Силиконовые гидрогелевые линзы со сшитым гидрофобным покрытием
Иллюстрации
Показать всеИзобретение относится к способам нанесения сшитого гидрофильного покрытия на силиконовую контактную линзу. Предложен способ изготовления силиконовой гидрогелевой контактной линзы, на которой находится сшитое гидрофильное покрытие, включающий нагревание силиконовой гидрогелевой контактной линзы в водном растворе в присутствии растворимого в воде сильно разветвленного термически сшивающегося гидрофильного полимерного материала, содержащего положительно заряженные азетидиниевые группы, при температуре от 40°С до 140°С в течение периода времени, достаточного для ковалентного связывания термически сшивающегося гидрофильного полимерного материала на поверхности силиконовой гидрогелевой контактной линзы с помощью ковалентных связей, каждая из которых образована между одной азетидиниевой группой и одной из реакционноспособных функциональных групп на поверхности силиконовой гидрогелевой контактной линзы и/или вблизи от нее, и, таким образом, образование сшитого гидрофильного покрытия на силиконовой гидрогелевой контактной линзе. Технический результат - способ позволяет улучшить гидрофильность и гладкость поверхности линзы, причем его с успехом можно применять непосредственно в герметичной упаковке для линзы во время обработки в автоклаве. 4 н. и 34 з.п. ф-лы, 10 табл., 24 пр.
Реферат
Настоящее изобретение в целом относится к экономичному и требующему меньших затрат времени способу нанесения сшитого гидрофильного покрытия на силиконовую гидрогелевую контактную линзу для улучшения ее гидрофильности и гладкости поверхности. Кроме того, настоящее изобретение относится к офтальмологической линзе-продукту.
УРОВЕНЬ ТЕХНИКИ
Мягкие силиконовые гидрогелевые контактные линзы становятся все более и более популярными, поскольку они обладают высокой проницаемостью для кислорода и обеспечивают комфорт. Однако силиконовый гидрогелевый материал обладает поверхностью или по меньшей мере некоторыми участками своей поверхности, которые являются гидрофобными (несмачивающимися) способными адсорбировать липиды или белки из окружения глаза и может прилипать к глазу. Таким образом, для силиконовой гидрогелевой контактной линзы обычно необходима модификация поверхности.
Известной методикой модификации гидрофильности относительно гидрофобного материала контактной линзы является использование плазменной обработки, например, эта методика используется при изготовлении имеющихся в продаже линз, таких как Focus NIGHT & DAY™ и O2OPTIX™ (CIBA VISION) и PUREVISION™ (Bausch & Lomb). Преимуществами плазменного покрытия, такого как, например, которое может находиться на линзах Focus NIGHT & DAY™, является его долговечность, относительно высокая гидрофильность/смачиваемость и низкая восприимчивость к осаждению и адсорбции липидов и белков. Однако плазменная обработка силиконовых гидрогелевых контактных линз может не быть экономичной, поскольку предварительно сформированные контактные линзы обычно необходимо сушить до плазменной обработки и вследствие относительно больших капиталовложений, связанных с оборудованием для плазменной обработки.
Другой методикой модификации гидрофильности поверхности силиконовой гидрогелевой контактной линзы является включение смачивающих агентов (гидрофильных полимеров) в композицию для линзы, предназначенную для изготовления силиконовой гидрогелевой контактной линзы, как это предложено в патентах U.S. №№6367929, 6822016, 7052131 и 7249848. В этом способе могут не требоваться дополнительные последующие обработки для модификации гидрофильности поверхности линзы после литьевого формования силиконовых гидрогелевых контактных линз. Однако смачивающие агенты могут не быть совместимыми с силиконовыми компонентами композиции для линзы и несовместимость может привести к мутности полученной линзы. Кроме того, поверхность, подвергнутая такой обработке, может быть восприимчива к осаждению и адсорбции липидов. Кроме того, такая обработка поверхности может не создать долговечную поверхность, длительно противостоящую износу.
Другой методикой модификации гидрофильности относительно гидрофобного материала контактной линзы является методика послойного (ПСЛ) осаждения полиионного материала (см., например, патенты U.S. №№ US 6451871, US 6717929, US 6793973, US 6884457, US 6896926, US 6926965, US 6940580 и US 7297725 и публикации заявок на патенты U.S. №№ US
2007/0229758 А1, US 2008/0174035 A1 и US 2008/0152800 A1). Хотя методика послойного нанесения покрытия ("ПСЛ-покрытие") осаждением может привести к экономичному способу обеспечения смачиваемости силиконового гидрогелевого материала, ПСЛ покрытия могут не быть столь долговечными, как плазменные покрытия, и могут обладать относительно высокими плотностями поверхностных зарядов; что может мешать действию очищающих и дезинфицирующих растворов на контактную линзу. Для улучшения долговечности в находящихся в совместной собственности и на рассмотрении публикациях заявок на патенты US №№2008/0226922 А1 и 2009/0186229 А1 (которые во всей своей полноте включены в настоящее изобретение в качестве ссылки) предложена сшивка ПСЛ покрытий на контактных линзах. Однако сшитые ПСЛ покрытия могут обладать гидрофильностью и/или смачиваемостью, худшей, чем исходные ПСЛ покрытия (до сшивки) и все же обладать относительно высокими плотностями поверхностных зарядов.
Еще одной методикой модификации гидрофильности относительно гидрофобного материала контактной линзы является присоединение гидрофильных полимеров к контактным линзам по разным механизмам (см., например, патенты US №№6099122, 6436481, 6440571, 6447920, 6465056, 6521352, 6586038, 6623747, 6730366, 6734321, 6835410, 6878399, 6923978, 6440571 и 6500481, публикации заявок на патенты US №№2009/0145086 А1, 2009/0145091 А1, 2008/0142038 А1 и 2007/0122540 А1, которые все во всей своей полноте включены в настоящее изобретение в качестве ссылки). Хотя эти методики можно использовать для обеспечения смачиваемости силиконового гидрогелевого материала, они могут не быть экономичными и/или для получения гидрофильного покрытия требующими меньших затрат времени для использования в массовом производстве, поскольку обычно требуют относительно длительного времени и/или включают трудоемкие многочисленные стадии.
Поэтому необходим способ изготовления силиконовых гидрогелевых контактных линз со смачивающимся и долговечным покрытием (поверхностью) экономичным и требующим меньших затрат времени способом.
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Одним объектом настоящего изобретения является способ изготовления силиконовых гидрогелевых контактных линз, на каждой из которых находится сшитое гидрофильное покрытие, способ, предлагаемый в настоящем изобретении, включает стадии: (а) изготовление силиконовой гидрогелевой контактной линзы и растворимого в воде и термически сшивающегося гидрофильного полимерного материала, где контактная линза содержит аминогруппы и/или карбоксигруппы на поверхности контактной линзы и/или вблизи от нее, где гидрофильный полимерный материал содержит (i) от примерно 20% до примерно 95 мас.% первых полимерных цепей, образованных из функционализированного эпихлоргидрином полиамина или полиамидоамина, (ii) от примерно 5% до примерно 80 мас.% гидрофильных фрагментов или вторых полимерных цепей, образованных по меньшей мере из одного увеличивающего гидрофильность агента, содержащего по меньшей мере одну реакционноспособную функциональную группу, выбранную из группы, включающей аминогруппу, карбоксигруппу, тиогруппу и их комбинацию, где гидрофильные фрагменты или вторые полимерные цепи ковалентно связаны с первыми полимерными цепями с помощью одной или большего количества ковалентных связей, каждая из которых образована между одной азетидиниевой группой функционализированного эпихлоргидрином полиамина или полиамидоамина и одной аминогруппой, карбоксигруппой или тиогруппой увеличивающего гидрофильность агента, и (iii) азетидиниевые группы, которые являются частями первых полимерных цепей или боковых или концевых групп, ковалентно связанных с первыми полимерными цепями; и (b) нагревание контактной линзы в водном растворе в присутствии гидрофильного полимерного материала и при температуре от примерно 40°C до примерно 140°C в течение периода времени, достаточного для ковалентного связывания гидрофильного полимерного материала с поверхностью контактной линзы с помощью вторых ковалентных связей, каждая из которых образована между одной азетидиниевой группой гидрофильного полимерного материала и одной из аминогрупп и/или карбоксигрупп, находящихся на поверхности контактной линзы и/или вблизи от нее, и таким образом образование гидрофильного покрытия на контактной линзе.
Другим объектом настоящего изобретения является силиконовая гидрогелевая контактная линза, изготовленная способом, предлагаемым в настоящем изобретении, где силиконовая гидрогелевая контактная линза обладает проницаемостью для кислорода, равной не менее примерно 40 барреров, смачиваемостью поверхности, характеризующейся краевым углом смачивания водой, равным примерно 100° или менее, и хорошей долговечностью покрытия, которая успешно проходит испытание на протирание пальцами.
Другим объектом настоящего изобретения является офтальмологический продукт, который включает стерилизованную и герметизированную упаковку для линзы, где упаковка для линзы включает: обработанный в автоклаве упаковочный раствор для линзы и погруженную в него легко использующуюся силиконовую гидрогелевую контактную линзу, где легко использующаяся силиконовая гидрогелевая контактная линза содержит сшитое гидрофильное покрытие, полученное обработкой в автоклаве исходной силиконовой гидрогелевой контактной линзы, содержащей аминогруппы и/или карбоксигруппы на и/или вблизи от поверхности исходной силиконовой гидрогелевой контактной линзы, в предварительно обработанном в автоклаве упаковочном растворе, содержащем растворимый в воде и термически сшивающийся гидрофильный полимерный материал, где гидрофильный полимерный материал содержит (i) от примерно 20% до примерно 95 мас.% первых полимерных цепей, образованных из функционализированного эпихлоргидрином полиамина или полиамидоамина, (ii) от примерно 5% до примерно 80 мас.% гидрофильных фрагментов или вторых полимерных цепей, образованных по меньшей мере из одного увеличивающего гидрофильность агента, содержащего по меньшей мере одну реакционноспособную функциональную группу, выбранную из группы, включающей аминогруппу, карбоксигруппу, тиогруппу и их комбинацию, где гидрофильные фрагменты или вторые полимерные цепи ковалентно связаны с первыми полимерными цепями с помощью одной или большего количества ковалентных связей, каждая из которых образована между одной азетидиниевой группой функционализированного эпихлоргидрином полиамина или полиамидоамина и одной аминогруппой, карбоксигруппой или тиогруппой увеличивающего гидрофильность агента, и (iii) азетидиниевые группы, которые являются частями первых полимерных цепей или боковых или концевых групп, ковалентно связанных с первыми полимерными цепями, где гидрофильный полимерный материал ковалентно связан с силиконовой гидрогелевой контактной линзой с помощью вторых ковалентных связей, каждая из которых образована между одной аминогруппой или карбоксигруппой, находящейся на и/или вблизи от поверхности силиконовой гидрогелевой контактной линзы, и одной азетидиниевой группой гидрофильного полимерного материала, где обработанный в автоклаве упаковочный раствор содержит по меньшей мере один буферный агент в количестве, достаточном для поддержания значения pH, равного от примерно 6,0 до примерно 8,5, и продукт гидролиза гидрофильного полимерного материала и обладает тоничностью, составляющей от примерно 200 до примерно 450 миллиосмол (мОсм), и вязкостью, равной от примерно 1 сП до примерно 20 сП.
Еще одним объектом настоящего изобретения является растворимый в воде и термически сшивающийся гидрофильный полимерный материал, который включает: (а) от примерно 20% до примерно 95 мас.% первых полимерных цепей, образованных из функционализированного эпихлоргидрином полиамина или полиамидоамина; (b) от примерно 5% до примерно 80 мас.% вторых полимерных цепей, образованных по меньшей мере из одного увеличивающего гидрофильность полимерного агента, содержащего по меньшей мере одну реакционноспособную функциональную группу, выбранную из группы, включающей аминогруппу, карбоксигруппу, тиогруппу и их комбинацию, где вторые полимерные цепи ковалентно связаны с первыми полимерными цепями с помощью одной или большего количества ковалентных связей, каждая из которых образована между одной азетидиниевой группой функционализированного эпихлоргидрином полиамина или полиамидоамина и одной аминогруппой, карбоксигруппой или тиогруппой увеличивающего гидрофильность полимерного агента; и (с) азетидиниевые группы, которые являются частями первых полимерных цепей или боковых или концевых групп, ковалентно связанных с первыми полимерными цепями.
Эти и другие объекты настоящего изобретения станут понятными из приведенного ниже описания предпочтительных вариантов осуществления. Подробное описание является просто иллюстрацией настоящего изобретения и не ограничивает объем настоящего изобретения, который определяется прилагаемой формулой изобретения и ее эквивалентами. Как должно быть очевидно специалисту в данной области техники, без отклонения от сущности и объема новых концепций описания могут быть проведены многочисленные изменения и модификации настоящего изобретения.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Ниже подробно описаны варианты осуществления настоящего изобретения. Для специалистов в данной области техники должно быть очевидно, что без отклонения от объема и сущности настоящего изобретения в него могут быть внесены различные изменения и модификации. Например, особенности, проиллюстрированные или описанные в качестве части одного варианта осуществления, можно использовать в другом варианте осуществления и получить еще один вариант осуществления. Таким образом, подразумевается, что настоящее изобретение включает все такие изменения и модификации, входящие в объем прилагаемой формулы изобретения и ее эквивалентов. Другие объекты, особенности и аспекты настоящего изобретения раскрыты в приведенном ниже подробном описании или очевидно следуют из него. Специалист с общей подготовкой в данной области техники должен понимать, что представленное обсуждение является описанием только типичных вариантов осуществления и не налагает ограничений на более широкие объекты настоящего изобретения.
Если не указано иное, все технические и научные термины, использованные в настоящем изобретении, обладают теми же значениями, которые обычно известны специалисту с общей подготовкой в области техники, к которой относится настоящее изобретение. Обычно номенклатура, использующаяся в настоящем изобретении, и лабораторные процедуры хорошо известны и обычно используются в данной области техники. Для этих процедур используются обычные методики, такие как описанные в данной области техники и в различной общей литературе. Если термин используется в единственном числе, то авторы настоящего изобретения также предполагают и множественное число этого термина. Номенклатура, использующаяся в настоящем изобретении, и лабораторные процедуры, описанные ниже, хорошо известны и обычно используются в данной области техники.
"Силиконовая гидрогелевая контактная линза" означает контактную линзу, включающую силиконовый гидрогелевый материал. "Силиконовый гидрогель" означает полимерный материал, который может поглощать не менее 10 мас.% воды, когда он полностью гидратирован, и который получают сополимеризацией полимеризующейся композиции, содержащей по меньшей мере один кремнийсодержащий виниловый мономер или по меньшей мере один кремнийсодержащий виниловый макромер или по меньшей мере один кремнийсодержащий преполимер, содержащий этиленовоненасыщенные группы.
"Виниловый мономер" при использовании в настоящем изобретении означает соединение, которое содержит одну единственную этиленовоненасыщенную группу и может быть полимеризован актинично или термически.
Термин "олефиновоненасыщенная группа" или "этиленовоненасыщенная группа" используется в настоящем изобретении в широком смысле и включает любые группы, содержащие по меньшей мере одну группу >С=С<. Типичные этиленовоненасыщенные группы включают без наложения ограничений (мет)акрилоил (т.е. и/или ), аллил, винил (), стиролил или другие содержащие С=С группы.
Термин "(мет)акриламид" означает метакриламид и/или акриламид.
Термин "(мет)акрилат" означает метакрилат и/или акрилат.
"Гидрофильный виниловый мономер" при использовании в настоящем изобретении означает виниловый мономер, который в виде гомополимера обычно образует полимер, который растворим в воде или может поглощать не менее 10 мас.% воды, когда он полностью гидратирован.
"Гидрофобный виниловый мономер" при использовании в настоящем изобретении означает виниловый мономер, который в виде гомополимера обычно образует полимер, который нерастворим в воде и может поглощать менее 10 мас.% воды.
"Макромер" или "преполимер" означает обладающее средней и большой молекулярной массой соединение или полимер, который содержит две или большее количество этиленовоненасыщенных групп. Средняя и большая молекулярная масса обычно означает среднюю молекулярную массу, превышающую 700 Да.
"Сшиватель" означает соединение, содержащее не менее двух этиленовоненасыщенных групп. "Сшивающий реагент" означает сшиватель, обладающий молекулярной массой, равной примерно 700 Да или менее.
"Полимер" означает материал, образовавшийся путем полимеризации одного или большего количества мономеров или макромеров, или преполимеров.
"Молекулярная масса" полимерного материала (включая мономерные или макромерные материалы) при использовании в настоящем изобретении означает среднемассовую молекулярную массу, если специально не указано иное или если режимы проведения исследования не указывают иное.
Термин "аминогруппа" означает первичную или вторичную аминогруппу формулы - NHR', в которой R' обозначает водород или C1-C20 незамещенную или замещенную, линейную или разветвленную алкильную группу, если специально не указано иное.
"Функционализированный эпихлоргидрином полиамин" или "функционализированный эпихлоргидрином полиамидоамин" означает полимер, полученный по реакции полиамина или полиамидоамина с эпихлоргидрином с превращением всех или значительной части аминогрупп полиамина или полиамидоамина в азетидиниевые группы.
"Азетидиниевая группа" означает положительно заряженную группу формулы .
Термин "термически сшивающийся" применительно к полимерному материалу или функциональной группе означает, что полимерный материал или функциональная группа может вступить в реакцию сшивки (или сочетания) с другим материалом или функциональной группой при относительно повышенной температуре (от примерно 40°C до примерно 140°C), причем полимерный материал или функциональная группа не может вступить в такую же реакцию сшивки (или реакцию сочетания) с другим материалом или функциональной группой при комнатной температуре (т.е. от примерно 22°C до примерно 28°C, предпочтительно от примерно 24°C до примерно 26°C, более предпочтительно примерно при 25°C) в обнаруживаемой степени за период, равный примерно 1 ч.
Термин "фосфорилхолин" означает цвиттерионную группу формулы
, в которой n является целым числом, равным от 1 до 5, и R1, R2 и R3 независимо друг от друга обозначают C1-C8-алкил или C1-C8-гидроксиалкил.
Термин "реакционноспособный виниловый мономер" означает виниловый мономер, содержащий карбоксигруппу или аминогруппу (т.е. первичную или вторичную аминогруппу).
Термин "нереакционноспособный гидрофильный виниловый мономер" означает гидрофильный виниловый мономер, который не содержит какую-либо карбоксигруппу или аминогруппу (т.е. первичную или вторичную аминогруппу). Нереакционноспособный виниловый мономер может содержать третичную или четвертичную аминогруппу.
Термин "растворимый в воде" применительно к полимеру, означает, что полимер можно растворить в воде в количестве, достаточном для образования водного раствора полимера, обладающего концентрацией, равной примерно до 30 мас.% при комнатной температуре (определена выше).
"Краевой угол смачивания водой" означает средний краевой угол смачивания водой (т.е. краевые углы смачивания, измеренные по методике неподвижной капли), который получают путем усреднения измеренных значений краевых углов смачивания по меньшей мере для 3 отдельных контактных линз.
Термин "целостность" применительно к покрытию на силиконовой гидрогелевой контактной линзе означает степень того, насколько контактная линза может быть окрашена красителем судан черный при исследовании окрашивания красителем судан черный, описанным в примере 1. Хорошая целостность покрытия на силиконовой гидрогелевой контактной линзе означает, что судан черный практически не окрашивает контактную линзу.
Термин "долговечность" применительно к покрытию на силиконовой гидрогелевой контактной линзе означает, что покрытие на силиконовой гидрогелевой контактной линзе может успешно пройти испытание на протирание пальцами.
При использовании в настоящем изобретении "успешное прохождение испытания на протирание пальцами" или "успешное прохождение испытания на долговечность" применительно к покрытию на контактной линзе означает, что после протирания линзы пальцами по методике, описанной в примере 1, краевой угол смачивания водой истираемой пальцами линзы все еще равен примерно 100° или менее, предпочтительно примерно 90° или менее, более предпочтительно примерно 80° или менее, наиболее предпочтительно примерно 70° или менее.
Собственная "проницаемость для кислорода", Dk, материала означает скорость, с которой кислород будет проходить через материал. В контексте настоящего изобретения термин "проницаемость для кислорода (Dk)" применительно к гидрогелю (силиконовому или несиликоновому) или контактной линзе означает проницаемость для кислорода (Dk), которая скорректирована на поверхностное сопротивление потоку кислорода, обусловленное влиянием пограничного слоя, по методикам, приведенным в представленных ниже примерах. Проницаемость для кислорода выражают в единицах барреров, где "баррер" определяется, как [(см3 кислорода)(мм)/(см2)(с)(мм рт.ст.)]×10-10.
"Способность пропускать кислород", Dk/t, линзы или материала означает скорость, с которой кислород будет проходить через конкретную линзу или материал, обладающий средней толщиной t [в единицах мм], через исследуемую площадь. Способность пропускать кислород обычно выражают в единицах баррер/мм, где "баррер/мм" определяется, как [(см3 кислорода)/(см2)(с)(мм рт.ст.)]×10-9.
"Проницаемость для ионов" линзы коррелирует с коэффициентом диффузии Ionoflux. Коэффициент диффузии Ionoflux, D (в единицах [мм2/мин]), определяют путем применения закона Фика следующим образом:
D=-n′/(A×dc/dx)
где: n′ = скорость переноса ионов [моль/мин]; A = площадь участка линзы, на который оказывается воздействие [мм2]; D = коэффициент диффузии Ionoflux [мм2/мин]; dc = разность концентраций [моль/л]; dx = толщина линзы [мм].
"Офтальмологически совместимый" при использовании в настоящем изобретении означает материал или поверхность материала, которая может находиться в непосредственном соприкосновении с глазной средой в течение длительного периода времени без значительного повреждения глазной среды и без значительного дискомфорта для пользователя.
Термин "офтальмологически безопасный" применительно к упаковочному раствору, предназначенному для стерилизации и хранения контактных линз, означает, что контактная линза, хранящаяся в растворе, безопасна для непосредственного помещения в глаз без промывки после обработки в автоклаве и что раствор безопасен и достаточно комфортабелен для постоянного соприкосновения с глазом при посредстве контактной линзы. Офтальмологически безопасный упаковочный раствор после обработки в автоклаве обладает тоничностью и значением pH, которые совместимы с глазом и в основном не содержат раздражающие глаза или цитотоксичные для глаз вещества в соответствии с международными стандартами ISO и нормативами U.S. FDA (Управление по санитарному надзору за качеством пищевых продуктов и медикаментов).
Настоящее изобретение в целом относится к экономичному и требующему меньших затрат времени способу изготовления силиконовых гидрогелевых контактных линз, обладающих долговечными гидрофильными покрытиями, путем использования растворимого в воде и термически сшивающегося гидрофильного полимерного материала, содержащего азетидиниевые группы.
Настоящее изобретение частично основано на неожиданном установлении того, что растворимый в воде, содержащий азетидиниевые группы и термически сшивающийся гидрофильный полимерный материал, который является продуктом частичной реакции полиамина эпихлоргидрина или полиамидоамина-эпихлоргидрина по меньшей мере с одним увеличивающим гидрофильность агентом, содержащим по меньшей мере одну реакционноспособную функциональную группу, выбранную из группы, включающей аминогруппу, карбоксигруппу, тиогруппу и их комбинацию, можно использовать для формирования сшитого покрытия, обладающего хорошей гидрофильностью поверхности и/или смачиваемостью, хорошей гидрофильностью и хорошей целостностью, на силиконовой гидрогелевой контактной линзе, содержащий на своей поверхности или вблизи от нее карбоксигруппы и/или аминогруппы. При относительно повышенной температуре (определена выше) положительно заряженные азетидиниевые группы взаимодействуют с функциональными группами, такими как аминогруппы, тиогруппы и карбоксилат-ион -СОО- (т.е. депротонированная форма карбоксигруппы) с образованием нейтральных содержащих гидроксигруппу ковалентных связей, представленных на схеме I
где R обозначает остальную часть соединения, L обозначает -NR′-, где R′ обозначает водород, C1-C20 незамещенную или замещенную, линейную или разветвленную алкильную группу или полимерную цепь, -S- или -OC(=O)-. Вследствие термической контролируемости реакционной способности азетидиниевых групп, полиамин-эпихлоргидрин или полиамидоамин-эпихлоргидрин (ПАЭ) широко использовались в качестве реагентов, придающих прочность во влажном состоянии. Однако использование ПАЭ не оказалось успешным для формирования сшитых покрытий на контактных линзах, вероятно, поскольку сшитые ПАЭ покрытия могут не быть пригодны для придания необходимых гидрофильности, смачиваемости и гладкости поверхности контактных линз. Согласно изобретению неожиданно было установлено, что ПАЭ можно химически модифицировать увеличивающим гидрофильность агентом (предпочтительно гидрофильным полимеров), содержащим одну или большее количество функциональных групп, каждая из которых способна к реакции с одной азетидиниевой группой, в технологии "предварительной термической обработки" или "термической обработки" и получить растворимый в воде содержащий азетидиниевые группы полимерный материал. Такой полимерный материал, который все еще является термически сшивающимся (реакционноспособным) вследствие наличия азетидиниевых групп, можно использовать для формирования сшитого покрытия на силиконовой гидрогелевой контактной линзе, содержащей реакционноспособные функциональные группы (например, аминогруппы, карбоксигруппы, тиогруппы или их комбинации) на ее поверхности и/или вблизи от нее. И согласно изобретению неожиданно было установлено, что полученные сшитые покрытия на контактной линзе, образованные из растворимого в воде содержащего азетидиниевые группы полимерного материала, обладают улучшенной гидрофильностью поверхности, смачиваемостью и/или гладкостью поверхности по сравнению с контрольным покрытием, полученным или с помощью только немодифицированного (оригинального или исходного) ПАЭ, или с помощью смеси ПАЭ и увеличивающего гидрофильность агента (без проведения предварительной термической обработки для получения растворимого в воде содержащего азетидиниевые группы полимерного материала).
Предполагается, что увеличивающий гидрофильность агент может играть по меньшей мере две роли в улучшении характеристик полученных сшитых покрытий: введение гидрофильных полимерных цепей с образованием сильно разветвленного гидрофильного полимерного материала с висячими полимерными цепями и/или сегментами цепей; и уменьшение плотности сшивок в сшитых покрытиях путем значительного уменьшения количества азетидиниевых групп в сшивающемся полимерном материале (материале покрытия). Предполагается, что покрытие с рыхлой структурой и висячими полимерными цепями и/или сегментами цепей обеспечивает хорошую гидрофильность поверхности, смачиваемость и/или гладкость поверхности.
Настоящее изобретение также частично основано на установлении того, что сшитое покрытие, предлагаемое в настоящем изобретении, можно успешно сформировать на силиконовой гидрогелевой контактной линзе непосредственно в упаковке для линзы, содержащей контактную линзу, погруженную в упаковочный раствор для линзы, в присутствии растворимого в воде содержащего азетидиниевые группы полимерного материала. Наличие содержащего азетидиниевые группы полимерного материала можно обеспечить или путем добавления содержащего азетидиниевые группы полимерного материала в упаковочный раствор для линзы, или путем проводимого до упаковки физического осаждения слоя содержащего азетидиниевые группы полимерного материала на поверхность контактной линзы при комнатной температуре.
Обычно контактные линзы, которые гидратированы и упакованы в упаковочный раствор, необходимо стерилизовать. Стерилизацию гидратированных линз при изготовлении и упаковке обычно проводят путем обработки в автоклаве. Обработка в автоклаве включает нагревание упаковки контактной линзы до температуры, равной от примерно 118°C до примерно 125°C в течение примерно 20-40 мин под давлением. Установлено, что во время обработки в автоклаве растворимый в воде содержащий азетидиниевые группы полимерный материал может быть эффективно сшит функциональными группами (например, аминогруппами, тиогруппами и/или карбоксигруппами) на поверхности силиконовой гидрогелевой контактной линзы и/или вблизи от нее для формирования сшитого покрытия, которое является смачивающимся и офтальмологически совместимым. Предполагается, что во время обработки в автоклаве эти азетидиниевые группы, которые не участвуют в реакции сшивки, могут гидролизоваться с образованием 2,3-дигидроксипропильных (HO-CH2-CH(OH)-CH2-) групп и что содержащий азетидиниевые группы полимерный материал, содержащийся в упаковочном растворе для линзы, если это является подходящим, можно превратить в нереакционноспособный полимерный смачивающийся материал, способный улучшить комфорт при вставке линзы.
При использовании способа, предлагаемого в настоящем изобретении, при изготовлении силиконовых гидрогелевых контактных линз нанесение покрытия можно объединить со стадией стерилизации (обработки в автоклаве). Изготовленные контактные линзы могут не только обладать высокой гидрофильностью поверхности/смачиваемостью, отсутствием изменений поверхности или минимальными ее изменениями, хорошей целостностью и хорошей долговечностью, но и их также можно использовать прямо после извлечения пациентом из упаковки для линзы без промывки и/или ополаскивания вследствие офтальмологической совместимости упаковочного раствора.
Одним объектом настоящего изобретения является способ изготовления силиконовых гидрогелевых контактных линз, на каждой из которых находится сшитое гидрофильное покрытие, способ, предлагаемый в настоящем изобретении, включает стадии: (а) изготовление силиконовой гидрогелевой контактной линзы и растворимого в воде и термически сшивающегося гидрофильного полимерного материала, где контактная линза содержит аминогруппы и/или карбоксигруппы на поверхности контактной линзы и/или вблизи от нее, где гидрофильный полимерный материал содержит (i) от примерно 20% до примерно 95 мас.% первых полимерных цепей, образованных из функционализированного эпихлоргидрином полиамина или полиамидоамина, (ii) от примерно 5% до примерно 80 мас.% гидрофильных фрагментов или вторых полимерных цепей, образованных по меньшей мере из одного увеличивающего гидрофильность агента, содержащего по меньшей мере одну реакционноспособную функциональную группу, выбранную из группы, включающей аминогруппу, карбоксигруппу, тиогруппу и их комбинацию, где гидрофильные фрагменты или вторые полимерные цепи ковалентно связаны с первыми полимерными цепями с помощью одной или большего количества ковалентных связей, каждая из которых образована между одной азетидиниевой группой функционализированного эпихлоргидрином полиамина или полиамидоамина и одной аминогруппой, карбоксигруппой или тиогруппой увеличивающего гидрофильность агента, и (iii) азетидиниевые группы, которые являются частями первых полимерных цепей или боковых или концевых групп, ковалентно связанных с первыми полимерными цепями; и (b) нагревание контактной линзы в водном растворе в присутствии гидрофильного полимерного материала и при температуре от примерно 40°C до примерно 140°C в течение периода времени, достаточного для ковалентного связывания гидрофильного полимерного материала с поверхностью контактной линзы с помощью вторых ковалентных связей, каждая из которых образована между одной азетидиниевой группой гидрофильного полимерного материала и одной из аминогрупп и/или карбоксигрупп, находящихся на поверхности контактной линзы и/или вблизи от нее, и таким образом образование гидрофильного покрытия на контактной линзе.
Специалист в данной области техники очень хорошо знает, как изготовить контактные линзы. Например, контактные линзы можно изготовить в обычной вращающейся форме для отливки, описанной, например, в патенте U.S. №3408429, или способом отливки по моделям в статической форме, описанным в патентах U.S. №№4347198; 5508317; 5583463; 5789464 и 5849810. При отливке композицию для линзы обычно помещают в формы и отверждают (т.е. полимеризуют и/или сшивают) в формах для изготовления контактных линз. Для изготовления силиконовых гидрогелевых контактных линз композиция для линзы, предназначенная для литьевого формования, обычно включает по меньшей мере один компонент, выбранный из группы, включающей кремнийсодержащий виниловый мономер, кремнийсодержащий виниловый макромер, кремнийсодержащий преполимер, гидрофильный виниловый мономер, гидрофильный виниловый макромер, гидрофобный виниловый мономер и их комбинацию, как это хорошо известно специалисту в данной области техники. Композиция для силиконовой гидрогелевой контактной линзы также может включать другие необходимые компоненты, известные специалисту в данной области техники, такие как, например, сшивающий реагент, поглощающий УФ-излучение реагент, агент для видимого подкрашивания (например, красители, пигменты или их смеси), противомикробные агенты (например, предпочтительно наночастицы серебра), биологически активный агент, выщелачиваемые смазывающие вещества, выщелачиваемые стабилизирующие слезную жидкость агенты и их смеси, как это известно специалисту в данной области техники. Затем отлитые силиконовые гидрогелевые контактные линзы можно подвергнуть экстракции экстрагирующим растворителем для удаления незаполимеризовавшихся компонентов из отлитых линз и для гидратации, как это известно специалисту в данной области техники. Многочисленные композиции силиконовых гидрогелевых линз описаны в многочисленных патентах и заявках на патенты, опубликованных до даты подачи настоящей заявки.
В контексте настоящего изобретения силиконовая гидрогелевая контактная линза может сама по себе содержать на своей поверхности аминогруппы и/или карбоксигруппы или модифицирована для их введения.
Если силиконовая гидрогелевая контактная линза сама по себе содержит на своей поверхности или вблизи от нее аминогруппы и/или карбоксигруппы, ее изготавливают путем полимеризации композиции силиконовой гидрогелевой линзы, содержащей реакционноспособный виниловый мономер.
Примеры предпочтительных реакционноспособных виниловых мономеров включают без наложения ограничений амино-C2-C6-алкил(мет)акрилат, C1-C6-алкиламино-C2-C6-алкил(мет)акрилат, аллиламин, виниламин, амино-C2-C6-алкил(мет)акриламид, C1-C6-алкиламино-C2-C6-алкил(мет)акриламид, акриловую кислоту, C1-C12-алкилакриловую кислоту (например, метакриловую, этилакриловую кислоту, пропилакриловую кислоту, бутилакриловую кислоту и т.п.), N,N-2-акриламидогликолевую кислоту, бета-метилакриловую кислоту (кретоновую кислоту), альфа-фенилакриловую кислоту, бета-акрилоксипропионовую кислоту, сорбино