Устройство бесконтактной передачи мощности, устройство бесконтактного приема мощности и система бесконтактной передачи мощности
Иллюстрации
Показать всеПредлагается устройство бесконтактной передачи мощности, которое может бесконтактным образом передавать мощность устройству приема мощности. Технический результат - обеспечение совместимости модуля передачи и модуля приема без фактической передачи мощности. Устройство бесконтактной передачи мощности включает в себя модуль передачи мощности, сконфигурированный с возможностью бесконтактным образом передавать мощность устройству приема мощности, и модуль связи, сконфигурированный с возможностью отправлять информацию, которая относится к распределению магнитного потока модуля передачи мощности во время передачи мощности, устройству приема мощности. 6 н. и 9 з.п. ф-лы, 31 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ
[0001] Настоящее изобретение относится к устройству бесконтактной передачи мощности, устройству бесконтактного приема мощности и к системе бесконтактной передачи мощности.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
[0002] Технология для бесконтактной передачи или приема мощности к или от устройства в последнее время привлекает внимание, поскольку она требует меньше усилий на соединение или т.п. Бесконтактная зарядка также нашла практическое использование для зарядки переносных устройств и электрических автомобилей.
[0003] Публикация японской патентной заявки № 2010-172084 (патентный документ 1) раскрывает модуль катушки для устройства бесконтактной подачи мощности, в котором катушка намотана на множество разделенных плоских магнитных сердечников.
[0004] Патентный документ 1: Публикация японской патентной заявки № 2010-172084
Патентный документ 2: Международная патентная заявка № 2011/016736
Патентный документ 3: Публикация патентной заявки США № 2010/259110
Патентный документ 4: Публикация японской патентной заявки № 2000-269059
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
[0005] В дополнение к модулю катушки, раскрытому в JP 2010-172084 A, модули катушек множества типов были изучены для применений в бесконтактной подаче мощности.
[0006] В бесконтактной подаче мощности распределение магнитного потока, создаваемое в модуле катушки, или распределение магнитного потока, полезное для приема мощности посредством модуля катушки, отличается в зависимости от формы катушки, способа намотки и формы магнитного сердечника. Когда плотности магнитного потока модуля передачи мощности и модуля приема мощности, которые составляют пару, отличаются друг от друга, электрическая мощность не может быть передана эффективным образом.
[0007] Дополнительно, как правило, трудно для пользователя идентифицировать совпадение и несовпадение плотности магнитного потока, и совместимость модуля передачи мощности и модуля приема мощности не может быть идентифицирована, если операция зарядки фактически не выполняется, что является неудобным.
[0008] Другим неудобством является то, что мощность не может быть передана и получена только на том основании, что плотности магнитного потока модуля передачи мощности и модуля приема мощности не совпадают.
[0009] Задачей изобретения является предоставление устройства бесконтактной передачи мощности, устройства бесконтактного приема мощности и системы бесконтактной передачи мощности, в которой совместимость модуля передачи мощности и модуля приема мощности может быть идентифицирована без фактической передачи мощности между модулем передачи мощности и модулем приема мощности и без проверки, присутствует ли совместимый модуль катушки поблизости от модуля передачи мощности.
[0010] Другой задачей изобретения является предоставление устройства бесконтактной передачи мощности, устройства бесконтактного приема мощности и системы бесконтактной передачи мощности, которые могут быть адаптированы для множества систем.
[0011] Резюмируя, изобретение предоставляет устройство бесконтактной передачи мощности, которое может бесконтактным образом передавать мощность устройству приема мощности, устройство бесконтактной передачи мощности включает в себя модуль передачи мощности, сконфигурированный, чтобы иметь возможность бесконтактным образом передавать мощность устройству приема мощности, и модуль связи, который отправляет информацию, которая относится к распределению магнитного потока модуля передачи мощности во время передачи мощности, устройству приема мощности.
[0012] Предпочтительно, чтобы информация была использована для того, чтобы определять, должно или нет устройств приема мощности принимать мощность от устройства бесконтактной передачи мощности.
[0013] Более предпочтительно, чтобы модуль связи передавал информацию прежде, чем модуль передачи мощности начинает передавать мощность модулю приема мощности.
[0014] Предпочтительно, чтобы информация включала в себя информацию, относящуюся к структуре части, составляющей модуль передачи мощности, или параметр модуля передачи мощности, который влияет на распределение магнитного потока, возникающее в модуле передачи мощности во время передачи мощности.
[0015] Другой аспект изобретения находится в устройстве бесконтактной передачи мощности, которое может бесконтактным образом передавать мощность устройству приема мощности, устройство бесконтактной передачи мощности включает в себя модуль передачи мощности, сконфигурированный, чтобы иметь возможность бесконтактным образом передавать мощность устройству приема мощности, и устройстве регулировки, которое может регулировать распределение магнитного потока модуля передачи мощности во время передачи мощности.
[0016] Предпочтительно, чтобы устройство передачи мощности дополнительно включало в себя модуль управления, который управляет устройством регулировки на основе информации, относящейся к устройству приема мощности, так что распределение магнитного потока модуля передачи мощности во время передачи мощности становится совместимым с устройством приема мощности.
[0017] Еще один аспект изобретения находится в устройстве бесконтактного приема мощности, которое может бесконтактным образом принимать мощность от устройства передачи мощности, устройство бесконтактного приема мощности включает в себя модуль приема мощности, сконфигурированный, чтобы иметь возможность бесконтактным образом принимать мощность от устройства передачи мощности, и модуль связи, который отправляет информацию, которая относится к распределению магнитного потока модуля приема мощности во время приема мощности, устройству передачи мощности.
[0018] Предпочтительно, чтобы информация была использована для того, чтобы определять, должно или нет устройство передачи мощности передавать мощность устройству бесконтактного приема мощности.
[0019] Более предпочтительно, чтобы модуль связи передавал информацию прежде, чем модуль приема мощности начинает принимать мощность от модуля передачи мощности.
[0020] Предпочтительно, чтобы информация включала в себя информацию, относящуюся к структуре части, составляющей модуль приема мощности, или параметр модуля приема мощности, который влияет на распределение магнитного потока, которое должно возникать в модуле приема мощности во время приема мощности.
[0021] Еще один аспект изобретения находится в устройстве бесконтактного приема мощности, которое может бесконтактным образом принимать мощность от устройства передачи мощности, устройство бесконтактного приема мощности включает в себя модуль приема мощности, сконфигурированный, чтобы иметь возможность бесконтактным образом принимать мощность от устройства передачи мощности, и устройстве регулировки, которое может регулировать распределение магнитного потока, подходящее для модуля приема мощности во время приема мощности.
[0022] Предпочтительно, чтобы устройство приема мощности дополнительно включало в себя модуль управления, который управляет устройством регулировки на основе информации, относящейся к устройству передачи мощности, так что распределение магнитного потока, подходящее для модуля приема мощности во время приема мощности, становится совместимым с устройством передачи мощности.
[0023] Еще один аспект изобретения находится в системе бесконтактной передачи мощности, включающей в себя устройство приема мощности и устройство передачи мощности, которое может бесконтактным образом передавать мощность устройству приема мощности. Устройство передачи мощности включает в себя модуль передачи мощности, сконфигурированный, чтобы иметь возможность бесконтактным образом передавать мощность устройству приема мощности, и модуль связи, который отправляет информацию, которая относится к распределению магнитного потока модуля передачи мощности во время передачи мощности, устройству приема мощности.
[0024] Система бесконтактной передачи мощности согласно еще одному аспекту изобретения включает в себя устройство передачи мощности и устройство приема мощности, которое может бесконтактным образом принимать мощность от устройства передачи мощности. Устройство приема мощности включает в себя модуль приема мощности, сконфигурированный, чтобы иметь возможность бесконтактным образом принимать мощность от устройства передачи мощности, и модуль связи, который отправляет информацию, которая относится к распределению магнитного потока модуля приема мощности во время приема мощности, устройству передачи мощности.
[0025] В соответствии с изобретением, совместимость модуля передачи мощности и модуля приема мощности может быть идентифицирована без фактической передачи мощности между модулем передачи мощности и модулем приема мощности и без проверки, присутствует ли совместимый модуль катушки поблизости от модуля передачи мощности.
[0026] Другим результатом изобретения является то, что возможность передачи мощности увеличивается с использованием конфигурации, которая может быть приспособлена для множества систем.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0027] Фиг. 1 - это общая блок-схема, иллюстрирующая пример системы бесконтактной передачи мощности.
Фиг. 2 - это схематичный чертеж для пояснения принципа передачи мощности на основе резонансного метода.
Фиг. 3 - это схематичный чертеж, иллюстрирующий имитационную модель системы передачи мощности.
Фиг. 4 показывает соотношение сдвига между собственными частотами секции 93 передачи мощности с секцией 96 приема мощности, показанной на фиг. 3, и эффективности передачи мощности.
Фиг. 5 - это график, показывающий соотношение между эффективностью передачи мощности, когда воздушный зазор AG изменяется, и частотой f3 электрического тока, подаваемого к резонирующей катушке в модуле передачи мощности в состоянии, в котором собственная частота f0 является фиксированной.
Фиг. 6 показывает соотношение между расстоянием от источника электрического тока или источника магнитного тока и интенсивностью электромагнитного поля.
Фиг. 7 - это принципиальная схема, показывающая подробную конфигурацию системы 10 передачи мощности, показанной на фиг. 1.
Фиг. 8 показывает примеры разновидностей модуля передачи мощности и модуля приема мощности.
Фиг. 9 иллюстрирует модуль круглой катушки.
Фиг. 10 иллюстрирует путь прохождения магнитного потока в модуле круглой катушки.
Фиг. 11 иллюстрирует модуль поляризованной катушки.
Фиг. 12 иллюстрирует путь прохождения магнитного потока в модуле поляризованной катушки.
Фиг. 13 иллюстрирует модуль продольно ориентированной поляризованной катушки.
Фиг. 14 иллюстрирует модуль поперечно ориентированной поляризованной катушки.
Фиг. 15 иллюстрирует работу системы бесконтактной передачи мощности согласно варианту осуществления 1.
Фиг. 16 - это блок-схема последовательности операций, иллюстрирующая управление, которое выполняется в транспортном средстве и устройстве передачи мощности в варианте осуществления 1.
Фиг. 17 иллюстрирует работу системы бесконтактной передачи мощности примера разновидности варианта 1 осуществления.
Фиг 18 - это блок-схема последовательности операций, иллюстрирующая управление, выполняемое в транспортном средстве и устройстве передачи мощности в примере разновидности варианта 1 осуществления.
Фиг. 19 иллюстрирует работу системы бесконтактной передачи мощности варианта 2 осуществления.
Фиг. 20 иллюстрирует работу системы бесконтактной передачи мощности примера разновидности, показанной на фиг. 19.
Фиг. 21 показывает пример конфигурации модуля 220AB передачи мощности, показанного на фиг. 20.
Фиг. 22 - это вид в разрезе, взятом по линии XXII-XXII на фиг. 21 в случае работы в рабочем режиме C.
Фиг. 23 - это вид в разрезе, взятом по линии XXII-XXII на фиг. 21 в случае работы в рабочем режиме P.
Фиг. 24 - это принципиальная схема, показывающая первый пример конфигурации переключения соединения катушки 221-1 и катушки 221-2.
Фиг. 25 - это принципиальная схема, показывающая второй пример конфигурации переключения соединения катушки 221-1 и катушки 221-2.
Фиг. 26 - это принципиальная схема, показывающая третий пример конфигурации переключения соединения катушки 221-1 и катушки 221-2.
Фиг. 27 - это блок-схема последовательности операций, иллюстрирующая управление, выполняемое в транспортном средстве и устройстве передачи мощности в варианте осуществления 2.
Фиг. 28 показывает другой пример разновидности катушки, показанной на фиг. 21.
Фиг. 29 иллюстрирует работу системы бесконтактной передачи мощности примера разновидности варианта 2 осуществления.
Фиг. 30 иллюстрирует работу примера разновидности системы бесконтактной передачи мощности, показанной на фиг. 29.
Фиг. 31 - это блок-схема последовательности операций для пояснения управления, выполняемого в транспортном средстве и устройстве передачи мощности в примере разновидности варианта 2 осуществления.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
[0028] Варианты осуществления изобретения будут пояснены более подробно ниже со ссылкой на прилагаемые чертежи. На чертежах, аналогичные или похожие компоненты обозначены аналогичными ссылочными номерами, и их пояснение не повторяется.
[0029] [Общая конфигурация системы бесконтактной передачи мощности]
Фиг. 1 - это общая блок-схема, которая показывает пример системы бесконтактной передачи мощности. Транспортное средство 100 является, например, электрическим автомобилем, использующим вращающуюся электрическую машину в качестве источника приведения в движение, но может быть любым автомобилем при условии, что электрическая мощность принимается бесконтактным образом. Дополнительно, объект приема мощности может не быть транспортным средством.
[0030] Обращаясь к фиг. 1, система бесконтактной передачи мощности включает в себя устройство 200 передачи мощности и транспортное средство 100. Устройство 200 передачи мощности включает в себя модуль 250 подачи мощности, модуль 220 передачи мощности и модуль 230 связи. Транспортное средство 100 включает в себя модуль 110 приема мощности, выпрямитель 180, устройство 190 накопления электричества и устройство 118 генерирования мощности.
[0031] Модуль 250 подачи мощности получает электрическую мощность от источника 12 подачи мощности и генерирует высокочастотную электрическую мощность переменного тока (AC). Источник 12 подачи мощности может быть коммерческим источником подачи мощности или независимым устройством подачи мощности. Модуль 220 передачи мощности получает подаваемую высокочастотную электрическую AC-мощность от модуля 250 подачи мощности и бесконтактным образом передает электрическую мощность модулю 110 приема мощности. Например, модуль 220 передачи мощности сконфигурирован из резонансного контура, включающего в себя катушку и конденсатор.
[0032] Между тем, в транспортном средстве 100, модуль 110 приема мощности бесконтактным образом получает электрическую мощность, переданную от модуля 220 передачи мощности на стороне устройства 200 передачи мощности, и выводит полученную мощность к выпрямителю 180. Например, модуль 110 приема мощности также сконфигурирован из резонансного контура, включающего в себя катушку и конденсатор.
[0033] Выпрямитель 180 преобразует электрическую AC-мощность, которая получена от модуля 110 приема мощности, в мощность постоянного тока (DC) и выводит преобразованную DC-мощность в устройство 190 накопления электричества, таким образом, заряжая устройство 190 накопления электричества. Устройство 190 накопления электричества накапливает электрическую мощность, выведенную из выпрямителя 180, а также накапливает электрическую мощность, сгенерированную посредством устройства 118 генерирования мощности. Устройство 190 накопления электричества подает накопленную электрическую мощность к устройству 118 генерирования мощности. Конденсатор большой емкости может быть использован в качестве устройства 190 накопления электричества.
[0034] Устройство 118 генерирования мощности использует электрическую мощность, накопленную в устройстве 190 накопления электричества, чтобы формировать мощность приведения в движение для перемещения транспортного средства 100. Хотя конкретно не показано на фиг. 1, устройство 118 генерирования мощности, например, включает в себя инвертор, который получает электрическую мощность от устройства 190 накопления электричества, двигатель, который приводится в действие посредством инвертора, и ведущие колеса, которые приводятся в движение посредством двигателя. Устройство 118 генерирования мощности может также включать в себя генератор для зарядки устройства 190 накопления электричества и двигатель, который может приводить в действие генератор.
[0035] В системе бесконтактной передачи мощности собственная частота модуля 220 передачи мощности устройства 200 передачи мощности является такой же, что и собственная частота модуля 110 приема мощности транспортного средства 100. Здесь, собственная частота модуля 220 передачи мощности (модуля 110 приема мощности) означает частоту колебаний в случае свободных колебаний электрической схемы (резонансного контура), составляющей модуль 220 передачи мощности (модуль 110 приема мощности). В электрической схеме (резонансном контуре), составляющей модуль 220 передачи мощности (модуль 110 приема мощности), собственная частота в то время, когда тормозное усилие или электрическое сопротивление равно нулю, также называется резонансной частотой модуля 220 передачи мощности (модуля 110 приема мощности).
[0036] "Одинаковая" собственная частота, как упомянуто выше в данном документе, не только означает точное равенство, но также включает в себя случай, в котором собственная частота является, по существу, одинаковой. "По существу, одинаковая" собственная частота означает, например, что различие между собственной частотой модуля 220 передачи мощности и собственной частотой модуля 110 приема мощности находится в пределах 10% собственной частоты модуля 220 передачи мощности или модуля 110 приема мощности.
[0037] Модуль 220 передачи мощности бесконтактным образом передает мощность модулю 110 приема мощности транспортного средства 100, по меньшей мере, либо через магнитное поле, которое формируется между модулем 220 передачи мощности и модулем 110 приема мощности и колеблется с конкретной частотой, либо через электрическое поле, которое формируется между модулем 220 передачи мощности и модулем 110 приема мощности и колеблется с конкретной частотой. Коэффициент k связности между модулем 220 передачи мощности и модулем 110 приема мощности предпочтительно равен или меньше 0,1, и модуль 220 передачи мощности и модуль 110 приема мощности спроектированы так, что произведение коэффициента k связности и добротности, представляющей силу резонанса, равно или выше предварительно определенного значения (например, 1,0).
[0038] Когда модуль 220 передачи мощности и модуль 110 приема мощности, таким образом, должны резонировать за счет электромагнитного поля, мощность бесконтактным образом передается от модуля 220 передачи мощности устройства 200 передачи мощности модулю 110 приема мощности транспортного средства 100.
[0039] Как упомянуто выше в данном документе, в системе бесконтактной передачи мощности мощность бесконтактным образом передается от модуля 220 передачи мощности к модулю 110 приема мощности посредством инструктирования модулю 220 передачи мощности и модулю 110 приема мощности резонировать посредством электромагнитного поля. Связь между модулем 220 передачи мощности и модулем 110 приема мощности при такой передаче мощности называется, например, "связью с помощью магнитного резонанса", "связью с помощью резонанса магнитного поля", "связью с помощью резонанса электромагнитного поля" или "связью с помощью резонанса электрического поля". "Связь с помощью резонанса электромагнитного поля" означает связь, которая включает в себя все из "связи с помощью магнитного резонанса", "связи с помощью резонанса магнитного поля" и "связи с помощью резонанса электрического поля".
[0040] Когда модуль 220 передачи мощности и модуль 110 приема мощности сформированы посредством катушек, как упомянуто выше в данном документе, модуль 220 передачи мощности и модуль 110 приема мощности связываются, главным образом, через магнитное поле, и формируется "связь с помощью магнитного резонанса" или "связь с помощью резонанса магнитного поля". Антенна, например, такая как меандрообразная антенна, может также быть использована для модуля 220 передачи мощности и модуля 110 приема мощности. В этом случае, модуль 220 передачи мощности и модуль 110 приема мощности связываются, главным образом, через электрическое поле, и формируется "связь с помощью резонанса электрического поля".
[0041] Фиг. 2 - это схематичный чертеж, иллюстрирующий принцип передачи мощности посредством резонансного метода.
Обращаясь к фиг. 2, в резонансном методе, две индуктивно-емкостных (LC) резонирующих катушки, имеющих одинаковую собственную частоту, резонируют в электромагнитном поле (ближнем поле) тем же образом, как резонируют два камертона, посредством чего, мощность передается от одной катушки к другой катушке через электромагнитное поле.
[0042] Более конкретно, первичная катушка 320 соединена с источником 310 высокочастотной мощности, и высокочастотная мощность подается посредством электромагнитной индукции к первичной саморезонирующей катушке 330, которая магнитным образом соединена с первичной катушкой 320. Первичная саморезонирующая катушка 330 является LC-резонатором, который сформирован посредством индуктивности и конструктивной емкости самой катушки, и резонирует через электромагнитное поле (ближнее поле) со вторичной саморезонирующей катушкой 340, имеющей ту же резонансную частоту, что и первичная саморезонирующая катушка 330. Как результат, энергия (мощность) передается от первичной саморезонирующей катушки 330 ко вторичной саморезонирующей катушке 340 через электромагнитное поле. Энергия (мощность), переданная ко вторичной саморезонирующей катушке 340, получается вторичной катушкой 350, которая магнитным образом связана со вторичной саморезонирующей катушкой 340 посредством электромагнитной индукции, и подается к нагрузке 360. Передача мощности посредством резонансного метода реализуется, когда добротность, представляющая силу резонанса между первичной саморезонирующей катушкой 330 и вторичной саморезонирующей катушкой 340, выше, чем, например, 100.
[0043] В системе передачи мощности согласно варианту осуществления мощность передается от модуля передачи мощности к модулю приема мощности посредством инструктирования модулю передачи мощности и модулю приема мощности резонировать посредством электромагнитного поля, и коэффициент (k) связности между модулем передачи мощности и модулем приема мощности предпочтительно равен или меньше 0,1. Коэффициент (k) связности не ограничен этим значением и может принимать различные значения, при которых передача мощности является эффективной. При передаче мощности с помощью электромагнитной индукции коэффициент (k) связности между модулем передачи мощности и модулем приема мощности типично близок к 1,0.
[0044] Что касается соотношения соответствия с фиг. 1, вторичная саморезонирующая катушка 340 и вторичная катушка 350 соответствуют модулю 110 приема мощности на фиг. 1, а первичная катушка 320 и первичная саморезонирующая катушка 330 соответствуют модулю 220 передачи мощности, показанному на фиг. 1.
[0045] Результаты моделирования, полученные посредством анализа соотношения между разницей в собственной частоте и эффективностью передачи мощности, поясняются ниже со ссылкой на фиг. 3 и 4. Фиг. 3 показывает режим моделирования системы передачи мощности. Система 89 передачи мощности снабжена модулем 90 передачи мощности и модулем 91 приема мощности, и модуль 90 передачи мощности включает в себя катушку 92 электромагнитной индукции и секцию 93 передачи мощности. Секция 93 передачи мощности включает в себя резонирующую катушку 94 и конденсатор 95, предусмотренные в резонирующей катушке 94.
[0046] Модуль 91 приема мощности включает в себя секцию 96 приема мощности и катушку 97 электромагнитной индукции. Секция 96 приема мощности включает в себя резонирующую катушку 99 и конденсатор 98, соединенный с резонирующей катушкой 99.
[0047] Индуктивность резонирующей катушки 94 задана равной индуктивности Lt, а емкость конденсатора 95 задана равной емкости C1. Индуктивность резонирующей катушки 99 задана равной индуктивности Lr, а емкость конденсатора 98 задана равной емкости C2. Когда параметры заданы таким образом, собственная частота f1 секции 93 передачи мощности представляется посредством уравнения (1) ниже, а собственная частота f2 секции 96 приема мощности представляется посредством уравнения (2) ниже.
[0048] f1=1/{2π(Lt×C1)1/2} Уравнение (1)
f2=1/{2π(Lr×C2)1/2} Уравнение (2)
Фиг. 4 показывает соотношение между сдвигом собственных частот секции 93 передачи мощности и секции 96 приема мощности и эффективностью передачи мощности. В случае, показанном на фиг. 4, индуктивность Lr и емкости C1 и C2 являются фиксированными, и только индуктивность Lt изменяется.
[0049] В этом моделировании, относительное позиционное размещение резонирующей катушки 94 и резонирующей катушки 99 фиксировано, и частота электрического тока, подаваемого к секции 93 передачи мощности, является постоянной.
[0050] На графике, показанном на фиг. 4, сдвиг (%) собственных частот нанесен по абсциссе, а эффективность передачи мощности (%) при постоянной частоте нанесена относительно ординаты. Сдвиг (%) собственных частот представлен посредством уравнения (3) ниже.
[0051] (Сдвиг (%) собственных частот)={(f1-f2)/f2}×100% Уравнение (3)
Как следует из фиг. 4, когда сдвиг (%) собственных частот равен ±0%, эффективность передачи мощности достигает 100%. Когда сдвиг (%) собственных частот равен ±5%, эффективность передачи мощности равна 40%. Когда сдвиг (%) собственных частот равен ±10%, эффективность передачи мощности равна 10%. Когда сдвиг (%) собственных частот равен ±15%, эффективность передачи мощности равна 5%. Таким образом, ясно, что эффективность передачи мощности может быть увеличена посредством задания собственной частоты секции передачи мощности и секции приема мощности так, что абсолютное значение (разница в собственной частоте) сдвига (%) собственных частот находится в диапазоне, равном или меньшем 10% собственной частоты секции 96 приема мощности. Также ясно, что эффективность передачи мощности может быть дополнительно увеличена посредством задания собственной частоты секции передачи мощности и секции приема мощности так, что абсолютное значение (разница в собственной частоте) сдвига (%) собственных частот находится в диапазоне, равном или меньшем 5% собственной частоты секции 96 приема мощности. Программное обеспечение анализа электромагнитного поля (JMAG (зарегистрированная торговая марка): созданное корпорацией JSOL) было использовано в качестве программного обеспечения моделирования.
[0052] Магнитное поле конкретной частоты, которое формируется вокруг резонирующей катушки в модуле 220 передачи мощности, показанном на фиг. 1, будет пояснено ниже. "Магнитное поле конкретной частоты", как упомянуто в данном случае, типично коррелирует с эффективностью передачи мощности и частотой электрического тока, подаваемого резонирующей катушке модуля 220 передачи мощности. Соответственно, сначала поясняется соотношение между эффективностью передачи мощности и частотой электрического тока, подаваемого к резонирующей катушке модуля 220 передачи мощности. Эффективность передачи мощности, достигаемая, когда электрическая мощность передается от резонирующей катушки модуля 220 передачи мощности к резонирующей катушке модуля 110 приема мощности, изменяется в зависимости от множества факторов, таких как расстояние между резонирующей катушкой модуля 220 передачи мощности и резонирующей катушкой модуля 110 приема мощности. Например, собственная частота (резонансная частота) модуля 220 передачи мощности и модуля 110 приема мощности устанавливается равной собственной частоте f0, частота электрического тока, подаваемого к резонирующей катушке модуля 220 передачи мощности, задается равной частоте f3, а воздушный зазор между резонирующей катушкой модуля 110 приема мощности и резонирующей катушкой модуля 220 передачи мощности задается равным воздушному зазору AG.
[0053] Фиг. 5 является графиком, показывающим соотношение между эффективностью передачи мощности и частотой f3 электрического тока, подаваемого к резонирующей катушке модуля 220 передачи мощности, показанного на фиг. 1, во время, когда воздушный зазор AG изменяется в состоянии, в котором собственная частота f0 является фиксированной.
[0054] На графике, показанном на фиг. 5, частота f3 электрического тока, подаваемого к резонирующей катушке модуля 220 передачи мощности, нанесена относительно абсциссы, а эффективность передачи мощности (%) нанесена относительно ординаты. Кривая L1 эффективности показывает схематично соотношение между эффективностью передачи мощности и частотой f3 электрического тока, подаваемого к резонирующей катушке модуля 220 передачи мощности, когда воздушный зазор AG является небольшим. Как показано посредством кривой L1 эффективности, когда воздушный зазор AG является небольшим, пики эффективности передачи мощности возникают при частотах f4 и f5 (f4<f5). Когда воздушный зазор AG увеличивается, два пика, в которых эффективность передачи мощности становится высокой, сдвигаются так, чтобы достигать друг друга. Как показано посредством кривой L2 эффективности, когда воздушный зазор AG становится больше, чем предварительно определенное расстояние, существует только один пик эффективности передачи мощности, и эффективность передачи мощности достигает пика, когда частота электрического тока, подаваемого к резонансной катушке модуля 220 передачи мощности, является частотой f6. Когда воздушный зазор AG дополнительно увеличивается относительно воздушного зазора в случае кривой L2 эффективности, пик эффективности передачи мощности уменьшается, как показано в кривой L3 эффективности.
[0055] Например, следующий первый способ может быть рассмотрен для увеличения эффективности передачи мощности. Способ, посредством которого характеристика эффективности передачи мощности между модулем 220 передачи мощности и модулем 110 приема мощности изменяется посредством задания постоянной частоты электрического тока, подаваемого к резонирующей катушке модуля 220 передачи мощности, который показан на фиг. 1, и изменения емкости конденсатора согласно воздушному зазору AG, может рассматриваться в качестве первого способа. Более конкретно, в состоянии с постоянной частотой электрического тока, подаваемого к резонирующей катушке модуля 220 передачи мощности, емкость конденсатора регулируется так, что эффективность передачи мощности достигает максимума. С помощью такого способа, частота электрического тока, протекающего в резонирующей катушке модуля 220 передачи мощности и резонирующей катушке модуля 110 приема мощности, является постоянной, несмотря на размер воздушного зазора AG. Способ использования согласующего модуля, предусмотренного между модулем 220 передачи мощности и модулем 250 приема мощности, или способ использования преобразователя на стороне приема мощности может быть использован для изменения характеристики эффективности передачи мощности.
[0056] Дополнительно, с помощью второго способа, частота электрического тока, подаваемого к резонирующей катушке модуля 220 передачи мощности, регулируется на основе размера воздушного зазора AG. Например, как показано на фиг. 5, когда характеристика передачи мощности является кривой L1 эффективности, в резонирующей катушке модуля 220 передачи мощности, электрический ток, имеющий частоту, равную частоте f4 или частоте f5, подается к резонирующей катушке модуля 220 передачи мощности. Когда частотные характеристики являются кривой L2 или L3 эффективности, электрический ток, имеющий частоту, равную частоте f6, подается к резонирующей катушке модуля 220 передачи мощности. В таком случае, частота электрического тока, протекающего в резонирующей катушке модуля 220 передачи мощности и резонирующей катушке модуля 110 приема мощности, изменяется согласно размеру воздушного зазора AG.
[0057] В первом способе, частота электрического тока, протекающего в резонирующей катушке модуля 220 передачи мощности, является фиксированной постоянной частотой, а во втором способе, частота тока, протекающего в резонирующей катушке модуля 220 передачи мощности, изменяется, в случае необходимости, согласно воздушному зазору AG. С помощью первого способа или второго способа электрический ток, имеющий конкретную частоту, заданную так, что эффективность передачи мощности становится высокой, подается к резонирующей катушке модуля 220 передачи мощности. Когда электрический ток, имеющий конкретную частоту, протекает в резонирующей катушке модуля 220 передачи мощности, магнитное поле (электромагнитное поле), колеблющееся с конкретной частотой, формируется вокруг резонирующей катушки модуля 220 передачи мощности. Модуль 110 приема мощности получает электрическую мощность от модуля 220 передачи мощности через магнитное поле, которое сформировано между модулем 110 приема мощности и модулем 220 передачи мощности и колеблется с конкретной частотой. Следовательно, "магнитное поле, колеблющееся с конкретной частотой", необязательно ограничено магнитным полем, имеющим фиксированную частоту. В вышеупомянутом примере внимание сфокусировано на воздушном зазоре AG, и частота электрического тока, протекающего в резонирующей катушке модуля 220 передачи мощности, задается, но эффективность передачи мощности также изменяется в зависимости от других факторов, таких как горизонтальное смещение резонирующей катушки модуля 220 передачи мощности и резонирующей катушки модуля 110 приема мощности, и частота электрического тока, протекающего в резонирующей катушке модуля 220 передачи мощности, может также регулироваться на основе таких других факторов.
[0058] В системе передачи мощности согласно варианту осуществления эффективность передачи и приема мощности увеличивается посредством использования ближнего поля (затухающего поля), в котором "статическое электромагнитное поле" электромагнитного поля является преобладающим. Фиг. 6 показывает соотношение между расстоянием от источника электрического тока или источника магнитного тока и интенсивностью электромагнитного поля. Обращаясь к фиг. 6, электромагнитное поле состоит из трех компонентов. Кривая k1 представляет компонент, обратно пропорциональный расстоянию от источника волны; этот компонент называется "электромагнитным полем излучения". Кривая k2 представляет компонент, обратно пропорциональный второй степени расстояния от источника волны; этот компонент называется "электромагнитным полем индукции". Кривая k3 представляет компонент, обратно пропорциональный третьей степени расстояния от источника волны; этот компонент называется "статическим электромагнитным полем". Когда длина волны электромагнитного поля обозначается символом "λ", расстояние, при котором силы "электромагнитного поля излучения", "электромагнитного поля индукции" и "статического электромагнитного поля", по существу, равны друг другу, может быть представлено как λ/2π.
[0059] "Статическое электромагнитное поле" - это область, в которой сила электромагнитной волны быстро уменьшается с расстоянием от источника волны. В системе передачи мощности согласно варианту осуществления передача энергии (мощности) выполняется с помощью ближнего поля (затухающего поля), в котором "статическое электромагнитное поле" является преобладающим. Таким образом, модуль 220 передачи мощности и модуль 110 приема мощности, имеющие близкие собственные частоты (например, пара LC-резонирующих катушек), резонируют в ближнем поле, в котором "статическое электромагнитное поле" является преобладающим, таким образом, энергия (электрическая мощность) передается от модуля 220 передачи мощности к другому модулю 110 приема мощности. Поскольку энергия не распространяется на большое расстояние в "статическом электр