Химерные факторы роста фибробластов с измененной рецепторной специфичностью

Иллюстрации

Показать все

Изобретение относится к области биотехнологии, конкретно к химерным полипептидам фактора роста фибробластов (FGF), и может быть использовано в медицине для лечения ожирения, диабета, высокого содержания глюкозы в крови, метаболического синдрома и гиперхолестеринемии. Получают химерный FGF19, имеющий С-концевую часть последовательности полипептида hFGF19 и N-концевую часть последовательности полипептида hFGF21. Изобретение позволяет получить химерный полипептид FGF19, который активирует FGFRlc Klotho-бета-зависимым образом, но не активирует существенным образом FGFR4 ни Klotho-бета-независимым, ни Klotho-бета-зависимым образом. 12 н. и 6 з.п. ф-лы, 22 ил., 11 табл., 15 пр.

Реферат

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ

В настоящей заявке заявлен приоритет по предварительной заявке Соединенных Штатов с серийным No. 61/252074, поданной 15 октября 2009, которая в полном объеме включена в настоящее описание в виде ссылки.

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение в целом связано с новыми полипептидами, определяемыми здесь как химерные полипептиды фактора роста фибробластов (FGF), с новой ДНК, кодирующей химерные полипептиды FGF, и с рекомбинантной продукцией химерных полипептидов FGF, а также со способами, композициями и количественными анализами с использованием химерных полипептидов FGF для терапевтического лечения связанных с метаболизмом расстройств и других состояний, и кроме того, для изготовления фармацевтически активных композиций, содержащих химерные полипептиды FGF, композиций, имеющих терапевтические и фармакологические свойства, включая свойства, ассоциированные с лечением связанных с метаболизмом расстройств и других состояний.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Семейство факторов роста фибробластов (FGF) включает в себя подсемейства FGF19, которые включают в себя человеческие FGF21, FGF23 и FGF19, а также мышиный FGF15. В отличие от других членов семейства FGF, которые обычно действуют на свою исходную ткань паракринным образом, члены подсемейства FGF19 действуют на специфические отдаленные ткани эндокринным способом. Эффекты, оказываемые членами семейства FGF, являются результатом их гепарин-зависимого связывания с одним или несколькими членами семейства тирозинкиназных рецепторов FGF (FGFR). Указанное семейство рецепторов включает в себя четыре члена, каждый из которых имеет тирозинкиназный домен, FGFR1, FGFR2, FGFR3 и FGFR4, а также два варианта сплайсинга каждого из FGFR1, FGFR2 и FGFR3. Указанные варианты сплайсинга, которые возникают в экзоне 3 рецепторов FGFR1, FGFR2 и FGFR3, обозначают как варианты "b" и "c" (то есть FGFR1b, FGFR2b, FGFR3c, FGFR1c, FGFR2c и FGFR3c, которые известны также как FGFR1(III)b, FGFR2(III)b, FGFR3(III)c, FGFR1(III)c, FGFR2(III)c и FGFR3(III)c, соответственно).

Члены подсемейства FGF19 вовлечены в регуляцию различных тканеспецифических процессов метаболизма у млекопитающих. Особый интерес представляет FGF19, который, как было показано, нацелен и воздействует как на адипоциты, так и на гепатоциты. Например, мыши, обработанные рекомбинантным человеческим FGF19 (rhFGF19), несмотря на то, что находятся на диете с высоким уровнем потребления жира, проявляют повышенную скорость метаболизма, повышенный уровень окисления липидов, пониженный дыхательный коэффициент и потерю веса. Более того, такие мыши обнаруживают более низкие сывороточные уровни лептина, инсулина, холестерина и триглицеридов, а также нормальные уровни глюкозы в крови, несмотря на то, что находятся на диете с высоким уровнем потребления жира, и на отсутствие потери аппетита. Мыши с ожирением, у которых отсутствовал лептин, но был встроен трансген FGF19, отличались потерей веса, более низкими уровнями холестерина и триглицеридов, и у них не развивался диабет. При инъецировании rhFGF19 мышам с ожирением и диабетом, у которых отсутствовал лептин, у них проявлялась обратимость характеристических свойств метаболизма в виде потери веса и понижения глюкозы в крови (Fu, L. et al., Endocrinology 145(6), 2594-2603 (2004); Tomlinson, E. et al., Endocrinology 143(5), 1741-1747 (2002)).

Другой член подсемейства FGF19, полипептид FGF21, экспрессируется главным образом печенью и вызывает эффекты метаболизма, сходные с таковыми FGF19, такие как повышение метаболизма через его воздействие на жировую ткань, потеря веса, понижение уровней глюкозы в крови и резистентность к ожирению и диабету (Kharitonenkov, A. et al., J. Clin. Invest. 115(6), 1627-1635 (2005)). FGF21-трансгенные мыши также были резистентны к обусловленному диетой ожирению. Более того, у грызунов-моделей диабета введение FGF21 понижало уровни глюкозы и триглицеридов в крови.

Было также показано, что FGF21 участвует в регуляции пути обмена гормона роста (GH). Анаболические эффекты GH опосредованы инсулиноподобным фактором роста 1 (IGF-1), который главным образом продуцируется печенью. GH вызывает транскрипцию IGF-1, таким образом повышая его уровни в циркуляции через активацию Janus-киназы 2 (JAK2) посредством рецептора GH. Активированная JAK2 фосфорилирует члены семейства сигнальных трансдукторов и активаторов транскрипции (STAT), которые при фосфорилировании подвергаются транслокации в ядро и связываются с регуляторными элементами генов-мишеней, включая гены IGF-1. В частности, было показано, что STAT5 в его фосфорилированной форме играет заметную роль в таком ответе.

Влияние GH на уровни IGF-1, вероятнее всего, противостоит эффектам голода или ограничения пищи - состояниям, которые приводят к понижению уровней транскрипции IGF-1 и циркуляции IGF-1 (Thissen, J.P. et al., Endocr. Rev. 15, 80-101 (1994)). Указанные эффекты в отношении IGF-1 могут иметь место за счет понижения уровней фосфорилированного STAT5. В частности, у голодающих крыс, которым инъецируют GH, уровни печеночного фосфорилированного STAT5 ниже, чем у не голодающих крыс (Beauloye, V. et al., Endocrinology 143, 792-800 (2002)). FGF21, который индуцируется в печени в условиях голодания или ограничения пищи, может быть посредником указанного эффекта. Было показано, что FGF21-трансгенные мыши имеют более низкие уровни IGF-1 и фосфорилированного STAT5 (Inagaki, T. et al., Cell Metabolism 8, 77-83 (2008)).

Метаболические эффекты FGF19 и FGF21 осуществляются через их связывание с FGFR1c-, FGFR2c- и FGFR3c-рецепторами, из которых связывание с FGFR1c-, FGFR2c-рецепторами является наиболее значимым. Более того, связывание FGF19 и FGF21 с указанными рецепторами требует ко-рецептора Klotho-бета. Несмотря на превалирование указанных FGFR-рецепторов, метаболические эффекты FGF19 и FGF21 являются адипоцит-специфическими, в силу необходимости участия ко-рецептора Klotho-бета, который имеет тканеспецифическую локализацию.

Было показано также, что FGF19 вызывает эффекты, которые отличаются от эффектов, вызываемых FGF21. Например, было показано, что FGF19 регулирует продукцию желчи печенью через его специфические в отношении печеночной ткани эффекты. В ответ на возникающую после приема пищи продукцию желчи FGF19 осуществляет отрицательную регуляцию продукции желчи путем торможения транскрипции гена холестерин-7-альфа-гидролазы (CYP7A1), фермента, ограничивающего скорость синтеза желчных кислот, и путем стимуляции наполнения желчного пузыря. Кроме того, FGF19 обнаруживает митогенные эффекты, которые не наблюдаются в отношении FGF21. Например, у FGF19-трансгенных мышей развивается аденокарцинома печени в результате повышенной пролиферации и дисплазии гепатоцитов, и у rhFGF19-обработанных мышей проявляется пролиферация гепатоцитов (Nicholes, K. et al., Am J Pathol 160, 2295-2307 (2000).)

Обнаружено, что указанные дополнительные активности FGF19 опосредованы его связыванием с FGFR4. FGF19 может связываться с FGFR4 как Klotho-бета-зависимым, так и Klotho-бета-независимым путем. Несмотря на то, что было показано, что FGF21 может также связываться с FGFR4 Klotho-бета-зависимым путем, никаких четких результатов по передаче сигнала от связывания FGF21 с FGFR4 получено не было.

Необходимо развивать новые терапевтические возможности для лечения связанных с метаболизмом расстройств, таких как диабет, ожирение, высокий уровень сахара в крови и других сходных нарушений. Необходимо также развивать новые терапевтические возможности для таких связанных с метаболизмом расстройств, при которых будут исключены или ослаблены эффекты нежелательного роста или пролиферативного потенциала (например, вызывающего опухоли потенциала) такой терапии. Необходимо также развивать новые терапевтические возможности для таких связанных с метаболизмом расстройств, при которых будет исключен или ослаблен потенциал в отношении резистентности к гормону роста.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В первом аспекте настоящее изобретение относится к химерному полипептиду фактора роста фибробластов человека 19 (hFGF19). В некоторых воплощениях настоящего изобретения последовательность химерного полипептида включает C-концевую часть, которая содержит C-концевую часть последовательности полипептида hFGF19, и N-концевую часть, которая содержит N-концевую часть последовательности полипептида hFGF21. В определенных воплощениях C-концевая часть последовательности полипептида hFGF19 имеет длину от приблизительно 45 до 185 остатков, N-концевая часть последовательности полипептида hFGF21 имеет длину от приблизительно 7 до приблизительно 140 остатков.

В другом воплощении настоящего изобретения предложен химерный полипептид hFGF19, при этом последовательность полипептида включает C-концевую часть, которая содержит C-концевую часть последовательности полипептида hFGF21, и N-концевую часть, которая содержит N-концевую часть последовательности полипептида hFGF19. В некоторых воплощениях C-концевая часть последовательности полипептида hFGF21 имеет длину от приблизительно 8 до приблизительно 145 остатков, а N-концевая часть последовательности полипептида hFGF19 имеет длину от приблизительно 45 до приблизительно 175 остатков.

В другом воплощении настоящего изобретения предложен химерный полипептид hFGF19, где последовательность указанного химерного полипептида включает первую полипептидную последовательность, имеющую хоть какую-нибудь последовательность, идентичную последовательности полипептида hFGF19, и где часть первой полипептидной последовательности замещена частью второй полипептидной последовательности, при этом указанная вторая полипептидная последовательность имеет хоть какую-нибудь последовательность, идентичную последовательности полипептида hFGF21, так, чтобы замещенная часть первой полипептидной последовательности имела длину от приблизительно 3 до приблизительно 185 остатков.

В некоторых воплощениях настоящего изобретения предложен химерный полипептид hFGF19, где последовательность указанного химерного полипептида включает первую полипептидную последовательность, имеющую хоть какую-нибудь последовательность, идентичную последовательности полипептида hFGF19, и где часть первой полипептидной последовательности замещена более чем одной частью второй полипептидной последовательности, при этом указанная вторая полипептидная последовательность имеет хоть какую-нибудь последовательность, идентичную последовательности полипептида hFGF21. В некоторых воплощениях химерный полипептид hFGF19 включает замену петли β1-β2 первого полипептида, замену сегмента β10-β12 первого полипептида и/или замену пяти остатков WGDPI первого полипептида петлей β1-β2 второго полипептида, сегментом β10-β12 второго полипептида и/или соответствующей последовательностью GQV второго полипептида.

В определенных воплощениях настоящего изобретения химерный полипептид hFGF19 включает последовательность

HPIPDSSPLLQFGGQVRQRYLYTSGPHGLSSCFLRIRADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEEEIRPDGYNVYRSEKHRLPVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESDMFSSPLETDSMDPFGLVTGLEAVRSPSFEK (SEQ ID NO: 5).

В определенных воплощениях химерный полипептид hFGF19 согласно настоящему изобретению слит со вторым полипептидом, при этом второй полипептид является участком Fc иммуноглобулина, аналогом участка Fc иммуноглобулина и одним или несколькими фрагментами участка Fc иммуноглобулина. В определенных воплощениях иммуноглобулин выбран из группы, состоящей из IgG-1, IgG-2, IgG-3, IgG-4, IgA-1, IgA-2, IgE, IgD и IgM. В некоторых воплощениях участок Fc является человеческим или гуманизированным. В некоторых воплощениях C-конец химерного полипептида hFGF19 слит с N-концом второго полипептида. В некоторых воплощениях C-конец химерного полипептида hFGF19 слит с N-концом второго полипептида посредством линкера, при этом указанный линкер выбран из группы, состоящей из линкера [Gly]n, линкера [Gly3Ser]m и линкера [Gly4Ser]m, где n является целым числом от 1 до 30, а m является целым числом от 1 до 6.

Настоящее изобретение включает в себя химерные полипептиды hFGF19, которые имеют физиологическое время полужизни, которое является, по меньшей мере, или приблизительно таким же, что и у нативного hFGF19. Настоящее изобретение включает в себя химерные полипептиды hFGF19, которые имеют физиологическое время полужизни, которое является, по меньшей мере, или приблизительно таким же, что и у нативного hFGF21.

В определенных воплощениях химерный полипептид hFGF19 не активирует существенным образом FGFR4 ни Klotho-бета-независимым, ни Klotho-бета-зависимым образом. В определенных воплощениях химерный полипептид hFGF19 активирует FGFR1c Klotho-бета-зависимым образом.

В определенных воплощениях химерный полипептид hFGF19, при введении его индивиду, не уменьшает безжировую массу индивида. В определенных воплощениях химерный полипептид hFGF19, при введении его индивиду, не вызывает существенного уменьшения безжировой массы индивида. В определенных воплощениях химерный полипептид hFGF19, при введении его индивиду, не уменьшает плотность костей индивида. В определенных воплощениях химерный полипептид hFGF19, при введении его индивиду, не вызывает существенного уменьшения плотности костей индивида. В определенных воплощениях химерный полипептид hFGF19, при введении его индивиду, не понижает функциональную активность сердца индивида. В определенных воплощениях химерный полипептид hFGF19, при введении его индивиду, по существу, не понижает функциональную активность сердца индивида.

В определенных воплощениях химерный полипептид hFGF19 не понижает или не вызывает существенного понижения количества фосфорилированного полипептида STAT5 in vivo. В определенных воплощениях химерный полипептид hFGF19, при введении его индивиду, не понижает или не вызывает существенного понижения количества фосфорилированного полипептида STAT5 у индивида. В определенных воплощениях, при введении индивиду химерного полипептида hFGF19, количество фосфорилированного полипептида STAT5 у индивида понижается, но при этом указанное количество фосфорилированного полипептида STAT5 превышает количество фосфорилированного полипептида STAT5 при введении нативного hFGF21 указанному индивиду. В определенных воплощениях, при введении химерного полипептида hFGF19 индивиду, количество фосфорилированного полипептида STAT5 составляет от 100% до 5%, от 100% до 10%, от 100% до 20%, от 100% до 30%, от 100% до 40%, от 100% до 50%, от 100% до 60%, от 100% до 70%, от 100% до 80%, от 100% до 90% или от 100% до 95% от количества фосфорилированного полипептида STAT5 у индивида без такого введения. В определенных воплощениях, при введении химерного полипептида hFGF19 индивиду, понижение количества фосфорилированного полипептида STAT5 является меньшим, чем понижение количества фосфорилированного полипептида STAT5 при введении нативного hFGF21. Например, понижение фосфорилированного полипептида STAT5, при введении химерного полипептида hFGF19 индивиду, представляет собой любую из степеней понижения: от 0% до 5%, от 0% до 5%, от 0% до 10%, от 0% до 20%, от 0% до 30%, от 0% до 40%, от 0% до 50%, от 0% до 60%, от 0% до 70%, от 0% до 80%, от 0% до 90% или от 0% до 95% от количества фосфорилированного полипептида STAT5 при введении нативного hFGF21.

В определенных воплощениях химерный полипептид hFGF19 не понижает или не вызывает существенного понижения количества циркулирующего инсулиноподобного фактора роста 1 (IGF-1) in vivo. В определенных воплощениях химерный полипептид hFGF19, при введении его индивиду, не понижает или не вызывает существенного понижения количества циркулирующего IGF-1 у индивида. В определенных воплощениях, при введении индивиду химерного полипептида hFGF19, количество циркулирующего IGF-1 понижается, но при этом указанное количество циркулирующего IGF-1 превышает количество фосфорилированного полипептида STAT5 при введении нативного hFGF21 указанному индивиду. В определенных воплощениях, при введении индивиду химерного полипептида hFGF19, количество циркулирующего IGF-1 составляет от 100% до 5%, от 100% до 10%, от 100% до 20%, от 100% до 30%, от 100% до 40%, от 100% до 50%, от 100% до 60%, от 100% до 70%, от 100% до 80%, от 100% до 90% или от 100% до 95%, от количества циркулирующего IGF-1 у индивида без такого введения. В определенных воплощениях, при введении индивиду химерного полипептида hFGF19, понижение количества циркулирующего IGF-1 является меньшим, чем понижение количества циркулирующего IGF-1 при введении нативного hFGF21. Например, понижение циркулирующего IGF-1, при введении индивиду химерного полипептида hFGF19, составляет от 0% до 5%, от 0% до 10%, от 0% до 20%, от 0% до 30%, от 0% до 40%, от 0% до 50%, от 0% до 60%, от 0% до 70%, от 0% до 80%, от 0% до 90% или от 0% до 95%, от понижения количества циркулирующего IGF-1 при введении нативного hFGF21.

В другом аспекте настоящее изобретение относится к фармацевтической композиции, содержащей терапевтически эффективное количество химерного полипептида hFGF19 согласно настоящему изобретению; и приемлемый фармацевтический носитель.

В другом аспекте настоящее изобретение относится к способам лечения индивида, у которого проявляется одна или более из следующих патологий: ожирение, диабет 1 типа, диабет 2 типа, высокое содержание глюкозы в крови, метаболический синдром, атеросклероз, гиперхолестеринемия, инсульт, остеопороз, остеоартрит, дегенеративное заболевание суставов, мышечная атрофия, саркопения, понижение безжировой массы тела, облысение, морщинистость, повышенная усталость, пониженная выносливость, пониженная функция сердца, дисфункция иммунной системы, злокачественная опухоль, болезнь Паркинсона, старческое слабоумие, болезнь Альцгеймера и пониженная когнитивная функция, где указанный способ включает введение указанному индивиду терапевтически эффективное количество фармацевтической композиции согласно настоящему изобретению.

В другом аспекте настоящее изобретение относится к способу понижения уровней глюкозы в крови индивида, нуждающегося в таком лечении, при этом указанный способ включает введение указанному индивиду терапевтически эффективного количества фармацевтической композиции согласно настоящему изобретению.

В другом аспекте настоящее изобретение относится к изолированной молекуле нуклеиновой кислоты, содержащей молекулу ДНК, имеющую, по меньшей мере, 80%, по меньшей мере, 90%, по меньшей мере, 95% или, по меньшей мере, 99% степень идентичности последовательности молекулы ДНК, кодирующей полипептид, имеющий аминокислотные остатки от приблизительно 1 до приблизительно 190 последовательности SEQ ID NO: 5 или комплементарной ей последовательности.

В другом аспекте настоящее изобретение относится к изолированной молекуле нуклеиновой кислоты, содержащей следующую последовательность:

CACCCCATCCCTGACTCCAGTCCTCTCCTGCAATTCGGGGGCCAAGTCCGGCAGCGGTACCTCTACACCTCCGGCCCCCACGGGCTCTCCAGCTGCTTCCTGCGCATCCGTGCCGACGGCGTCGTGGACTGCGCGCGGGGCCAGAGCGCGCACAGTTTGCTGGAGATCAAGGCAGTCGCTCTGCGGACCGTGGCCATCAAGGGCGTGCACAGCGTGCGGTACCTCTGCATGGGCGCCGACGGCAAGATGCAGGGGCTGCTTCAGTACTCGGAGGAAGACTGTGCTTTCGAGGAGGAGATCCGCCCAGATGGCTACAATGTGTACCGATCCGAGAAGCACCGCCTCCCGGTCTCCCTGAGCAGTGCCAAACAGCGGCAGCTGTACAAGAACAGAGGCTTTCTTCCACTCTCTCATTTCCTGCCCATGCTGCCCATGGTCCCAGAGGAGCCTGAGGACCTCAGGGGCCACTTGGAATCTGACATGTTCTCTTCGCCCCTGGAGACCGACAGCATGGACCCATTTGGGCTTGTCACCGGACTGGAGGCCGTGAGGAGTCCCAGCTTTGAGAAG (SEQ ID NO:7) или ее часть.

В определенных воплощениях изолированная нуклеиновая кислота согласно настоящему изобретению дополнительно содержит последовательность, кодирующую аминокислотные остатки, соответствующие участку Fc иммуноглобулина.

В другом аспекте настоящее изобретение относится к системе экспрессии, содержащей молекулу нуклеиновой кислоты согласно настоящему изобретению. В другом аспекте настоящее изобретение относится к клетке-хозяину, содержащей систему экспрессии или нуклеиновую кислоту согласно настоящему изобретению.

В другом аспекте настоящее изобретение относится к изолированному полипептиду, кодируемому молекулой нуклеиновой кислоты согласно настоящему изобретению.

В другом аспекте настоящее изобретение относится к способу продуцирования изолированного полипептида, включающему культивирование клетки-хозяина согласно изобретению в условиях, подходящих для экспрессии кодируемого полипептида, и извлечение кодируемого полипептида из клеточной культуры. В другом аспекте настоящее изобретение относится к изолированному полипептиду, продуцируемому способом согласно изобретению.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКОГО МАТЕРИАЛА

На ФИГ. 1 приведена аминокислотная последовательность человеческого полипептида FGF19 (SEQ ID NO: 1) и человеческого пре-FGF19-полипептида (SEQ ID NO:3);

На ФИГ. 2 приведена аминокислотная последовательность человеческого полипептида FGF21 (SEQ ID NO:2) и человеческого пре-FGF21-полипептида (SEQ ID NO:4);

На ФИГ. 3 представлены иллюстративные результаты анализа связывания рецептора с использованием химерных полипептидов FGF19 согласно настоящему изобретению;

На ФИГ. 4 представлены иллюстративные результаты анализа связывания рецептора с использованием химерных полипептидов FGF19 согласно настоящему изобретению;

На ФИГ. 5 представлены иллюстративные результаты анализа специфичной для печени экспрессии генов с помощью химерных полипептидов FGF19 согласно настоящему изобретению;

На ФИГ. 6 представлены иллюстративные результаты анализа адипоцит-специфической экспрессии генов с помощью химерных полипептидов FGF19 согласно настоящему изобретению;

На ФИГ. 7 представлены иллюстративные результаты анализа понижения уровней глюкозы в крови с помощью химерных полипептидов FGF19 согласно настоящему изобретению;

На ФИГ. 8 представлены иллюстративные результаты анализа теста толерантности к глюкозе с помощью химерных полипептидов FGF19 согласно настоящему изобретению;

На ФИГ. 9 представлены иллюстративные результаты анализа активности с помощью иммуноглобулиновых Fc слияний химерных полипептидов FGF19 согласно настоящему изобретению; и

На ФИГ. 10-14 представлены иллюстративные результаты анализа рецепторной специфичности с использованием химерных полипептидов FGF19 согласно настоящему изобретению;

На ФИГ. 15 представлены иллюстративные результаты применения химерного полипептида FGF19 согласно настоящему изобретению в отношении уровней фосфорилированного белка Stat5.

На ФИГ. 16 представлены иллюстративные результаты применения химерного полипептида FGF19 согласно настоящему изобретению в отношении суммарной метаболической активности клеток.

На фигуре 17 показано, что FGFR4 необходим для регуляции желчных кислот ("BA", bile acid), но не для повышения толерантности к глюкозе под действием FGF19. На фигуре 17A приведен уровень глюкозы в тесте на толерантность к глюкозе у мышей дикого типа ("WT"), обработанных FGF19 или PBS, и у FGFR4- нокаутных ("KO") мышей. *p<0,05. **p<0,01. Значение p для площади под кривой (AUC) составляло p<0,02 (WT) и p<0,005 (KO). N=6~8. На фигуре 17B представлены различные параметры метаболизма (вес тела (г), отношение веса печени к весу тела (%), инсулин сыворотки (нг/мл), бета-гидроксибутират ("BHB") в сыворотке (мг/л), сывороточный лактат (мг/дл) и сывороточный триглицерид (мг/дл)) у мышей дикого типа, обработанных FGF19 или PBS, и у FGFR4- нокаутных ("KO") мышей, при их умерщвлении на день 7. После 3-часового голодания мышей умерщвляли, и получали сыворотку. N=6~8. На фигуре 17C представлен анализ сывороточного состава BA у мышей WT, обработанных FGF19 или PBS, и у FGFR4- нокаутных мышей. Показаны только основные виды BA. CA: холевая кислота, DCA: дезоксихолевая кислота, MCA: мурихолевая кислота, T-: конъюгированные с таурином. На фигуре 17D показана относительная экспрессия различных печеночных генов (Egr-1, c-Fos, альфа-фетопротеина, Cyp7a1, Cyp8b, Cyp27a1, Cyp7b и GK) у мышей WT, обработанных FGF19 или PBS, и у мышей FGFR4-KO, определяемая методом количественной ПЦР (qPCR) в режиме реального времени. N=6~8. Значениями p для фигур 17B-17D являются: <0,05, **<0,005 (сравнение PBS и FGF19), #<0,05, ##<0,005 (сравнение WT и FGFR4-KO).

На фигуре 18 представлена идентификация вариантов FGF19 с пониженной активностью FGFR4. На фигуре 18A представлена относительная активность люциферазы светлячка, нормированная к люциферазной активности renilla (показана как относительная единица люциферазной активности ("RLU")), из GAL-Elk1-анализа люциферазы, с помощью крысиных клеток L6, трансфицированных KLB [полипептид Klotho-бета] и FGFR1c или FGFR4 и инкубируемых со средой, содержащей повышенные концентрации FGF19(O) или FGF21(▲). На фигуре 18B приведено графическое представление (в масштабе) FGF19 (вверху), FGF21 (внизу) и различных химерных белков с аминокислотным составом слева. На основе результатов GAL-Elk-1-анализов, приведенных на Фиг. 18C, каждую химеру классифицировали в класс (I), (II) или (III), как показано справа. Химеры, которые при использовании кондиционированной среды не проявляли активность FGFR1c, эквивалентную FGF21 или FGF19, здесь не показаны. На фигуре 18C показана активация FGFR1c или FGFR4 в GAL-Elk-1-анализе, при использовании крысиных клеток L6, ко-трансфицированных KLB и/или FGFR (FGFR1c или FGFR4) и инкубируемых в присутствии кондиционированной среды из-под клеток 293, транзитно трансфицированных различными конструкциями FGF (см. фигуру 18B с приведенными на ней аминокислотными составами используемых конструкций FGF). Результаты представлены в виде кратности индукции по отношению к контрольной среде, кондиционированной ложно-трансфицированными клетками. На фигуре 18D представлена кратность индукции для случая активации FGFR в GAL-Elk-1-анализе люциферазы с использованием крысиных клеток L6, трансфицированных FGFR1c, FGFR4 + KLB, или FGFR4 и инкубируемых со средой, содержащей повышенные концентрации очищенного FGF19(O) или FGF19v(▼) (конструкция #4 на фигурах 18B и 18C). На фигуре 18E представлены результаты твердофазного анализа связывания FGF19 и FGF19v с FGFR4, слитым с фрагментом Fc. Схематическая диаграмма указанных экспериментов приведена справа. На фигуре 18F показано, что анти-FGF19-антитело, используемое на Фиг. 18E, распознавало FGF19 и FGF19v с неразличимой аффинностью (контрольный эксперимент ELISA). Схематическая диаграмма указанных экспериментов приведена справа.

На фигуре 19 представлены RLU в GAL-Elk-1-анализе люциферазы в крысиных клетках L6, трансфицированных KLB и FGFR2c или FGFR3c и инкубируемых в присутствии кондиционированной среды, содержащей повышенные концентрации FGF19(O) или FGF21(▲). Клетки L6 были ко-трансфицированы экспрессирующими векторами для KLB и указанного FGFR вместе с GAL-Elk-1, SV40-люциферазой Renilla и Gal-чувствительным люциферазным репортером. Трансфицированные клетки инкубировали со средой, содержащей повышенные концентрации FGF19 или FGF21, в течение 6 часов перед анализом люциферазной активности. Активацию транскрипции устанавливали по относительной люциферазной активности, нормированной к люциферазной активности Renilla, и выражали в относительных единицах люциферазной активности (RLU). На данной фигуре показано, что FGF21 и FGF19 активируют FGFR2c и FGFR3c в присутствии KLB.

На фигуре 20 представлена активация FGFR1c или FGFR4 в GAL-Elk-1-анализе с помощью клеток L6, ко-трансфицированных KLB и/или FGFR (FGFR1c или FGFR4) и инкубируемых в присутствии кондиционированной среды из-под клеток 293, транзитно трансфицированных различными конструкциями FGF, показанными на оси X (см. фигуру 18B с приведенными на ней аминокислотными составами используемых конструкций FGF). Результаты представлены в виде кратности индукции по отношению к контрольной среде, кондиционированной ложно-трансфицированными клетками. Числовые значения, указанные на оси X, соответствуют нумерации конструкций, представленных на Фиг. 18B.

На фигуре 21 показаны эффекты FGF19v у кормленых ужином мышей. На фигуре 21A показана относительная экспрессия разных генов (c-Fos, Egr-1, GK, БТШ и Cyp7a1) у мышей FVB, которым (через хвостовую вену) инъецировали FGF21, FGF19 или FGF19v в количестве 1 мг/кг, или PBS в контроле; значения p: *<0,05, **<0,01, ***<0,001 (по сравнению с PBS). Через 4 часа после инъекции из каждой мыши выделяли печеночную мРНК и подвергали анализу qPCR в режиме реального времени в отношении указанных генов. На фигуре 21B показана относительная экспрессия разных генов (c-Fos, Egr-1, GK, SHP (БТШ) и Cyp7a1) у мышей WT или FGFR4 KO (KO) (N=5-7), которым в/б инъецировали FGF21 или FGF19 в количестве 1 мг/кг, или PBS в контроле. Голодавшим течение ночи мышам в/б инъецировали белок FGF, или PBS в контроле. Через 4 часа после инъекции из каждой мыши выделяли печеночную мРНК и подвергали анализу qPCR в режиме реального времени в отношении указанных генов; значения p: *<0,05, **<0,01, ***<0,001. На фигуре 21C представлена пролиферация клеток HepG2, обработанных FGF21, FGF19 или FGF19v при различных концентрациях (10 нг/мл, 60 нг/мл и 200 нг/мл), измеряемых по интенсивности флуоресценции (× 105) в анализе «безъякорного» клеточного роста, то есть не зависящего от прикрепления клеток. Пролиферацию клеток HepG2 в мягком агаре оценивали на основе превращения резазурина (Alamer Blue), нефлуоресцентного индикаторного красителя, в резоруфин. На фигуре 21D показана кратность изменения BrdU+ гепатоцитов у мышей FVB, которым инфузировали FGF19 или FGF19v. N=6, *p<0,01, ***p<5E-5 (по сравнению с PBS), ##p<0,0002 (по сравнению с FGF19). Мышам FVB имплантировали осмотический насос для реализации непрерывной инфузии указанного белка FGF в количестве 1 нг/час (~0,8 мг/кг/день) (день 0). Мыши получали также ежедневную (q.d.) инъекцию белка FGF 1 мг/кг/день и 30 мг/кг/день BrdU (два раза в день, b.i.d.), начиная со дня 1. На день 7 печени вырезали и осуществляли их анти-BrdU-окрашивание. Результаты представлены в виде кратности индукции против ложно-обработанных животных по числу BrdU-положительных гепатоцитов на анализируемой площади. На фигуре 21E приведены репрезентативные изображения при исследованиях, представленных на фигуре 21C. На фигуре 21F показана относительная экспрессия разных генов ((c-Fos, Egr-1, альфа-фетопротеина, GK, Cyp7a1 и Cyp8b) у мышей, используемых на фигурах 21D и 21E. N=6. *p<0,05, **p<0,005, ***p<0,001 (по сравнению с PBS), #p<0,05, ##p<0,005 (по сравнению с FGF19).

На фигуре 22 показано, что FGF19v и FGF21 оказывают сходные метаболические эффекты и облегчают гипергликемию у мышей ob/ob. 11-недельным мышам ob/ob подкожно имплантировали осмотический насос для реализации непрерывной инфузии 1 нг/час указанного белка FGF (0,4 мг/кг/день) или PBS в контроле (N=7). На фигуре 22A приведены вес тела (г) и глюкоза крови (мг/дл) у мышей ob/ob, которым через осмотический насос инфузировали 1 нг/час FGF21 или FGF19v (0,4 мг/кг/день) или PBS в контроле (N=7). Осмотический насос имплантировали на день 0. На фигуре 22B приведены уровни глюкозы в крови (мг/дл) у мышей ob/ob, которым инфузировали FGF21, FGF19v или PBS в контроле, в случае беспорядочного питания и после того как в течение ночи мыши голодали. На фигуре 22C приведены уровни неэстерифицированных жирных кислот ("NEFA") в сыворотке у мышей ob/ob, которым инфузировали FGF21, FGF19v или PBS в контроле, на день 8. На фигуре 22D представлены результаты теста толерантности к глюкозе, проводимого у мышей ob/ob, которым инфузировали FGF21, FGF19v или PBS в контроле, на день 6. Мыши в течение ночи голодали, и им вводили в/б инъекцию глюкозы в количестве 1 г/кг во время t=0. На фигуре 22E представлено отношение веса органа к весу тела (%) у мышей ob/ob, которым инфузировали FGF21, FGF19v или PBS в контроле, на день 8. На фигуре 22F представлена относительная экспрессия различных генов (альфа-фетопротеина, IGFBP2, SCD-1, Cyp7A, Cyp8B, UCP-1, MCAD и SREBP-1c) из разных тканей (печень, бурая жировая ткань ("BAT") и белая жировая ткань ("WAT")) у мышей ob/ob, которым инфузировали FGF21, FGF19v или PBS в контроле, определяемая методом qPCR. Значения p: *<0,05, **<0,005, ***<0,0005 (по сравнению с PBS в контроле).

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к новым химерным полипептидам FGF19. В некоторых воплощениях настоящего изобретения полипептидная последовательность химерного FGF19 включает часть последовательности полипептида FGF19 и часть последовательности полипептида FGF21. В определенных предпочтительных воплощениях полипептид FGF19 является видоизмененным человеческим полипептидом FGF19 (hFGF19), последовательность которого определяется последовательностью SEQ ID NO: 1. В определенных предпочтительных воплощениях полипептид FGF21 является видоизмененным человеческим полипептидом FGF21 (hFGF21), последовательность которого определяется последовательностью SEQ ID NO: 2. В другом аспекте настоящее изобретение относится к новым химерным полипептидам FGF19, которые дополнительно слиты с иммуноглобулиновым доменом, таким как домен Fc.

В другом аспекте настоящее изобретение относится к новым химерным полипептидам FGF19, которые имеют измененную рецепторную специфичность. В определенных предпочтительных воплощениях химерный полипептид FGF19 согласно настоящему изобретению не активирует существенным образом FGFR4 ни Klotho-бета-зависимым, ни Klotho-бета-независимым образом. В определенных воплощениях химерный полипептид hFGF19 активирует FGFR1c Klotho-бета-зависимым образом. В определенных воплощениях химерный полипептид FGF19 согласно настоящему изобретению активирует, по меньшей мере, один из рецепторов FGFR1c, FGFR2c или FGFR3c Klotho-бета-зависимым образом.

В некоторых воплощениях химерный полипептид FGF19 согласно настоящему изобретению может обладать одним или несколькими из следующих предпочтительных признаков: указанный полипептид, при его введении, по существу не индуцирует пролиферацию гепатоцитов у индивида, указанный полипептид, при его введении, по существу не индуцирует резистентность к гормону роста у индивида, указанный полипептид не содержит остатка, который является полиморфным в популяции, указанный полипептид имеет физиологическое время полужизни in vivo, которое является, по меньшей мере, или приблизительно таким же, что и у нативного полипептида FGF19 (такого как нативный полипептид hFGF19), указанный полипептид имеет физиологическое время полужизни in vivo, которое является, по меньшей мере, или приблизительно таким же, что и у нативного полипептида FGF21 (такого как нативный полипептид hFGF21), указанный полипептид, при его введении, по существу не способствует понижению безжировой массы у индивида, указанный полипептид, при его введении, по существу не способствует уменьшению плотности костей у индивида, и указанный полипептид, при его введении, по существу не понижает функциональную активность сердца у индивида.

Дополнительные предпочтительные признаки химерного полипептида FGF19 согласно настоящему изобретению могут включать в себя одно или более из следующих свойств: указанный полипептид, в случае необходимости такого лечения, понижает уровень глюкозы в крови индивида; указанный полипептид активирует, по меньшей мере, один из рецепторов, FGFR1c, FGFR2c или FGFR3c, Klotho-бета-зависимым образом; указанный полипептид не активирует существенным образом FGFR4 Klotho-бета-зависимым образом; указанный полипептид, при введении его индивиду, не активирует существенным образом FGFR4 Klotho-бета-независимым образом; указанный полипептид не понижает или по существу не понижает количество фосфорилированного полипептида STAT5; при введении указанного полипептида индивиду, количество фосфорилированного полипептида STAT5 у индивида понижается, но при этом указанное количество фосфорилированного полипептида STAT5 превышает количество фосфорилированного полипептида STAT5 при введении нативного hFGF21 указанному индивиду; при введении указанного полипептида вводят индивиду, указанное понижение количества фосфорилированного полипептида STAT5 у индивида является меньшим, чем понижение количества фосфорилированного полипептида STAT5 при введении нативного hFGF21 указанному индивиду; указанный полипептид, при введении его индивиду, не понижает или по существу не понижает количество циркулирующего полипептида IGF-1; при введении указанного полипептида индивиду, количество IGF-1 у индивида понижается, но при этом количество циркулирующего полипептида IGF-1 превышает количество циркулирующего IGF-1 при введении нативного hFGF21 указанному индивиду; при введении указанного полипептида индивиду, указанное понижение количества циркулирующего IGF-1 у индивида является меньшим, чем понижение количества циркулирующего IGF-1 при введении нативного hFGF21 указанному индивиду; и указанный полипептид, при введении его индивиду, не понижает или по существу не понижает количество циркулирующего полипептида IGF-1 у индивида, имеющего нормальное количество или выше нормального количества GH.

В определенных воплощениях химерный полипептид FGF19 согласно изобретению обладает преимущественными свойствами активации, по меньшей мере, одного из рецепторов FGFR1c, FGFR2c или FGFR3c Klotho-бета-зависимым образом, и не активирует существенным образом FGFR4 ни Klotho-бета-зависимым, ни Klotho-бета-независимым образом. В определенных воплощениях химерный полипептид FGF19 согласно изобретению обладает преимущественными свойствами в отношении активации, по меньшей мере, одного из рецепторов FGFR1c, FGFR2c или FGFR3c Klotho-бета-зависимым образом, не активирует существенным образом FGFR4 ни Klotho-бета-зависимым, ни Klotho-бета-независимым образом, и понижает количество фосфорилированного полипептида STAT5 у индивида, но при этом указанное количество фосфорилированного полипептида STAT5 превышает количество фосфорилированного полипептида STAT5 при введении указанному индивиду нативного hFGF21. В определенных воплощениях химерный полипептид FGF19 согласно изобретению обладает преимущественными свойствами в отношении активации, по мен