Управляющее устройство для вращающейся машины переменного тока

Иллюстрации

Показать все

Изобретение относится к области электротехники и может быть испольтзовано для управления вращающейся электрической машиной, такой как индукционная (асинхронная или синхронная) машина. Техническим результатом является обеспечение плавного возбуждения в диапазоне от области низкой скорости до области высокой скорости. Управляющее устройство для вращающейся машины переменного тока содержит блок (3) детектирования вектора тока, блок (9) детектирования вектора магнитного потока, блок (8) адаптивного наблюдения, блок (4) управления, блок (5) приложения напряжения, блок (6) вычисления вектора отклонения для вывода вектора отклонения тока и вектора отклонения магнитного потока и блок (7) усиления отклонения. Блок (8) адаптивного наблюдения вычисляет оцененный вектор тока, оцененный вектор магнитного потока и оцененное положение, основываясь на векторе команды управления напряжением и усиленном векторе отклонения. Блок (4) управления накладывает вектор высокочастотного напряжения. Блок (9) детектирования вектора магнитного потока вычисляет детектированный вектор магнитного потока, основываясь на величине вектора высокочастотного тока, имеющего ту же самую частотную компоненту, что и вектор высокочастотного напряжения, который включен в детектированный вектор тока, и на величине магнитного потока ротора. 5 з.п. ф-лы, 25 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

[0001] Изобретение относится к управляющему устройству для вращающейся машины переменного тока, которое имеет возможность управления вращающейся машиной переменного тока, такой как индукционная (асинхронная) машина или синхронная машина, не используя датчик положения для получения информации о положении ротора.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

[0002] Способ управления без датчика, выполняемый, основываясь на наведенном напряжении с использованием блока адаптивного наблюдения и т.п., известен в качестве способа управления вращающейся машиной переменного тока, такой как синхронная машина или асинхронная машина. У способа управления без датчика, основанного на наведенном напряжении, есть особенность в том, что датчик положения или датчик скорости могут не использоваться. Однако в области низкой скорости вращения наведенное напряжение является небольшим, и поэтому трудно детектировать или оценивать наведенное напряжение. Таким образом, существует проблема в том, что характеристики возбуждения ухудшаются в области низкой скорости вращения.

С другой стороны, в области низкой скорости, с помощью выполнения управления, основываясь на результате детектирования положения, используя характерное свойство индуктивности, когда накладывается напряжение или ток, имеющие частоту, отличающуюся от основной частоты вращающейся машины переменного тока, становится возможным выполнение возбуждения в области низкой скорости даже с помощью управления положением без датчика. Однако в случае выполнения возбуждения в области высокой скорости вращения при использовании характерного свойства индуктивности, существует недостаток в эффективности работы, показателе использования напряжения и максимальном токе из-за возникновения напряжения или тока, других, чем основная волна.

Рассматривая вышеизложенное, если вращающаяся машина переменного тока возбуждается, основываясь на результате детектирования положения, используя характерное свойство индуктивности, и вращающаяся машина переменного тока возбуждается с помощью управления без датчика, используя наведенное напряжение в области высокой скорости вращения, то становится возможным обеспечивать устройство, которое может возбуждаться во всей области скорости с низкими затратами. В этом случае важно выполнять плавное возбуждение в диапазоне от области низкой скорости вращения до области высокой скорости вращения.

[0003] Для предоставления возможности плавного возбуждения вращающейся машины переменного тока в диапазоне от области низкой скорости вращения до области высокой скорости вращения, например, раскрыто следующее изобретение.

Для соответствующей генерации фазы во вращающейся системе координат dq, необходимой в основном блоке векторного контроллера, без использования датчика положения, обеспечиваются генератор фазы низкочастотной области для генерации фазы для низкочастотной области и генератор фазы высокочастотной области для генерации фазы для высокочастотной области, и дополнительно обеспечивается синтезатор фазы для синтезирования фаз этих двух видов с помощью усреднения их взвешенным способом в отношении частоты, посредством чего синтезированная окончательная фаза используется в качестве фазы во вращающейся системе координат dq (например, см. патентный документ 1).

[0004] Кроме того, раскрыто следующее изобретение. В способе управления без датчика для выполнения плавного регулирования по диапазону от нулевой скорости до области высокой скорости вращения электродвигателя переменного тока, управление выполняется при использовании оцененного значения ωest скорости и оцененного значения θ0 положения, оцененных с помощью механической модели математического выражения с помощью устройства оценки положения и скорости, так, чтобы ошибка Δθ положения, полученная с помощью вычисления векторного произведения первого вектора магнитного потока, рассчитанного с помощью использования угла ротора, и второго вектора магнитного потока, рассчитанного без использования угла ротора, стала нулем (например, см. патентный документ 2).

СПИСОК БИБЛИОГРАФИЧЕСКИХ ССЫЛОК

ПАТЕНТНЫЕ ДОКУМЕНТЫ

[0005] Патентный документ 1: выложенная патентная публикация Японии № 10-94298 (абзац [0032], фиг. 1)

Патентный документ 2: выложенная патентная публикация Японии № 2006-158046 (абзац [0012] и [0013], фиг. 2 и 3)

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

[0006] В изобретении, раскрытом в патентном документе 1, так как два вида фаз синтезируются с помощью усреднения способом взвешивания в отношении частоты, необходимо одновременно получать фазу для области низкой скорости и фазу для области высокой скорости, и поэтому вычислительная обработка одновременно выполняется и в генераторе фазы низкочастотной области, и в генераторе фазы высокочастотной области, что приводит к проблеме большого увеличения количества вычислительной обработки. Кроме того, в области низкой скорости, в которой частота является низкой, необходимо выполнять возбуждение, основываясь на фазе генератора фазы низкочастотной области из двух видов фаз, и поэтому также существует проблема, что если отклик оценки генератора фазы низкочастотной области запаздывает, то эффективность отклика, такого как отклик на управление скоростью или отклик на управление крутящим моментом, не может сохраняться на высоком уровне в области низкой скорости.

[0007] Кроме того, в изобретении, раскрытом в патентном документе 2, угол ротора необходим для получения первого вектора магнитного потока, и необходимо предварительно получать угол ротора с помощью обработки детектирования или вычисления, что приводит к проблеме увеличения количества вычислений. Кроме того, если отклик детектирования или оценки угла ротора, необходимого для получения первого вектора магнитного потока, запаздывает, то отклик ошибки Δθ положения, полученной с помощью вычисления векторного произведения первого вектора магнитного потока и второго вектора магнитного потока, также запаздывает, и отклик оцененного значения ωest скорости θ и оцененного значения θest положения, вычисленных с помощью устройства оценки положения и скорости, также запаздывает. В результате возникает проблема, что эффективность отклика, такого как отклик управления скоростью или отклик управления крутящим моментом, не может сохраняться на высоком уровне.

[0008] Настоящее изобретение выполнено для решения вышеупомянутых проблем, и задачей настоящего изобретения является обеспечение управляющего устройства для вращающейся машины переменного тока, которое может плавно возбуждать вращающуюся машину переменного тока, не используя датчик положения, по всей области скорости и может реализовывать снижение количества вычислений и улучшение эффективности отклика.

[0009] Управляющее устройство для вращающейся машины переменного тока согласно настоящему изобретению включает в себя: блок детектирования вектора тока для детектирования детектированного вектора тока из тока вращающейся машины переменного тока; блок детектирования вектора магнитного потока для детектирования вектора магнитного потока ротора из детектированного вектора тока вращающейся машины переменного тока и вывода вектора магнитного потока ротора в качестве детектированного вектора магнитного потока; блок адаптивного наблюдения для вывода оцененного вектора тока, оцененного вектора магнитного потока и оцененного положения вращающейся машины переменного тока; блок управления для вывода вектора команды управления напряжением так, чтобы детектированный вектор тока совпадал с вектором команды управления током; блок приложения напряжения для приложения напряжения к вращающейся машине переменного тока, основываясь на векторе команды управления напряжением; блок вычисления вектора отклонения для вывода вектора отклонения тока, который является отклонением между оцененным вектором тока и детектированным вектором тока, и вектора отклонения магнитного потока, который является отклонением между оцененным вектором магнитного потока и детектированным вектором магнитного потока; и блок усиления отклонения для усиления вектора отклонения тока и вектора отклонения магнитного потока и вывода усиленных векторов в качестве усиленного вектора отклонения. Блок адаптивного наблюдения вычисляет и выводит оцененный вектор тока, оцененный вектор магнитного потока и оцененное положение, основываясь на векторе команды управления напряжением и усиленном векторе отклонения. Дополнительно, блок управления выводит вектор команды управления напряжением, на который накладывается вектор высокочастотного напряжения, имеющий частотную компоненту, отличающуюся от частоты для возбуждения вращающейся машины переменного тока, и блок детектирования вектора магнитного потока вычисляет и выводит детектированный вектор магнитного потока, основываясь на величине вектора высокочастотного тока, имеющего ту же самую частотную компоненту, как вектор высокочастотного напряжения, которую включен в детектированный вектор тока, и на величине магнитного потока ротора.

[0010] Благодаря вышеописанной конфигурации управляющее устройство для вращающейся машины переменного тока согласно настоящему изобретению делает возможным обеспечение управляющего устройства для вращающейся машины переменного тока, которое может плавно возбуждать вращающуюся машину переменного тока, не используя датчик положения, по всей области скорости и может реализовывать снижение количества вычислений и улучшение эффективности отклика.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0011] [Фиг. 1] Фиг. 1 является схемой конфигурации системы в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 1 настоящего изобретения.

[Фиг. 2] Фиг. 2 является схемой конфигурации блока управления в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 1 настоящего изобретения.

[Фиг. 3] Фиг. 3 является схемой конфигурации блока усиления отклонения в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 1 настоящего изобретения.

[Фиг. 4] Фиг. 4 является схемой конфигурации блока адаптивного наблюдения в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 1 настоящего изобретения.

[Фиг. 5] Фиг. 5 является схемой внутренней конфигурации блока адаптивного наблюдения в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 1 настоящего изобретения.

[Фиг. 6] Фиг. 6 является схемой конфигурации блока детектирования вектора магнитного потока в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 1 настоящего изобретения.

[Фиг. 7] Фиг. 7 является схемой внутренней конфигурации блока детектирования вектора магнитного потока в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 1 настоящего изобретения.

[Фиг. 8] Фиг. 8 является схемой внутренней конфигурации блока детектирования вектора магнитного потока в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 1 настоящего изобретения.

[Фиг. 9] Фиг. 9 является схемой внутренней конфигурации блока детектирования вектора магнитного потока в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 1 настоящего изобретения.

[Фиг. 10] Фиг. 10 является схемой для объяснения вектора магнитного потока ротора в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 1 настоящего изобретения.

[Фиг. 11] Фиг. 11 является схемой конфигурации модификации системы в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 1 настоящего изобретения.

[Фиг. 12] Фиг. 12 является схемой конфигурации блока усиления отклонения данной модификации в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 1 настоящего изобретения.

[Фиг. 13] Фиг. 13 является схемой конфигурации блока детектирования вектора магнитного потока в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 2 настоящего изобретения.

[Фиг. 14] Фиг. 14 является схемой внутренней конфигурации блока детектирования вектора магнитного потока в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 2 настоящего изобретения.

[Фиг. 15] Фиг. 15 является схемой внутренней конфигурации блока детектирования вектора магнитного потока в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 2 настоящего изобретения.

[Фиг. 16] Фиг. 16 является схемой конфигурации системы в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 3 настоящего изобретения.

[Фиг. 17] Фиг. 17 является схемой конфигурации блока управления в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 3 настоящего изобретения.

[Фиг. 18] Фиг. 18 является схемой внутренней конфигурации блока управления в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 3 настоящего изобретения.

[Фиг. 19] Фиг. 19 является схемой конфигурации блока адаптивного наблюдения в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 3 настоящего изобретения.

[Фиг. 20] Фиг. 20 является схемой внутренней конфигурации блока адаптивного наблюдения в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 3 настоящего изобретения.

[Фиг. 21] Фиг. 21 является схемой конфигурации блока детектирования вектора магнитного потока в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 3 настоящего изобретения.

[Фиг. 22] Фиг. 22 является схемой внутренней конфигурации блока детектирования вектора магнитного потока в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 3 настоящего изобретения.

[Фиг. 23] Фиг. 23 является схемой внутренней конфигурации блока детектирования вектора магнитного потока в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 3 настоящего изобретения.

[Фиг. 24] Фиг. 24 является схемой внутренней конфигурации блока детектирования вектора магнитного потока в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 3 настоящего изобретения.

[Фиг. 25] Фиг. 25 является схемой для объяснения вектора магнитного потока ротора в соответствии с управляющим устройством для вращающейся машины переменного тока варианта осуществления 3 настоящего изобретения.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

[0012] Вариант осуществления 1

Вариант осуществления 1 относится к управляющему устройству для вращающейся машины переменного тока, которое вычисляет вектор отклонения магнитного потока, который является отклонением между детектированным вектором магнитного потока и оцененным вектором магнитного потока, и вектор отклонения тока, который является отклонением между детектированным вектором тока и оцененным вектором тока, и возбуждает вращающуюся машину переменного тока при использовании оцененной скорости и оцененного положения, выведенных из блока адаптивного наблюдения, основываясь на усиленном векторе отклонения, полученном с помощью усиления рассчитанных векторов отклонения. В данном случае при расчете детектированного вектора магнитного потока, выведенного из блока детектирования вектора магнитного потока, вектор высокочастотного тока, имеющий ту же самую частотную компоненту, как вектор высокочастотного напряжения, извлеченный из детектированного вектора тока, и затем, при использовании величины компоненты, ортогональной к вектору высокочастотного напряжения, вычисляется разность Δθ между d-осью, на которой применяется вектор высокочастотного напряжения, и dm-осью, которая параллельна вектору магнитного потока ротора, и используются только Δθ и величина ϕf вектора магнитного потока ротора.

[0013] В дальнейшем вариант осуществления 1 настоящего изобретения будет описан, основываясь на фиг. 1, показывающей схему конфигурации системы в соответствии с управляющим устройством 1 для вращающейся машины переменного тока, фиг. 2, показывающей схему конфигурации блока управления, фиг. 3, показывающей схему конфигурации блока усиления отклонения, фиг. 4, показывающей схему конфигурации блока адаптивного наблюдения, фиг. 5, показывающей схему внутренней конфигурации блока адаптивного наблюдения, фиг. 6, показывающей схему конфигурации блока детектирования вектора магнитного потока, фиг. 7-9, показывающих схемы внутренней конфигурации блока детектирования вектора магнитного потока, фиг. 10, показывающей схему для объяснения вектора магнитного потока ротора, фиг. 11, показывающей схему конфигурации модификации системы, и фиг. 12, показывающей схему конфигурации блока усиления отклонения данной модификации.

[0014] Сначала будет описана конфигурация всей системы, включающей в себя управляющее устройство 1 для вращающейся машины переменного тока согласно варианту осуществления 1 настоящего изобретения.

На фиг. 1 управляющее устройство 1 для вращающейся машины переменного тока состоит из блока 3 детектирования вектора тока, блока 4 управления, блока 5 приложения напряжения, блока 6 вычисления вектора отклонения, блока 7 усиления отклонения, блока 8 адаптивного наблюдения и блока 9 детектирования вектора магнитного потока, для управления вращающейся машиной 2 переменного тока.

Замечено, что на фиг. 1 две диагональных линии (//), три диагональных линии (///) и четыре диагональных линии (////) указывают 2-мерные, 3-мерные и 4-мерные векторы, соответственно.

[0015] Подробности конфигурации, назначения и работы управляющего устройства 1 для вращающейся машины переменного тока будут описаны позже. Сначала будет описано краткое изложение назначения каждой составной части управляющего устройства 1 для вращающейся машины переменного тока.

Блок 3 детектирования вектора тока детектирует детектированный вектор тока из тока вращающейся машины 2 переменного тока. Блок 9 детектирования вектора магнитного потока детектирует вектор магнитного потока ротора из детектированного вектора тока вращающейся машины 2 переменного тока, выведенного из блока 3 детектирования вектора тока, и выводит вектор магнитного потока ротора в качестве детектированного вектора магнитного потока. Блок 8 адаптивного наблюдения выводит оцененный вектор тока, оцененный вектор магнитного потока и оцененное положение вращающейся машины 2 переменного тока из детектированного вектора магнитного потока. Блок 4 управления выводит вектор команды управления напряжением так, чтобы детектированный вектор тока совпадал с вектором команды управления током, и блок 5 приложения напряжения подает напряжение, основываясь на векторе команды управления напряжением, к вращающейся машине переменного тока. Блок 6 вычисления вектора отклонения выводит вектор отклонения тока, который является отклонением между оцененным вектором тока и детектированным вектором тока, и вектор отклонения магнитного потока, который является отклонением между оцененным вектором магнитного потока и детектированным вектором магнитного потока. Блок 7 усиления отклонения усиливает вектор отклонения тока и вектор отклонения магнитного потока и выводит их в качестве усиленного вектора отклонения.

[0016] На фиг. 1 в настоящем варианте осуществления 1 в качестве примера будет описан случай, когда вращающаяся машина 2 переменного тока является синхронной машиной с постоянными магнитами с характерными признаками, имеющей трехфазные обмотки. Однако даже в случае использования вращающейся машины другого типа управляющее устройство для вращающейся машины переменного тока может конфигурироваться по тому же самому правилу.

[0017] В дальнейшем будут описаны конфигурация, назначение и работа каждой составной части управляющего устройства 1 для вращающейся машины переменного тока.

Блок 3 детектирования вектора тока детектирует трехфазный ток, текущий во вращающейся машине 2 переменного тока, и выводит в качестве детектированного вектора тока ток id d-оси и ток iq q-оси, которые, соответственно, получены с помощью блока 31 преобразования координат, выполняя, с помощью использования оцененного положения θ0, описанного позже, преобразование координат трехфазного тока в направление d-оси и направление q-оси d-q осей, которые известны как ортогональная система координат, вращающаяся в синхронизации с ротором вращающейся машины 2 переменного тока.

[0018] Далее, основываясь на фиг. 2, будут описаны конфигурация, назначение и работа блока 4 управления.

Блок 4 управления состоит из сумматора-вычитателя 41, контроллера 42 тока, генератора 43 вектора высокочастотного напряжения, сумматора-вычитателя 44 и блока 45 преобразования координат.

В блоке 4 управления сумматор-вычитатель 41 вычитает детектированный вектор (ids, iqs) тока из вектора (id_ref, iq_ref) команды управления током, заданного извне.

Контроллер 42 тока выполняет пропорциональное интегральное управление так, чтобы отклонение между вектором команды управления током и детектированным вектором тока, выведенное из сумматора-вычитателя 41, стало нулем, и выводит вектор (vdf, vqf) напряжения основной волны. Генератор 43 вектора высокочастотного напряжения выводит вектор (vdh, vqh) высокочастотного напряжения на осях d-q.

Замечено, что в настоящем варианте осуществления 1 вектор высокочастотного напряжения устанавливается как vqh = 0, и таким образом является переменным напряжением, которое будет применяться только в направлении d-оси.

Сумматор-вычитатель 44 суммирует вектор (vdf, vqf) напряжения основной волны и вектор (vdh, vqh) высокочастотного напряжения, и таким образом выводит вектор (vd, vq) команды управления напряжением на осях d-q. Затем, при использовании оцененного положения θ0, описанного позже, блок 45 преобразования координат преобразовывает вектор (vd, vq) команды управления напряжением на осях d-q, выведенный из сумматора-вычитателя 44, в вектор (vu, vv, vw) команды управления напряжением в неподвижной системе координат на основании осей d-q, и выводит вектор (vu, vv, vw) команды управления напряжением.

[0019] Блок 5 приложения напряжения подает трехфазное напряжение, основываясь на векторе (vu, vv, vw) команды управления напряжением, выведенном из блока 4 управления, к вращающейся машине 2 переменного тока.

[0020] Далее будут описаны конфигурация, назначение и работа блока 6 вычисления вектора отклонения.

Блок 6 вычисления вектора отклонения состоит из сумматора-вычитателя 61 и сумматора-вычитателя 62.

В блоке 6 вычисления вектора отклонения сумматор-вычитатель 61 вычитает детектированный вектор (ids, iqs) тока, выведенный из блока 3 детектирования вектора тока, из оцененного вектора (ids0, iqs0) тока, выведенного из блока 8 адаптивного наблюдения, описанного позже, и таким образом выводит вектор (eids, eiqs) отклонения тока. Кроме того, сумматор-вычитатель 62 вычитает детектированный вектор (ϕdrD, ϕqrD) магнитного потока, выведенный из блока детектирования вектора магнитного потока, описанного позже, из оцененного вектора (ϕdr0, ϕqr0) магнитного потока, выведенного из блока 8 адаптивного наблюдения, описанного позже, и таким образом выводит вектор (eϕdr, eϕqr) отклонения магнитного потока.

[0021] Далее, основываясь на фиг. 3, будут описаны конфигурация, назначение и работа блока 7 усиления отклонения.

Блок 7 усиления отклонения состоит из блоков 71 и 72 вычисления матрицы коэффициентов усиления и сумматора-вычитателя 73.

Блок 71 вычисления матрицы коэффициентов усиления умножает (eids, eiqs)T (T означает транспонированную матрицу), которая является транспонированной матрицей вектора (eids, eiqs) отклонения тока, на матрицу He, и выводит результат. Блок 72 вычисления матрицы коэффициентов усиления умножает вектор (eϕdr, eϕqr)T отклонения магнитного потока на матрицу Hf, и выводит результат.

В данном случае матрицы He и Hf являются матрицами коэффициентов усиления, определенными с помощью выражения (1). В выражении (1) h11-h44 являются коэффициентами усиления, и значения h11-h44 могут свободно устанавливаться.

[0022] [Математическое выражение 1]

[0023] На фиг. 3 сумматор-вычитатель 73 суммирует вектор, выведенный из блока 71 вычисления матрицы коэффициентов усиления, и вектор, выведенный из блока 72 вычисления матрицы коэффициентов усиления, и таким образом выводит усиленный вектор (e1, e2, e3, e4)T отклонения.

Замечено, что когда скорость вращения вращающейся машины 2 переменного тока является высокой, блок 8 адаптивного наблюдения, описанный позже, может удовлетворительно оценивать оцененную скорость и оцененное положение, которые будут выводиться, не используя вектор отклонения магнитного потока, который является отклонением между детектированным вектором магнитного потока и оцененным вектором магнитного потока. Поэтому, в случае, когда абсолютное значение оцененной скорости является большим, значения h13-h44 устанавливаются в нуль в блоке 72 вычисления матрицы коэффициентов усиления так, чтобы выход блока 72 вычисления матрицы коэффициентов усиления в области высокой скорости вращения стал нулем. В результате с помощью прекращения вычислений в блоке 9 детектирования вектора магнитного потока, количество вычислений может сокращаться. Кроме того, также с помощью установки в нуль вектора (vdh, vqh) высокочастотного напряжения, выведенного из генератора 43 вектора высокочастотного напряжения в блоке 4 управления, предотвращается возникновение высокочастотного тока, который был бы вызван вектором (vdh, vqh) высокочастотного напряжения, посредством чего потери из-за высокочастотного тока могут исключаться.

[0024] Далее будут описаны конфигурация, назначение и работа блока 8 адаптивного наблюдения. Фиг. 4 - схема конфигурации блока 8 адаптивного наблюдения, и фиг. 5 - схема конфигурации блока 82 наблюдения состояния, который является основным составляющим элементом блока 8 адаптивного наблюдения.

На фиг. 4 блок 8 адаптивного наблюдения состоит из блока 81 преобразования координат, блока 82 наблюдения состояния и блока 83 интегрирования.

На фиг. 5 блок 82 наблюдения состояния состоит из блоков 821, 823, 825 и 826 вычисления матрицы коэффициентов усиления, сумматора-вычитателя 822, блока 824 интегрирования и блока 827 оценки скорости.

[0025] Далее будет описана работа всего блока 8 адаптивного наблюдения.

Применительно к вращающейся машине 2 переменного тока, сопротивление якоря установлено в R, индуктивность якоря в направлении d-оси установлена в Ld, индуктивность якоря в направлении q-оси установлена в Lq, оцененная скорость установлена в ωr0, угловая частота источника питания установлена в ω, и матрицы A, B, C1 и C2 определяются с помощью выражения (2).

Замечено, что в случае, когда вращающаяся машина 2 переменного тока является машиной без характерного признака, выполняется Ld=Lq.

[0026] [Математическое выражение 2]

[0027] Кроме того, компонента d-оси и компонента q-оси оцененного вектора отклика якоря на осях d-q, соответственно, определяются как ϕds0 и ϕqs0, и компонента d-оси и компонента q-оси вектора команды управления напряжением на осях d-q, соответственно, определяются как vds и vqs. В этом случае оцененный вектор (ϕds0, ϕqs0) отклика якоря и оцененный вектор (ϕdr0, ϕqr0) магнитного потока могут быть получены, как показано с помощью выражения (3).

[0028] [Математическое выражение 3]

[0029] Кроме того, когда оператор Лапласа (дифференциальный оператор) определен как s, kp определен как коэффициент пропорционального усиления, и ki определен как интегральный коэффициент усиления, оцененная скорость ωr0, которая является внутренним параметром матрицы A в выражении (2), задается с помощью выражения (4), используя вектор (eids, eiqs) отклонения тока и оцененный вектор (ϕdr0, ϕqr0) магнитного потока.

[0030] [Математическое выражение 4]

[0031] Оцененное положение θ0 может быть получено с помощью интегрирования оцененной скорости ωr0, как показано с помощью выражения (5).

[0032] [Математическое выражение 5]

[0033] Кроме того, оцененный вектор (ids0, iqs0) тока может рассчитываться с помощью выражения (6).

[0034] [Математическое выражение 6]

[0035] Точно так же оцененный вектор (ϕdr0, ϕqr0) магнитного потока может рассчитываться с помощью выражения (7).

[0036] [Математическое выражение 7]

[0037] Как описано выше, при использовании выражений (2) - (7), оцененное положение θ0, оцененный вектор (ids0, iqs0) тока и оцененный вектор (ϕdr0, ϕqr0) магнитного потока могут рассчитываться, основываясь на векторе (vds, vqs) команды управления напряжением, усиленном векторе (e1, e2, e3, e4)T отклонения и векторе (eids, eiqs) отклонения тока.

Приведенное выше является описанием работы всего блока 8 адаптивного наблюдения.

[0038] Далее будут описаны назначение и работа каждого основного составляющего элемента блока 8 адаптивного наблюдения.

На фиг. 4 блок 81 преобразования координат преобразовывает трехфазный вектор команды управления напряжением переменного тока, выведенный из блока 4 управления, в вектор (vds, vqs) команды управления напряжением на осях d-q, которые являются ортогональной вращающейся системой координат, и выводит вектор (vds, vqs) команды управления напряжением к блоку 82 наблюдения состояния. Блок 82 наблюдения состояния вычисляет и выводит оцененную скорость ωr0, оцененный вектор (ids0, iqs0) тока и оцененный вектор (ϕdr0, ϕqr0) магнитного потока, основываясь на усиленном векторе (e1, e2, e3, e4)T отклонения, выведенном из блока 7 усиления отклонения, и векторе (vds, vqs) команды управления напряжением, выведенном из блока 81 преобразования координат. Блок 83 интегрирования интегрирует оцененную скорость ωr0, выведенную из блока 82 наблюдения состояния, с помощью выражения (5), таким образом рассчитывая оцененное положение θ0.

[0039] На фиг. 5 блок 821 вычисления матрицы коэффициентов усиления умножает вектор (vds, vqs)T команды управления напряжением, выведенный из блока 81 преобразования координат, на матрицу B, и выводит результат. Сумматор-вычитатель 822 выводит вектор, полученный с помощью суммирования и вычитания между собой выхода блока 821 вычисления матрицы коэффициентов усиления, выхода блока 823 вычисления матрицы коэффициентов усиления, и усиленного вектора (e1, e2, e3, e4)T отклонения. Блок 824 интегрирования интегрирует каждый элемент вектора, выведенного из сумматора-вычитателя 822, и выводит вектор (ϕds0, ϕqs0, ϕdr0, ϕqr0)T. Приведенное выше соответствует правой стороне выражения (3). Замечено, что левая сторона выражения (3) соответствует входу блока 824 интегрирования.

Блок 825 вычисления матрицы коэффициентов усиления умножает вектор (ϕds0, ϕqs0, ϕdr0, ϕqr0)T на матрицу C1 и таким образом выводит оцененный вектор (ϕds0, ϕqs0)T тока. Это соответствует выражению (6).

В данном случае вектор (ϕds0, ϕqs0, ϕdr0, ϕqr0)T является оцененным вектором магнитного потока статора/ротора.

Блок 826 вычисления матрицы коэффициентов усиления умножает вектор (ϕds0, ϕqs0, ϕdr0, ϕqr0)T на матрицу C2, и таким образом выводит оцененный вектор (ϕdr0, ϕqr0)T магнитного потока. Это соответствует выражению (7).

Блок 827 оценки скорости вычисляет оцененную скорость ωr0 с помощью выражения (4), используя вектор (eids, eiqs) отклонения тока и оцененный вектор (ϕdr0, ϕqr0) магнитного потока.

Блок 823 вычисления матрицы коэффициентов усиления принимает оцененную скорость ωr0, выведенную из блока 827 оценки скорости, применяет матрицу к вектору (ϕds0, ϕqs0, ϕdr0, ϕqr0)T, выведенному из блока 824 интегрирования, и выводит результат к сумматору-вычитателю 822.

[0040] Приведенное выше является описанием назначения и работы всего блока 8 адаптивного наблюдения и каждого его основного составляющего элемента. Особенностью этого блока 8 адаптивного наблюдения является то, что усиленный вектор (e1, e2, e3, e4)T отклонения включает в себя e3 и e4, полученные с помощью усиления вектора (ϕdr, eϕqr) отклонения магнитного потока, посредством чего оцененная скорость ωr0 и оцененное положение θ0 могут удовлетворительно рассчитываться в области низкой скорости, включающей в себя нулевую скорость.

[0041] Так как на детектированный вектор магнитного потока, выведенный из блока 9 детектирования вектора магнитного потока, описанного позже, не оказывает влияния постоянная ошибка или ошибка напряжения в области от нулевой скорости до низкой скорости, блок 8 адаптивного наблюдения настоящего варианта осуществления может удовлетворительно оценивать скорость и положение даже в области от нулевой скорости до низкой скорости с помощью вычисления вектора отклонения магнитного потока, который является отклонением между детектированным вектором магнитного потока и оцененным вектором магнитного потока, и используя e3 и e4, полученные с помощью усиления вектора отклонения магнитного потока.

[0042] Далее будут описаны конфигурация, назначение и работа блока 9 детектирования вектора магнитного потока, основываясь на фиг. 6-10.

Сначала будет описана конфигурация блока 9 детектирования вектора магнитного потока.

На фиг. 6, показывающей схему конфигурации блока 9 детектирования вектора магнитного потока, блок 9 детектирования вектора магнитного потока состоит из фильтра 91, блока 92 извлечения ортогональной компоненты и блока 93 вычисления детектированного вектора магнитного потока.

Как показано на фиг. 7, фильтр 91 состоит из режекторного фильтра 911 и сумматора-вычитателя 912. Как показано на фиг. 8, блок 92 извлечения ортогональной компоненты состоит из блока 921 выбора ортогональной компоненты и блока 922 вычисления амплитуды. Как показано на фиг. 9, блок 92 извлечения ортогональной компоненты состоит из блока 931 вычисления разности, блока 932 вычисления косинуса, блока 933 вычисления синуса и множительных устройств 934 и 935.

[0043] Далее будут описаны назначение и работа блока 9 детектирования вектора магнитного потока. Сначала будет описана работа всего блока 9 детектирования вектора магнитного потока, и затем будут описаны назначение и работа каждого составляющего элемента.

[0044] Будет описано математическое выражение вектора высокочастотного тока, текущего во вращающейся машине 2 переменного тока, когда генератор 43 вектора высокочастотного напряжения на фиг. 2 выводит вектор (vdh, vqh) высокочастотного напряжения.

Как показано на фиг. 10, система координат, вращающаяся в синхронизации с ротором вращающейся машины 2 переменного тока, сформированная с помощью блока 4 управления, установлена в качестве ортогональных координатных осей d-q. То же самое направление, как вектор Φr магнитного потока ротора вращающейся машины 2 переменного тока, установлено в качестве dm-оси, и направление, ортогональное к нему, установлено в качестве qm-оси. Разность между d-осью ортогональной системы координат и dm-осью вектора магнитного потока ротора установлена как Δθ. Замечено, что d-ось является направлением оцененного положения θ0, выведенным из блока 8 адаптивного наблюдения. В установившемся состоянии работа выполняется таким образом, что d-ось совпадает с dm-осью. Фиг. 10 показывает случай, когда отклонение Δθ возникает мгновенно.

В этом случае математическое выражение вращающейся машины 2 переменного тока, когда вектор (vdh, vqh) высокочастотного напряжения примен