Пневматическая шина

Иллюстрации

Показать все

Изобретение относится к автомобильной промышленности и касается протектора всесезонной шины. Шина включает в себя множество главных продольных канавок (21-23), проходящих в продольном направлении шины, а также множество поверхностей контакта с дорожным покрытием (31-34), разделенных и образованных этими главными продольными канавками (21-23) в области протектора. Каждая из этих поверхностей контакта с дорожным покрытием (31-34) имеет множество прорезей (312-342) соответственно. Не менее 90% прорезей (312) и (322), расположенных во внутренней области, представляют собой двухмерные прорези, и не менее 90% прорезей (332) и (342), расположенных во внешней области, представляют собой трехмерные прорези. Количество N_in грунтозацепных канавок (311) в плечевой поверхности контакта с дорожным покрытием (31) со стороны внутренней области и количество N_out грунтозацепных канавок (341) в плечевой поверхности контакта с дорожным покрытием (34) со стороны внешней области соотносятся таким образом, что N_in>N_out. Технический результат - повышение устойчивости рулевого управления как на сухом, так и на заснеженном дорожном покрытии. 7 з.п. ф-лы, 7 ил.

Реферат

Область техники

Настоящее изобретение относится к пневматической шине и, в частности, к пневматической шине, позволяющей достичь устойчивости рулевого управления как на сухом, так и на заснеженном дорожном покрытии.

Предпосылки создания изобретения

У типичной зимней шины область протектора имеет прорези, повышающие устойчивость рулевого управления на заснеженном дорожном покрытии, обеспечиваемую шиной. Технология, описанная в патентном документе 1, известна как стандартная пневматическая шина, имеющая такую конфигурацию. В стандартных пневматических шинах область протектора с внутренней (при установке на автомобиль) стороны образуется из более мягкой резины по сравнению с областью протектора с внешней (при установке на автомобиль) стороны, а также имеет более низкую плотность прорезей.

Документы предшествующего уровня техники

Патентная документация

Патентный документ 1: нерассмотренная опубликованная заявка на патент Японии № 2010-6108A

Краткое описание изобретения

Проблема, решение которой обеспечивается изобретением

В случае зимних шин существует потребность в повышении устойчивости рулевого управления не только на заснеженном, но также и на сухом дорожном покрытии.

В свете вышеизложенного цель настоящего изобретения состоит в создании пневматической шины, позволяющей достичь устойчивости рулевого управления как на сухом, так и на заснеженном дорожном покрытии.

Пути решения проблемы

Для достижения описанной выше цели пневматическая шина в соответствии с настоящим изобретением включает в себя множество главных продольных канавок, проходящих в продольном направлении шины, и множество поверхностей контакта с дорожным покрытием, разделенных и образованных главными продольными канавками в области протектора. В такой пневматической шине область, соответствующая 35% ширины разработанного рисунка протектора от первого края протектора, называется «внутренней областью», а область, соответствующая 35% ширины разработанного рисунка протектора от второго края протектора, называется «внешней областью», левая и правая главные продольные канавки, крайние в поперечном направлении шины, называются «крайними главными продольными канавками», а поверхности контакта с дорожным покрытием на внешней стороне в поперечном направлении шины, которые разделены и образованы левой и правой крайними главными продольными канавками, называются «плечевыми поверхностями контакта с дорожным покрытием». Каждая из множества поверхностей контакта с дорожным покрытием имеет множество прорезей, и не менее 90% прорезей, расположенных во внутренней области, представляют собой двухмерные прорези, а не менее 90% прорезей, расположенных во внешней области, представляют собой трехмерные прорези. Каждая из левой и правой плечевых поверхностей контакта с дорожным покрытием имеет множество грунтозацепных канавок, расположенных в продольном направлении шины, и количество N_in грунтозацепных канавок в плечевой поверхности контакта с дорожным покрытием со стороны внутренней области и количество N_out грунтозацепных канавок в плечевой поверхности контакта с дорожным покрытием со стороны внешней области соотносятся таким образом, что N_in>N_out.

У пневматической шины в соответствии с настоящим изобретением количество N_in грунтозацепных канавок со стороны внутренней области и количество N_out грунтозацепных канавок со стороны внешней области предпочтительно соотносятся таким образом, что выполняются следующие условия: 64≤N_in≤78, 54≤N_out≤68 и 3≤N_in-N_out≤12.

У пневматической шины в соответствии с настоящим изобретением плотность прорезей D_in на внутренней области и плотность прорезей D_out на внешней области предпочтительно соотносятся таким образом, что 1,2≤D_in/D_out≤2,0.

У пневматической шины в соответствии с настоящим изобретением относительная площадь канавок S_in на внутренней области и относительная площадь канавок S_out на внешней области в поле зацепления шины с дорожным покрытием предпочтительно соотносятся таким образом, что 1,2≤S_out/S_in≤2,0, а общая относительная площадь канавок S_t в поле зацепления шины с дорожным покрытием предпочтительно находится в диапазоне 0,25≤S_t≤0,38.

У пневматической шины в соответствии с настоящим изобретением ширина W1 грунтозацепных канавок во внутренней области и ширина W2 грунтозацепных канавок во внешней области предпочтительно соотносятся таким образом, что 0,5 мм≤W1-W2≤2,0 мм.

У пневматической шины в соответствии с настоящим изобретением каждая из внутренней и внешней областей предпочтительно содержит грунтозацепные канавки, которые сообщаются с краем зацепления шины с дорожным покрытием, а глубина Hd1 грунтозацепных канавок во внутренней области и глубина Hd2 грунтозацепных канавок во внешней области предпочтительно соотносятся таким образом, что 1,0 мм≤Hd1-Hd2≤3,0 мм.

У пневматической шины в соответствии с настоящим изобретением область протектора предпочтительно включает в себя три главные продольные канавки и четыре поверхности контакта с дорожным покрытием, а ширина зацепления с дорожным покрытием поверхностей контакта с дорожным покрытием на краю зацепления с дорожным покрытием во внутренней области больше, чем ширина зацепления с дорожным покрытием поверхностей контакта с дорожным покрытием на краю зацепления с дорожным покрытием во внешней области. Поверхности контакта с дорожным покрытием во внутренней области предпочтительно включают в себя множество косых канавок, отклоняющихся относительно продольного направления шины, множество первых грунтозацепных канавок, проходящих в поперечном направлении шины от внешней стороны поля зацепления шины с дорожным покрытием таким образом, чтобы сообщаться с косыми канавками, и множество вторых грунтозацепных канавок, проходящих в поперечном направлении шины таким образом, чтобы соединять косые канавки и главные продольные канавки. Предпочтительно, чтобы с одной из косых канавок сообщались не менее трех первых грунтозацепных канавок.

Пневматическая шина в соответствии с настоящим изобретением предпочтительно имеет индикатор, обозначающий направление установки шины на автомобиль, при котором внутренняя область находится с внутренней стороны в поперечном направлении автомобиля.

Результаты изобретения

У пневматической шины в соответствии с настоящим изобретением двухмерные прорези располагаются во внутренней области, а трехмерные прорези располагаются во внешней области. Следовательно, жесткость во внутренней области является низкой, а жесткость во внешней области является высокой. Количество N_in грунтозацепных канавок в плечевой поверхности контакта с дорожным покрытием со стороны внутренней области и количество N_out грунтозацепных канавок в плечевой поверхности контакта с дорожным покрытием со стороны внешней области соотносятся таким образом, что N_in>N_out. Следовательно, жесткость внутренней области является низкой, а жесткость внешней области является высокой. Таким образом, происходит синергичное снижение жесткости во внутренней области и синергичное увеличение жесткости во внешней области. Таким образом, при установке пневматической шины на автомобиль таким образом, чтобы внутренняя область находилась с внутренней стороны в поперечном направлении автомобиля, внутренняя область позволит существенно повысить устойчивость рулевого управления на заснеженном дорожном покрытии, а внешняя область позволит существенно повысить устойчивость рулевого управления на сухом дорожном покрытии. Такая конфигурация является благоприятной, поскольку достигаются высокие показатели устойчивости рулевого управления как на сухом, так и на заснеженном дорожном покрытии.

Краткое описание чертежей

На фиг.1 представлено поперечное сечение шины в меридиональном направлении, иллюстрирующее пневматическую шину в соответствии с вариантом осуществления настоящего изобретения.

На фиг.2 представлен вид сверху на поверхность протектора пневматической шины, показанной на фиг.1.

На фиг.3 представлен поясняющий рисунок, иллюстрирующий пример трехмерной прорези.

На фиг.4 представлен поясняющий рисунок, иллюстрирующий пример трехмерной прорези.

На фиг.5 представлен поясняющий рисунок, иллюстрирующий модифицированный пример 1 пневматической шины, показанной на фиг.1.

На фиг.6 представлен поясняющий рисунок, иллюстрирующий модифицированный пример 2 пневматической шины, показанной на фиг.1.

На фиг.7 представлена таблица, в которой показаны результаты тестирования эксплуатационных показателей пневматических шин в соответствии с вариантами осуществления настоящего изобретения.

Наилучшее техническое выполнение изобретения

Ниже приведено подробное описание настоящего изобретения со ссылкой на чертежи. Однако настоящее изобретение не ограничивается такими вариантами осуществления. Более того, компоненты варианта осуществления, которые возможно или очевидно могут быть заменены при сохранении общности с настоящим изобретением, также включены в настоящее изобретение. Более того, множество модифицированных примеров, описанных в варианте осуществления, можно комбинировать по мере необходимости в пределах, очевидных специалисту в данной области.

Пневматическая шина

На фиг.1 представлено сечение шины в меридиональном направлении, демонстрирующее пневматическую шину, соответствующую одному варианту осуществления настоящего изобретения. На фиг.2 представлен вид сверху на поверхность протектора пневматической шины, показанной на фиг.1. На этих фигурах показана радиальная шина для легковых автомобилей.

Пневматическая шина 1 включает в себя пару сердечников борта 11,11, пару вкладышей борта 12,12, каркасный слой 13, брекер 14, протекторную резину 15 и пару резиновых элементов боковой стенки 16,16 (см. фиг.1). Пара сердечников борта 11,11 имеет кольцевидное строение и образует сердечники левой и правой бортовых областей. Пара вкладышей борта 12,12 располагается на периферии каждой из пар сердечников борта 11,11 в радиальном направлении шины таким образом, чтобы придавать жесткость бортовым областям. Каркасный слой 13 имеет однослойное строение, и он натянут между левым и правым сердечниками борта 11 и 11 в тороидальной форме и образует каркас шины. Кроме того, оба конца каркасного слоя 13 загибаются по направлению к внешней стороне в поперечном направлении шины таким образом, чтобы охватывать сердечники борта 11 и вкладыши борта 12, и фиксируются. Брекер 14 образован парой наложенных друг на друга слоев брекера 141 и 142 и располагается в радиальном направлении шины на периферии каркасного слоя 13. Эти слои брекера 141 и 142 образованы путем расположения и свертывания в рулон множества кордов брекерного пояса, изготовленных из стальных или органических волокон. Диагонально армированное строение достигается путем расположения кордов брекерного пояса таким образом, чтобы они отклонялись в противоположные стороны относительно продольного направления шины. Протекторная резина 15 располагается на периферии каркасного слоя 13 и брекера 14 в радиальном направлении шины и образует протектор шины. Пара резиновых элементов боковой стенки 16,16 располагается на каждой внешней стороне каркасного слоя 13 в поперечном направлении шины таким образом, что образует области левой и правой боковых стенок шины.

Кроме того, пневматическая шина 1 включает в себя множество главных продольных канавок 21-23, проходящих в продольном направлении шины; а также множество поверхностей контакта с дорожным покрытием 31-34, разделенных и образованных главными продольными канавками 21-23 в области протектора (см. фиг.2). Следует отметить, что под «главными продольными канавками» понимаются продольные канавки, ширина которых составляет 3 мм или более. Кроме того, поверхности контакта с дорожным покрытием 31-34 могут представлять собой ряды шашек (см. фиг.2) или могут представлять собой ребра (не показано).

Область, соответствующая 35% ширины разработанного рисунка протектора (PDW) от первого края протектора, называется «внутренней областью». Область, соответствующая 35% ширины разработанного рисунка протектора (PDW) от второго края протектора, называется «внешней областью». Следует отметить, что различия конфигураций внутренней области и внешней области описаны ниже. Ширина разработанного рисунка протектора (PDW) представляет собой линейное расстояние в разработанном рисунке между двумя краями покрытой рисунком протектора области шины, установленной на стандартный диск и накачанной до стандартного внутреннего давления, но без применения нагрузки.

Кроме того, пневматическая шина 1 имеет индикатор (не показан), обозначающий направление установки шины на автомобиль, при котором внутренняя область находится с внутренней стороны в поперечном направлении автомобиля. Следует отметить, что индикатор направления установки шины может отображаться, например, при помощи пометок или углублений и выступов, выполненных на участке боковой стенки шины, или в каталоге, приложенном к шине.

Более того, левая и правая главные продольные канавки 21 и 23, удаленные от центра в поперечном направлении шины, называются «крайними главными продольными канавками». Кроме того, поверхности контакта с дорожным покрытием 31 и 34 на внешней стороне в поперечном направлении шины, разделенные и образованные левой и правой крайними главными продольными канавками 21 и 23, называются плечевыми поверхностями контакта с дорожным покрытием, а поверхности контакта с дорожным покрытием 32 и 33 на внутренней стороне в поперечном направлении шины называются центральными поверхностями контакта с дорожным покрытием.

Например, в конфигурации, представленной на фиг.2, пневматическая шина 1 имеет три главные продольные канавки 21-23. Кроме того, центральная главная продольная канавка 22 располагается в экваториальной плоскости шины CL, и левая и правая главные продольные канавки 21 и 23 располагаются симметрично слева и справа от экваториальной плоскости шины CL. Более того, эти главные продольные канавки 21-23 разделяют две центральные поверхности контакта с дорожным покрытием 32 и 33 и пару из левой и правой плечевых поверхностей контакта с дорожным покрытием 31 и 34. В настоящем документе три главные продольные канавки 21-23 и четыре поверхности контакта с дорожным покрытием 31-34 называются, в порядке от внутренней стороны в поперечном направлении автомобиля к внешней стороне в поперечном направлении автомобиля: первой поверхностью контакта с дорожным покрытием 31, первой главной продольной канавкой 21, второй поверхностью контакта с дорожным покрытием 32, второй главной продольной канавкой 22, третьей поверхностью контакта с дорожным покрытием 33, третьей главной продольной канавкой 23 и четвертой поверхностью контакта с дорожным покрытием 34.

Конфигурация прорези и количество грунтозацепных канавок

У пневматической шины 1 каждая из поверхностей контакта с дорожным покрытием 31-34 имеет множество прорезей 312-342 соответственно (см. фиг.2). Более того, не менее 90% прорезей 312 и 322, расположенных во внутренней области, представляют собой двухмерные прорези, и не менее 90% прорезей 332 и 342, расположенных во внешней области, представляют собой трехмерные прорези.

В настоящем документе под «прорезями» понимаются разрезы, выполненные на поверхности контакта с дорожным покрытием. Под «двухмерными прорезями» понимаются прорези, лицевые стенки которых имеет линейную форму (при взгляде на поперечное сечение, выполненное в направлении, перпендикулярном длине прорези). Под «трехмерными прорезями» понимаются прорези, лицевые стенки которых имеют изгибы в поперечном направлении прорези (при взгляде на поперечное сечение, выполненное в направлении, перпендикулярном длине прорези). По сравнению с двухмерными прорезями трехмерные прорези имеют большее усилие замыкания противоположных лицевых стенок прорези и, следовательно, повышают жесткость поверхностей контакта с дорожным покрытием.

Например, в конфигурации, представленной на фиг.2, поверхности контакта с дорожным покрытием 31-34 имеют множество прорезей 312-342 соответственно. Кроме того, прорези 312-342 имеют прямую форму, проходят в поперечном направлении шины, и каждая из них располагается параллельно в продольном направлении шины и с заданным шагом. Более того, прорези 312-342 являются глухими, и каждая из них заканчивается на поверхностях контакта с дорожным покрытием 31-34. Более того, все прорези 312 первой поверхности контакта с дорожным покрытием 31 и прорези 322 второй поверхности контакта с дорожным покрытием 32 представляют собой двухмерные прорези, а все прорези 332 третьей поверхности контакта с дорожным покрытием 33 и прорези 342 четвертой поверхности контакта с дорожным покрытием 34 представляют собой трехмерные прорези. Таким образом, в связи с различием в жесткости между двухмерными прорезями 312 и 322 и трехмерными прорезями 332 и 342 жесткость первой поверхности контакта с дорожным покрытием 31 и второй поверхности контакта с дорожным покрытием 32, расположенных во внутренней области, является низкой, а жесткость третьей поверхности контакта с дорожным покрытием 33 и четвертой поверхности контакта с дорожным покрытием 34, расположенных во внешней области, является высокой.

Кроме того, у пневматической шины 1 левая и правая плечевые поверхности контакта с дорожным покрытием 31 и 34 имеют множество грунтозацепных канавок 311 и 341 соответственно, расположенных в продольном направлении шины (см. фиг.2).

В настоящем документе под «грунтозацепными канавками» понимаются канавки, проходящие в поперечном направлении шины. Грунтозацепные канавки могут быть либо открытыми, либо полуглухими. Если грунтозацепные канавки являются открытыми, поверхности контакта с дорожным покрытием образуют ряды шашек; а если грунтозацепные канавки являются полуглухими, поверхности контакта с дорожным покрытием образуют ребра.

Например, в конфигурации, представленной на фиг.2, поверхности контакта с дорожным покрытием 31-34 имеют множество грунтозацепных канавок 311-341 соответственно, которые проходят в поперечном направлении шины. В продольном направлении шины эти грунтозацепные канавки 311-341 располагаются с заданным шагом. Более того, каждая из грунтозацепных канавок 321 второй поверхности контакта с дорожным покрытием 32 и каждая из грунтозацепных канавок 331 третьей поверхности контакта с дорожным покрытием 33 является открытой и пересекает вторую поверхность контакта с дорожным покрытием 32 и третью поверхность контакта с дорожным покрытием 33 в поперечном направлении шины таким образом, что открывается с каждого из левого и правого краев этих поверхностей контакта с дорожным покрытием. Таким образом, вторая поверхность контакта с дорожным покрытием 32 и третья поверхность контакта с дорожным покрытием 33 разделены в продольном направлении шины, и образуется ряд шашек. С другой стороны, грунтозацепные канавки 311 первой поверхности контакта с дорожным покрытием 31 и грунтозацепные канавки 341 четвертой поверхности контакта с дорожным покрытием 34 являются полуглухими, и один их конец является открытым у края протектора на внешней стороне в поперечном направлении шины, а другой их конец заканчивается на поверхностях контакта с дорожным покрытием на внутренней стороне в поперечном направлении шины. Таким образом, первая поверхность контакта с дорожным покрытием 31 и четвертая поверхность контакта с дорожным покрытием 34 образуют ребро, проходящее в продольном направлении шины.

Кроме того, у пневматической шины 1 количество N_in грунтозацепных канавок 311 в плечевой поверхности контакта с дорожным покрытием 31 со стороны внутренней области и количество N_out грунтозацепных канавок 341 в плечевой поверхности контакта с дорожным покрытием 34 со стороны внешней области соотносятся таким образом, что N_in>N_out. Под количеством грунтозацепных канавок понимается общее количество грунтозацепных канавок, открывающихся на краю зацепления шины с дорожным покрытием Т, по всей окружности шины. Таким образом, если рассматривать грунтозацепные канавки, открывающиеся на краю зацепления шины с дорожным покрытием Т, то общее количество грунтозацепных канавок 311 в плечевой поверхности контакта с дорожным покрытием 31 со стороны внутренней области больше, чем общее количество грунтозацепных канавок 341 в плечевой поверхности контакта с дорожным покрытием 34 со стороны внешней области.

Следует отметить, что край зацепления шины с дорожным покрытием Т обозначается на поверхности контакта между шиной и плоской пластиной в конфигурации, в которой шина установлена на стандартный диск, накачана до заданного внутреннего давления, размещена перпендикулярно относительно плоской пластины в статичном положении, и к ней приложена заданная нагрузка.

Например, в конфигурации, представленной на фиг.2, шаг размещения грунтозацепных канавок 311 в плечевой поверхности контакта с дорожным покрытием 31 со стороны внутренней области устанавливают более узким, чем шаг размещения грунтозацепных канавок 341 в плечевой поверхности контакта с дорожным покрытием 34 со стороны внешней области. Кроме того, шаг размещения грунтозацепных канавок 321 в центральной поверхности контакта с дорожным покрытием 32 со стороны внутренней области устанавливают более узким, чем шаг размещения грунтозацепных канавок 331 в центральной поверхности контакта с дорожным покрытием 33 со стороны внешней области. Таким образом, при разделении экваториальной плоскостью шины CL создается различие (N_in>N_out) в количествах N_in и N_out между поверхностями контакта с дорожным покрытием 31 и 32 в области на внутренней стороне в поперечном направлении шины и поверхностями контакта с дорожным покрытием 33 и 34 в области на внешней стороне в поперечном направлении шины. Таким образом, в связи с различием в количестве между грунтозацепными канавками 311-341, жесткость первой поверхности контакта с дорожным покрытием 31 и второй поверхности контакта с дорожным покрытием 32, расположенных во внутренней области, является низкой, а жесткость третьей поверхности контакта с дорожным покрытием 33 и четвертой поверхности контакта с дорожным покрытием 34, расположенных во внешней области, является высокой.

В описанной выше конфигурации двухмерные прорези 312 и 322 располагаются во внутренней области, а трехмерные прорези 332 и 342 располагаются во внешней области. Следовательно, жесткость во внутренней области является низкой, а жесткость во внешней области является высокой (см. фиг.2). Количество N_in грунтозацепных канавок 311 в плечевой поверхности контакта с дорожным покрытием 31 со стороны внутренней области и количество N_out грунтозацепных канавок 341 в плечевой поверхности контакта с дорожным покрытием 34 со стороны внешней области соотносятся таким образом, что N_in>N_out. Следовательно, жесткость внутренней области является низкой, а жесткость внешней области является высокой. Таким образом, происходит синергичное снижение жесткости во внутренней области и синергичное увеличение жесткости во внешней области. В связи с этим, при установке пневматической шины 1 на автомобиль таким образом, чтобы внутренняя область находилась с внутренней стороны в поперечном направлении автомобиля, внутренняя область позволит существенно повысить устойчивость рулевого управления на заснеженном дорожном покрытии (поворот на заснеженном покрытии), а внешняя область позволит существенно повысить устойчивость рулевого управления на сухом дорожном покрытии (перестройка на другую полосу на высокой скорости). Следовательно, достигаются высокие показатели устойчивости рулевого управления как на сухом, так и на заснеженном дорожном покрытии.

На фиг.3 и 4 представлены пояснительные схемы, иллюстрирующие примеры трехмерной прорези. Эти чертежи представляют собой вид в перспективе лицевой стенки трехмерной прорези.

У трехмерной прорези, представленной на фиг.3, лицевая стенка прорези имеет строение, в котором пирамиды и перевернутые пирамиды соединяются по длине прорези. Иными словами, лицевая стенка прорези образована взаимно смещенными косыми поверхностями зигзагообразной формы со стороны поверхности протектора и зигзагообразной формы с нижней стороны в поперечном направлении шины таким образом, что между зигзагообразными формами со стороны поверхности протектора и с нижней стороны образуются взаимно противоположные выступы и углубления. Кроме того, при наличии таких выступов и углублений, если смотреть в направлении вращения шины, лицевая стенка прорези образуется путем соединения точки перегиба выступа со стороны поверхности протектора с точкой перегиба углубления с нижней стороны, точки перегиба углубления со стороны поверхности протектора с точкой перегиба выступа с нижней стороны и точки перегиба выступа являются взаимно смежными с точкой перегиба выступа со стороны поверхности протектора и точки перегиба выступа с нижней стороны с линиями ребер; и соединения этих линий ребер ступенчатыми плоскостями в поперечном направлении шины. Кроме того, первая лицевая стенка прорези имеет гофрированную поверхность, на которой в поперечном направлении шины попеременно располагаются выпуклые пирамиды и перевернутые пирамиды, а вторая лицевая стенка прорези имеет гофрированную поверхность, на которой в поперечном направлении шины попеременно располагаются вогнутые пирамиды и перевернутые пирамиды. Более того, у лицевой стенки прорези по меньшей мере гофрированные поверхности, расположенные с крайних сторон на обоих концах прорези, ориентированы в направлении внешней стороны шашек. Следует отметить, что примеры такой трехмерной прорези включают в себя технологию, описанную в патенте Японии № 3894743.

Кроме того, у трехмерной прорези, представленной на фиг.4, лицевая стенка имеет строение, в котором множество призмообразных элементов, имеющих форму шашек, соединены по глубине прорези и по длине прорези и при этом отклоняются относительно глубины прорези. Иными словами, лицевая стенка прорези на поверхности протектора имеет зигзагообразную форму. Кроме того, лицевая стенка прорези имеет изогнутые области по меньшей мере в двух местах в радиальном направлении шины в шашках, и эти области изгибаются в продольном направлении шины и соединяются в поперечном направлении шины. Более того, эти изогнутые области имеют зигзагообразную форму с отклонениями в радиальном направлении шины. Кроме того, в то время как в продольном направлении шины отклонение в лицевой стенке прорези является постоянным, угол наклона в продольном направлении шины относительно нормального линейного направления поверхности протектора выполнен таким образом, чтобы он был меньше на участке с нижней стороны прорези, чем на участке со стороны поверхности протектора; а отклонение в радиальном направлении изогнутой области выполнено таким образом, чтобы оно было больше на участке с нижней стороны прорези, чем на участке со стороны поверхности протектора. Следует отметить, что примеры такой трехмерной прорези включают в себя технологию, описанную в патенте Японии № 4316452.

В описанной выше конфигурации количество N_in грунтозацепных канавок 311 со стороны внутренней области и количество N_out грунтозацепных канавок 341 со стороны внешней области предпочтительно соотносятся таким образом, что выполняются следующие условия: 64≤N_in≤78, 54≤N_out≤68 и 3≤N_in-N_out≤12. Таким образом, соотношение между количеством N_in грунтозацепных канавок 311 со стороны внутренней области и количеством N_out грунтозацепных канавок 341 со стороны внешней области будет подходящим.

Кроме того, в описанной выше конфигурации плотность прорезей D_in на внутренней области и плотность прорезей D_out на внешней области предпочтительно соотносятся таким образом, что 1,2≤D_in/D_out≤2,0 (не показано). Иными словами, плотность прорезей D_in на внутренней области предпочтительно больше плотности прорезей D_out на внешней области. Таким образом, соотношение между плотностью прорезей D_in на внутренней области и плотностью прорезей D_out на внешней области будет подходящим.

В настоящем документе под «плотностью прорезей» понимается отношение длины прорези к площади поверхности зацепления с дорожным покрытием поверхности контакта с дорожным покрытием. Длину прорезей можно увеличить, придав прорезям изогнутую форму. Кроме того, плотность прорезей можно легко регулировать, например, путем изменения длины прорезей, количества прорезей и т.п.

В описанной выше конфигурации относительная площадь канавок S_in на внутренней области и относительная площадь канавок S_out на внешней области на поле зацепления шины с дорожным покрытием соотносятся таким образом, что 1,2≤S_out/S_in≤2,0, а общая относительная площадь канавок S_t на поле зацепления шины с дорожным покрытием находится в диапазоне 0,25≤S_t≤0,38. Таким образом, отношение S_out/S_in относительной площади канавок S_out во внешней области к относительной площади канавок S_in во внутренней области, а также общая относительная площадь канавок S_t являются подходящими.

Кроме того, в описанной выше конфигурации ширина W1 грунтозацепных канавок 311 во внутренней области (не показана) и ширина W2 грунтозацепных канавок 341 во внешней области (не показана) предпочтительно соотносятся таким образом, что 0,5 мм≤W1-W2≤2,0 мм. В такой конфигурации грунтозацепные канавки 311 во внутренней области будут широкими и, следовательно, будут улучшаться эксплуатационные показатели шины на заснеженном дорожном покрытии. Также грунтозацепные канавки 341 во внешней области будут узкими и, следовательно, будет повышаться устойчивость рулевого управления шины на сухом дорожном покрытии.

Кроме того, в описанной выше конфигурации глубина Hd1 грунтозацепных канавок 311 во внутренней области и глубина Hd2 грунтозацепных канавок 341 во внешней области предпочтительно соотносятся таким образом, что 1,0 мм≤Hd1-Hd2≤3,0 мм. В такой конфигурации грунтозацепные канавки 311 во внутренней области будут глубокими и, следовательно, будут улучшаться эксплуатационные показатели шины на заснеженном дорожном покрытии. Также грунтозацепные канавки 341 во внешней области будут глубокими и, следовательно, будут улучшаться эксплуатационные показатели шины на заснеженном дорожном покрытии.

В настоящем документе под «относительной площадью канавок» понимается следующее отношение: площадь канавок/(площадь канавок + площадь поверхности зацепления с дорожным покрытием). Под «площадью канавок» понимается площадь просвета канавок, находящихся в поле зацепления шины. Под «канавкой» понимаются продольные канавки и грунтозацепные канавки в области протектора, и сюда не относятся прорези и разрезы. Под «площадью зацепления с дорожным покрытием» понимается площадь зацепления между шиной и полем зацепления. Следует отметить, что площадь канавок и площадь зацепления с дорожным покрытием измеряются на поверхности контакта между шиной и плоской пластиной в конфигурации, в которой шина установлена на стандартный диск, накачана до заданного внутреннего давления, размещена перпендикулярно относительно плоской пластины в статичном положении, и к ней приложена заданная нагрузка. Следует отметить, что под «полем зацепления шины с дорожным покрытием» понимается поверхность контакта между шиной и плоской пластиной в конфигурации, в которой шина установлена на стандартный диск, накачана до заданного внутреннего давления, размещена перпендикулярно относительно плоской пластины в статичном положении, и к ней приложена заданная нагрузка.

Под «стандартным диском» в настоящем документе понимается «стандартный диск» согласно определению Японской ассоциации производителей шин (JATMA), «проектный диск» согласно определению Ассоциации по шинам и дискам (TRA) или «измерительный диск» согласно определению Европейской технической организации по шинам и дискам (ETRTO). Кроме того, термин «заданное внутреннее давление» включает в себя параметры «максимальное давление воздуха» согласно определению JATMA, максимальная величина в «ПРЕДЕЛАХ НАГРУЗКИ ШИНЫ ПРИ РАЗЛИЧНЫХ ДАВЛЕНИЯХ ХОЛОДНОЙ НАКАЧКИ» согласно определению TRA или «ДАВЛЕНИЕ НАКАЧКИ» согласно определению ETRTO. Заданная нагрузка включает в себя параметры «максимальная нагрузочная способность» согласно определению JATMA, максимальная величина в «ПРЕДЕЛАХ НАГРУЗКИ ШИНЫ ПРИ РАЗЛИЧНЫХ ДАВЛЕНИЯХ ХОЛОДНОЙ НАКАЧКИ» согласно определению TRA или «НАГРУЗОЧНАЯ СПОСОБНОСТЬ» согласно определению ETRTO. Однако в соответствии с определением JATMA в случае шин для пассажирского автомобиля заданное внутреннее давление представляет собой давление воздуха, равное 180 кПа, а предусмотренная нагрузка составляет 88% максимальной нагрузочной способности.

Модифицированный пример 1

На фиг.5 представлен поясняющий рисунок, иллюстрирующий модифицированный пример 1 пневматической шины, показанной на фиг.1.

В конфигурации, представленной на фиг.2, располагаются три главные продольные канавки 21-23. Однако конфигурация этим не ограничивается, и в ней могут располагаться три или более главные продольные канавки 21-24 (см. фиг.5).

Например, в модифицированном примере 1, представленном на фиг.5, пневматическая шина 1 имеет четыре главные продольные канавки 21-24. Кроме того, главные продольные канавки 21, 22, 23 и 24 располагаются по две с каждой стороны, симметрично слева и справа от экваториальной плоскости шины CL. Более того, эти главные продольные канавки 21-24 разделяют три центральные поверхности контакта с дорожным покрытием 32-34 и пару из левой и правой плечевых поверхностей контакта с дорожным покрытием 31 и 35. В настоящем документе четыре главные продольные канавки 21-24 и пять поверхностей контакта с дорожным покрытием 31-35 называются, в порядке от внутренней стороны в поперечном направлении автомобиля к внешней стороне в поперечном направлении автомобиля, первой поверхностью контакта с дорожным покрытием 31, первой главной продольной канавкой 21, второй поверхностью контакта с дорожным покрытием 32, второй главной продольной канавкой 22, третьей поверхностью контакта с дорожным покрытием 33, третьей главной продольной канавкой 23, четвертой поверхностью контакта с дорожным покрытием 34, четвертой главной продольной канавкой 24 и пятой поверхностью контакта с дорожным покрытием 35.

Кроме того, третья поверхность контакта с дорожным покрытием 33 находится на экваториальной плоскости шины CL, а границы внутренней и внешней областей располагаются во второй поверхности контакта с дорожным покрытием 32 и четвертой поверхности контакта с дорожным покрытием 34 соответственно. Таким образом, первая поверхность контакта с дорожным покрытием 31 и часть второй поверхности контакта с дорожным покрытием 32 относятся к внутренней области, а часть четвертой поверхности контакта с дорожным покрытием 34 и пятая поверхность контакта с дорожным покрытием 35 относятся к внешней области. Кроме того, каждая из поверхностей контакта с дорожным покрытием со второй 32 по четвертую 34 имеет множество грунтозацепных канавок 321, 331 и 341 соответственно и выполнена в виде ряда шашек.

Кроме того, каждая из поверхностей контакта с дорожным покрытием 31-35 имеет множество прорезей 312, 322, 332, 342 и 352 соответственно. Все прорези 312 и 322, расположенные в первой поверхности контакта с дорожным покрытием 31 и во второй поверхности контакта с дорожным покрытием 32 во внутренней области, являются двухмерными, а все прорези 342 и 352, расположенные в четвертой поверхности контакта с дорожным покрытием 34 и пятой поверхности контакта с дорожным покрытием 35 во внешней области, являются трехмерными.

Следует отметить, что прорези 332, расположенные в третьей поверхности контакта с дорожным покрытием 33, находящейся на экваториальной плоскости шины CL, могут быть двухмерными или трехмерными. В альтернативном варианте осуществления может располагаться комбинация двухмерных и трехмерных прорезей. В конфигурации, в которой все прорези 332, расположенные в третьей поверхности контакта с дорожным покрытием 33, являются двухмерными, будет повышаться устойчивость рулевого управления шины на заснеженном дорожном покрытии. Напротив, в конфигурации, в которой все прорези 332 являют