соответственно, количество из множества полей HT-LTF 326 может быть равно или больше, чем количество переданных пространственных потоков.

[80] В смешанном с HT PPDU 320, L-STF 321, L-LTF 322 и поле 323 L-SIG передаются первыми таким образом, чтобы L-STA могла также принять его, чтобы таким образом получить данные. После этого поле 324 HT-SIG передается для демодулирования и расшифровки данных, переданных для HT-STA.

[81] Поле 324 HT-SIG и его предшественники передаются без формирования диаграммы направленности таким образом, чтобы L-STA и HT-STA могли принять PPDU, чтобы таким образом получить данные, и HT-STF 325, HT-LTF 326 и поле 327 данных, переданных после этого, подвергаются радиопередаче сигнала посредством предварительного кодирования. В настоящем описании передается HT-STF 325, и затем множество полей HT-LTF 326 и поле 327 данных передаются таким образом, чтобы изменение мощности посредством предварительного кодирования могло быть принято во внимание посредством STA, выполняющим прием с помощью предварительного кодирования.

[82] Хотя в системе WLAN HT, HT-STA, использующая 20 МГц, использует 52 поднесущие данных для каждого символа OFDM, L-STA, использующая ту же частоту, 20 МГц, все еще использует 48 поднесущих для каждого символа OFDM. Для обратной совместимости с существующими системами поле 324 HT-SIG в смешанном с HT PPDU 320 декодируется, используя L-LTF 322 таким образом, чтобы поле 324 HT-SIG состояло из поднесущих данных 48x2. Таким образом, HT-STF 325 и HT-LTF 326 состоят из 52 поднесущих данных для каждого символа OFDM. В результате поле 324 HT-SIG поддерживается с 1/2, BPSK (двоичной фазовой манипуляцией), каждое поле HT-SIG 324 состоит из 24 битов и, таким образом, передается в общей сложности с 48 битами. Другими словами, оценка канала для поля L-SIG 323 и поля HT-SIG 324 использует L-LTF 322, и битовый поток, составляющий L-LTF 322, представлен как в Уравнении 1, иллюстрированном ниже. L-LTF 322 состоит из 48 поднесущих данных, кроме поднесущей DC для каждого символа.

[83] Уравнение 1

Подфигура (c) Фиг. 3 является блок-схемой, иллюстрирующей формат PPDU 330 поля, создаваемого в соответствии HT, который может быть использован только посредством HT- STA. Ссылаясь на подфигуру (c), PPDU 330 HT-GF включает в себя HT-GF-STF 331, HT-LTF1 332, HT-SIG 333, множество полей HT-LTF2 334 и поле 335 данных.

[85] HT-GF-STF 331 используется для захвата тактирования кадра и AGC.

[86] HT-LTF1 332 используется для оценки канала.

[87] HT-SIG 333 используется для демодулирования и расшифровки поля 335 данных.

[88] HT-LTF2 334 используется для оценки канала для демодул