Способы очистки стевиоловых гликозидов и их применение
Иллюстрации
Показать всеИзобретение относится к пищевой промышленности. Предложен содержащий композицию подсластителя напиток. Композиция подсластителя содержит Reb X и другое соединение. Указанное соединение выбирают из Reb A, Reb В, Reb D, гликозилированных стевиоловых гликозидов, могрозида V, эритрита и их комбинаций. Причем концентрация Reb X составляет примерно от 50 ppm до 600 ppm. Reb X присутствует в количестве, эффективном для обеспечения эквивалента сахарозы, составляющего больше примерно 10% (вес/объем). Изобретение позволяет получить напиток, содержащий натуральные подсластители с уменьшенной калорийностью или некалорийные подсластители, которые обеспечивают временной и вкусовой профили, сходные с профилем сахарозы. 35 з.п. ф-лы, 34 ил., 9 табл., 10 пр.
Реферат
ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
Настоящая заявка испрашивает приоритет на основании предварительной заявки на патент США №61/577202, поданной 19 декабря 2011 года, и предварительной заявки на патент США №61/651099, поданной 24 мая 2012 года, содержания которых включены в настоящую заявку посредством ссылки во всей их полноте.
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение в целом касается способа очистки одного или нескольких стевиоловых гликозидов, таких как ребаудиозид X (Reb X), от раствора стевиоловых гликозидов. Настоящее изобретение также касается композиций подсластителя и подслащенных композиций, содержащих один или несколько стевиоловых гликозидов, в том числе Reb X, и способов получения таковых. Настоящее изобретение также касается способов придания композициям подсластителя и подслащенным композициям подобного сахару вкуса и временного профиля, используя Reb X.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Натуральные калорийные сахара, такие как сахароза, фруктоза и глюкоза, используют для обеспечения приятного вкуса у напитков, пищевых продуктов, фармацевтических препаратов и гигиенических/косметических продуктов для ротовой полости. Сахароза, в частности, придает вкус, предпочитаемый потребителями. Хотя сахароза обеспечивает превосходные характеристики сладости, она калорийна. Для удовлетворения потребностей потребителей были выпущены некалорийные или низкокалорийные подсластители. Однако подсластители этого класса отличаются от натуральных калорийных сахаров таким образом, что продолжают разочаровывать потребителей. В отношении вкуса, некалорийные или низкокалорийные подсластители показывают временной профиль, максимальную реакцию, вкусовой профиль, ощущения в ротовой полости и/или адаптационное поведение, которые отличаются от соответствующих характеристик сахара. Более того, некалорийные или низкокалорийные подсластители показывают замедленное начало появления сладости, затяжное сладкое послевкусие, горечь, привкус металла, терпкий вкус, прохладительный вкус и/или подобный лакричному вкус. В отношении источника, многие некалорийные или низкокалорийные подсластители являются искусственными химическими веществами. Потребность в натуральном некалорийном или низкокалорийном подсластителе, который будет иметь подобный сахарозе вкус, остается высокой.
Stevia rebaudiana Bertoni является многолетним кустарником семейства Asteraceae (Compositae), произрастающим в некоторых регионах Южной Америки. Его листья традиционно, в течение сотен лет, использовали в Парагвае и Бразилии для подслащивания местного чая и лекарственных средств. Это растение культивируется в коммерческих целях в Японии, Сингапуре, Тайване, Малайзии, Южной Корее, Китае, Израиле, Индии, Бразилии, Австралии и Парагвае.
Листья растения содержат смесь, включающую дитерпеновые гликозиды в количестве, изменяющемся от примерно 10 до 20% общего сухого веса. Эти дитерпеновые гликозиды примерно в 150-450 раз слаще сахара. По своей структуре дитерпеновые гликозиды характеризуются одной основой, стевиолом, и отличаются наличием углеводных остатков в положениях С13 и С19, как показано на ФИГ. 2A-2K. Обычно, на основании сухого веса, четырьмя основными стевиоловыми гликозидами, обнаруживаемыми в листьях стевии, являются дулкозид А (0,3%), ребаудиозид С (0,6-1,0%), ребаудиозид А (3,8%) и стевиозид (9,1%). Другие гликозиды, идентифицированные в экстракте стевии, включают ребаудиозид В, D, Е и F, стевиолбиозид и рубузозид. Среди них только стевиозид и ребаудиозид А доступны в промышленных масштабах.
Стевиоловые гликозиды можно экстрагировать из листьев, применяя экстракцию либо растворителем на основе воды, либо органическим растворителем. Также были описаны способы сверхкритической флюидной экстракции и перегонки паром. Кроме того, могут применяться способы извлечения дитерпеновых сладких гликозидов из Stevia rebaudiana с применением сверхкритического CO2, мембранной технологии и растворителей на основе воды или органических растворителей, таких как метанол и этанол.
Применение стевиоловых гликозидов до настоящего времени ограничивалось определенными нежелательными вкусовыми свойствами, включая лакричный вкус, горечь, терпкий вкус, сладкое послевкусие, горькое послевкусие, лакричное послевкусие, которые становятся более выраженными с повышением концентрации. Эти нежелательные вкусовые свойства особенно выражены в газированных напитках, где полная замена сахара требует таких концентраций стевиоловых гликозидов, которые превышают 500 мг/л. Их применение на таком уровне приводит к существенному ухудшению вкуса конечного продукта.
Таким образом, остается потребность в разработке натуральных подсластителей с уменьшенной калорийностью или некалорийных подсластителей, которые обеспечивают временной и вкусовой профили, сходные с профилями сахарозы.
Также остается дополнительная потребность в разработке подслащенных композиций, таких как напитки, которые содержат натуральные подсластители с уменьшенной калорийностью или некалорийные подсластители, которые обеспечивают временной и вкусовой профили, сходные с профилем сахарозы.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение предусматривает способ очистки стевиолового гликозида Reb X от раствора стевиоловых гликозидов:
В одном варианте осуществления настоящее изобретение представляет собой способ очистки Reb X, включающий пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловый гликозидами и элюирование фракций с высоким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловый гликозидами с получением элюированного раствора с высоким содержанием Reb X.
По мере того, как раствор стевиоловых гликозидов проходит через многоколоночную систему, различные стевиоловые гликозиды разделяются на разные порции в различных колонках. Порции отличаются друг от друга как по общему содержанию стевиоловых гликозидов, так и по содержанию отдельных гликозидов (особенно Reb X). Фракции, имеющие высокое содержание Reb X, элюируются/десорбируются из многоколоночной системы отдельно от фракций, имеющих низкое содержание Reb X.
Необязательно способ включает один или несколько дополнительных этапов. В одном варианте осуществления способ включает промывание многоколоночной системы промывочным раствором перед элюированием фракций с высоким содержанием Reb X для удаления примесей.
В другом варианте осуществления способ необязательно включает обесцвечивание элюированного раствора с высоким содержанием Reb X, удаление спиртового растворителя и пропускание оставшегося раствора через колонку с крупнопористым адсорбентом с получением второго адсорбционного раствора.
В другом варианте осуществления способ необязательно включает деионизацию второго адсорбционного раствора. Затем второй адсорбционный раствор можно концентрировать для частичного удаления растворителя с получением смеси с высоким содержанием Reb X, содержащей от примерно 30% до примерно 40% твердых веществ.
Дополнительной очистки можно достичь путем смешивания смеси с высоким содержанием Reb X, содержащей от примерно 30% до примерно 40% твердых веществ, с первым спиртовым растворителем с получением раствора Reb X, индуцирования кристаллизации с получением первых кристаллов Reb X и выделения первых кристаллов Reb X из раствора, где первые кристаллы обладают степенью чистоты больше примерно 60% (вес/вес) в пересчете на сухое вещество. В некоторых вариантах осуществления чистота первых кристаллов превышает 60%, составляя, например, больше примерно 65%, больше примерно 70%, больше примерно 75%, больше примерно 80%, больше примерно 85%.
Чтобы достичь более высоких степеней чистоты, первые кристаллы можно затем суспендировать во втором водно-спиртовом растворе с получением вторых кристаллов Reb X и третьего водно-спиртового раствора. Вторые кристаллы Reb X можно выделить из третьего водно-спиртового раствора. Эти вторые кристаллы могут обладать степенью чистоты больше примерно 90% (вес/вес) в пересчете на сухое вещество.
Фракции, имеющие низкое содержание Reb X, также могут быть дополнительно обработаны в соответствии с конкретными предусмотренными в данном документе способами. Необязательно способ включает один или несколько дополнительных этапов. В одном варианте осуществления способ включает промывание многоколоночной системы промывочным раствором перед элюированием фракций с высоким содержанием Reb X для удаления примесей.
В другом варианте осуществления способ необязательно включает обесцвечивание элюированного раствора стевиоловых гликозидов, удаление спиртового растворителя и пропускание оставшегося раствора через колонку с крупнопористым адсорбентом с получением второго адсорбционного раствора.
В другом варианте осуществления способ необязательно включает деионизацию элюированного раствора стевиоловых гликозидов. Удаление оставшегося растворителя из элюированного раствора - необязательно обесцвеченного и/или деионизированного - обеспечивает высокоочищенную смесь стевиоловых гликозидов с общим количеством стевиоловых гликозидов, составляющим по меньшей мере примерно 95% по весу в пересчете на сухое вещество.
Способ по настоящему изобретению также включает приготовление раствора стевиоловых гликозидов. В одном варианте осуществления раствор стевиоловых гликозидов готовят путем заготовки листьев растения Stevia rebaudiana Bertoni, получения неочищенного экстракта посредством приведения в контакт листьев с растворителем, выделения нерастворимого материала из неочищенного экстракта с получением первого фильтрата, содержащего стевиоловые гликозиды, и обработки первого фильтрата для удаления высокомолекулярных соединений и нерастворимых частиц, получая, таким образом, второй фильтрат, содержащий стевиоловые гликозиды. Второй фильтрат затем обрабатывают ионообменной смолой для удаления солей, получая, таким образом, обработанный смолой фильтрат, который служит в качестве раствора стевиоловых гликозидов в способе по настоящему изобретению.
Источник раствора стевиоловых гликозидов может быть различным. В одном варианте осуществления раствором стевиоловых гликозидов может быть имеющийся в продаже экстракт стевии или смесь стевиоловых гликозидов. В другом варианте осуществления раствор стевиоловых гликозидов может быть приготовлен из растительного материала (например, листьев) растения Stevia rebaudiana Bertoni, как описано в данном документе. Альтернативно, раствором стевиоловых гликозидов может быть побочный продукт других способов выделения и очистки стевиоловых гликозидов от растительного материала Stevia rebaudiana Bertoni.
В соответствии с одним аспектом настоящего изобретения способ получения очищенного Reb X включает этапы получения растительного материала Stevia rebaudiana Bertoni, получения неочищенного экстракта путем приведения в контакт растительного материала Stevia rebaudiana Bertoni с экстрагирующим растворителем, таким как вода, выделения нерастворимого материала из первого экстракта с получением фильтрата, содержащего стевиоловые гликозиды, деионизации фильтрата, пропускания подающегося фильтрата через серию колонок, заполненных полярной крупнопористой смолой, и элюирования стевиоловых гликозидов с получением элюатов, содержащих фракции с высоким содержанием Reb X и с низким содержанием Reb X, обесцвечивания растворов, выпаривания и деионизации, концентрирования с применением нано-фильтров и высушивания.
В данном документе также предусмотрены композиции подсластителя, содержащие Reb X. В одном варианте осуществления Reb X присутствует в количестве, эффективном для обеспечения эквивалента сладости от примерно 0,5 до примерно 14 градусов Брикса сахарозы, при присутствии в подслащенной композиции. В другом варианте осуществления Reb X присутствует в количестве, эффективном для обеспечения эквивалента сахарозы больше примерно 10%, при присутствии в композиции подсластителя.
Reb X может применяться в любой форме. В одном варианте осуществления Reb X является единственным подсластителем в композиции подсластителя. В другом варианте осуществления Reb X предусмотрен как часть композиции или смеси. В одном варианте осуществления Reb X предусмотрен в экстракте стевии, где компонент Reb X составляет от примерно 5% до примерно 99% экстракта стевии по весу в пересчете на сухое вещество. В дополнительном варианте осуществления Reb X предусмотрен в смеси стевиоловых гликозидов, где Reb X составляет от примерно 5% до примерно 99% смеси стевиоловых гликозидов по весу в пересчете на сухое вещество.
Композиции подсластителя также могут содержать один или несколько дополнительных подсластителей, включая, например, натуральные подсластители, высокоэффективные подсластители, подсластители, содержащие углеводы, искусственные подсластители и их комбинации.
Особенно желаемые композиции подсластителя содержат Reb X и соединение, выбранное из группы, состоящей из Reb A, Reb В, Reb D, NSF-02, могрозида V, эритрита или их комбинаций.
Композиции подсластителя также могут содержать одну или несколько добавок, включая, например, углеводы, полиолы, аминокислоты и их соответствующие соли, полиаминокислоты и их соответствующие соли, сахарные кислоты и их соответствующие соли, нуклеотиды, органические кислоты, неорганические кислоты, органические соли, в том числе соли органических кислот и соли органических оснований, неорганические соли, горькие соединения, вкусовые вещества и вкусовые ингредиенты, вяжущие соединения, белки или белковые гидролизаты, поверхностно-активные вещества, эмульгаторы, флавоноиды, спирты, полимеры и их комбинации.
Композиции подсластителя также могут содержать один или несколько функциональных ингредиентов, таких как, например, сапонины, антиоксиданты, источники пищевых волокон, жирные кислоты, витамины, глюкозамин, минералы, консерванты, гидратирующие средства, пробиотики, пребиотики, средства для контроля веса, средства для терапии остеопороза, фитоэстрогены, длинноцепочечные первичные алифатические насыщенные спирты, фитостеролы и их комбинации.
Также предусмотрены способы приготовления композиций подсластителя. В одном варианте осуществления способ приготовления композиции подсластителя включает комбинирование Reb X и по меньшей мере одного подсластителя и/или добавочного и/или функционального ингредиента. В другом варианте осуществления способ приготовления композиции подсластителя включает комбинирование композиции, содержащей Reb X, и по меньшей мере одного подсластителя и/или добавочного и/или функционального ингредиента.
В данном документе также предусмотрены подслащенная композиция, содержащая Reb X, или композиции подсластителя настоящего изобретения. Подслащенные композиции включают, например, фармацевтические композиции, смеси и композиции пищевых гелей, стоматологические композиции, продукты питания, напитки и питьевые продукты.
В данном документе также предусмотрены способы приготовления подслащенных композиций. В одном варианте осуществления способ приготовления подслащенной композиции включает комбинирование подслащаемой композиции и Reb X. Способ может дополнительно включать добавление одного или нескольких подсластителей, добавочных и/или функциональных ингредиентов. В другом варианте осуществления способ приготовления подслащенной композиции включает комбинирование подслащаемой композиции и композиции подсластителя, содержащей Reb X. Композиция подсластителя может необязательно содержать один или несколько подсластителей, добавочных и/или функциональных ингредиентов.
В данном документе в определенных вариантах осуществления также предусмотрены напитки, содержащие Reb X или композиции подсластителя по настоящему изобретению. Напитки содержат жидкую основу, такую как, например, деионизированная вода, дистиллированная вода, вода из установки обратного осмоса, обработанная активированным углем вода, очищенная вода, деминерализованная вода, фосфорная кислота, фосфатный буфер, лимонная кислота, цитратный буфер и обработанная активированным углем вода.
В данном документе также предусмотрены высококалорийные, среднекалорийные, низкокалорийные и безкалорийные напитки, содержащие Reb X или композиции подсластителя по настоящему изобретению.
В данном документе также предусмотрены способы приготовления напитков. В одном варианте осуществления способ приготовления напитка включает комбинирование Reb X и жидкой основы. Способ может дополнительно включать добавление в напиток одного или нескольких подсластителей, добавочных и/или функциональных ингредиентов. В другом варианте осуществления способ приготовления напитка включает комбинирование композиции подсластителя, содержащей Reb X, и жидкой основы.
В данном документе также предусмотрены столовые композиции подсластителя, содержащие Reb X или композиции подсластителя по настоящему изобретению. Столовая композиция может дополнительно включать по меньшей мере одно объемообразующее средство, добавку, средство против комкования, функциональный ингредиент и их комбинации. Столовая композиция подсластителя может присутствовать в форме твердого вещества или жидкости. Жидкий столовый подсластитель может содержать воду и необязательно добавки, такие как, например, полиолы (например, эритрит, сорбит, пропиленгликоль или глицерин), кислоты (например, лимонная кислота), противомикробные средства (например, бензойная кислота или ее соль).
В данном документе также предусмотрены системы доставки, содержащие Reb X или композиции подсластителя по настоящему изобретению, такие как, например, сокристаллизированные композиции подсластителя с сахаром или полиолом, агломерированные композиции подсластителя, прессованные композиции подсластителя, высушенные композиции подсластителя, композиции подсластителя в виде частиц, композиции подсластителя в виде сфер, гранулированные композиции подсластителя и жидкие композиции подсластителя.
В конечном итоге, в данном документе также предусмотрен способ придания подслащенной композиции более сахароподобного временного профиля, вкусового профиля или обоих, который включает комбинирование подслащаемой композиции с Reb X или композициями подсластителя по настоящему изобретению. Способ может дополнительно включать добавление других подсластителей, добавок, функциональных ингредиентов и их комбинаций.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Прилагаемые графические материалы включены для обеспечения лучшего понимания настоящего изобретения. Графические материалы иллюстрируют варианты осуществления настоящего изобретения и вместе с описанием служат для пояснения принципов вариантов осуществления настоящего изобретения.
На ФИГ. 1 показана химическая структура стевиоловых гликозидов в листьях Stevia rebaudiana Bertoni.
На ФИГ. 2A-2K показаны химические структуры гликозидов Stevia rebaudiana Bertoni.
На ФИГ. 3A, 3B показаны кривые HPLC для Reb X на различных этапах очистки. На фигуре 3A показана кривая HPLC для Reb X 80% чистоты. На фигуре 3B показана кривая HPLC для 97% Reb X (условия HPLC приведены в разделе "Элюирование адсорбированных стевиоловых гликозидов").
На ФИГ. 4 показаны кривые HPLC для эталонных стандартов Reb A, Reb В, Reb С, Reb D, Reb F, стевиозида, дулкозида А, стевиолбиозида и рубузозида (условия HPLC приведены в разделе "Элюирование адсорбированных стевиоловых гликозидов").
На ФИГ. 5 показан FTIR-спектр Reb X.
На ФИГ. 6A, 6B показаны спектральные данные Reb X, полученные при высокой разрешающей способности.
На ФИГ. 7A, 7B показан 13С ЯМР-спектр Reb X (150 МГц, C5D5N).
На ФИГ. 8A, 8B, 8C показан 1Н ЯМР-спектр Reb X (600 МГц, C5D5N).
На ФИГ. 9 показан 1Н-1Н COSY-спектр Reb X (600 МГц, C5D5N).
На ФИГ. 10 показан НМВС-спектр Reb X (600 МГц, C5D5N).
На ФИГ. 11 показано сравнение методом сенсорного анализа Reb X и Reb А в профильтрованной воде.
На ФИГ. 12 показано сравнение методом сенсорного анализа Reb X и Reb А в подкисленной воде.
На ФИГ. 13 показано сравнение методом сенсорного анализа Reb X и NSF-02 при различных концентрациях в подкисленной воде.
На ФИГ. 14 показано сравнение методом сенсорного анализа Reb X и Reb В при различных концентрациях в подкисленной воде.
На ФИГ. 15 показано сравнение методом сенсорного анализа Reb X и могрозида V при различных концентрациях в подкисленной воде.
На ФИГ. 16 показано сравнение методом сенсорного анализа Reb X и эритрита при различных концентрациях в подкисленной воде.
На ФИГ. 17 показано сравнение методом сенсорного анализа (i) Reb X, (ii) Reb X и Reb А и (iii) Reb X и Reb D при различных концентрациях в подкисленной воде.
На ФИГ. 18 показано сравнение методом сенсорного анализа (i) Reb X, (ii) Reb X, Reb X и Reb D и (iii) Reb X, Reb В и Reb D при различных концентрациях в подкисленной воде.
На ФИГ. 19 показана химическая структура Reb X.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Используемый в данном документе термин "стевиоловый гликозид(ы)" относится к гликозидам стевиола, включая, но без ограничений, встречающиеся в природе стевиоловые гликозиды, например, ребаудиозид А, ребаудиозид В, ребаудиозид С, ребаудиозид D, ребаудиозид Е, ребаудиозид F, ребаудиозид X, стевиозид, стевиолбиозид, дулкозид А, рубузозид и т.д., или искусственные стевиоловые гликозиды, например, ферментативно гликозилированные стевиоловые гликозиды и их комбинации.
Используемый в данном документе термин "общее количество стевиоловых гликозидов" (TSG) означает суммарное содержание всех стевиоловых гликозидов в пересчете на сухое (безводное) вещество, включая, например, ребаудиозид A (Reb А), ребаудиозид В (Reb В), ребаудиозид С (Reb С), ребаудиозид D (Reb D), ребаудиозид Е (Reb Е), ребаудиозид F (Reb F), ребаудиозид X (Reb X), стевиозид, стевиолбиозид, дулкозид А и рубузозид.
Используемый в данном документе термин "соотношение Reb X/TSG" означает соотношение содержания Reb X и TSG в пересчете на сухое вещество, которое рассчитывают согласно приведенной ниже формуле:
{содержание Reb X (сухое вещество, %) / содержание TSG (сухое вещество, %)} × 100%.
Используемый в данном документе термин "раствор стевиоловых гликозидов" относится к любому раствору, содержащему растворитель и стевиоловые гликозиды. Одним из примеров раствора стевиоловых гликозидов является обработанный смолой фильтрат, полученный в результате очистки растительного материала Stevia rebaudiana (например, листьев), описано ниже, или побочные продукты других способов выделения и очистки стевиоловых гликозидов. Другим примером раствора стевиоловых гликозидов является имеющийся в продаже экстракт стевии, введенный в раствор с растворителем. Еще одним примером раствора стевиоловых гликозидов является имеющаяся в продаже смесь стевиоловых гликозидов, введенная в раствор с растворителем.
В другом аспекте настоящего изобретения способ очистки Reb X включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами; и
(b) элюирование фракций с высоким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора с высоким содержанием Reb X.
В другом аспекте настоящего изобретения способ очистки Reb X включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) удаление примесей из многоколоночной системы и
(c) элюирование фракций с высоким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора с высоким содержанием Reb X.
В другом варианте осуществления способ очистки Reb X включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) элюирование фракций с высоким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора с высоким содержанием Reb X;
(c) обесцвечивание элюированного раствора с высоким содержанием Reb X с получением первого адсорбционного раствора и
(d) удаление спиртового растворителя из первого адсорбционного раствора и пропускание оставшегося раствора через колонку с крупнопористым адсорбентом с получением второго адсорбционного раствора.
В другом варианте осуществления способ очистки Reb X включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) удаление примесей из многоколоночной системы;
(c) элюирование фракций с высоким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора с высоким содержанием Reb X;
(d) обесцвечивание элюированного раствора с высоким содержанием Reb X с получением первого адсорбционного раствора и
(e) удаление спиртового растворителя из первого адсорбционного раствора и пропускание оставшегося раствора через колонку с крупнопористым адсорбентом с получением второго адсорбционного раствора.
В другом варианте осуществления способ очистки Reb X включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) элюирование фракций с высоким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора с высоким содержанием Reb X и
(c) деионизацию раствора.
В другом варианте осуществления способ очистки Reb X включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) удаление примесей из многоколоночной системы;
(c) элюирование фракций с высоким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора с высоким содержанием Reb X и
(d) деионизацию раствора.
В другом варианте осуществления способ очистки Reb X включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) элюирование фракций с высоким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора с высоким содержанием Reb X;
(c) обесцвечивание элюированного раствора с высоким содержанием Reb X с получением первого адсорбционного раствора;
(d) удаление спиртового растворителя из первого адсорбционного раствора и пропускание оставшегося раствора через колонку с крупнопористым адсорбентом с получением второго адсорбционного раствора и
(e) деионизацию второго адсорбционного раствора.
В другом варианте осуществления способ очистки Reb X включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) удаление примесей из многоколоночной системы;
(c) элюирование фракций с высоким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора с высоким содержанием Reb X;
(d) обесцвечивание элюированного раствора с высоким содержанием Reb X с получением первого адсорбционного раствора;
(e) удаление спиртового растворителя из первого адсорбционного раствора и пропускание оставшегося раствора через колонку с крупнопористым адсорбентом с получением второго адсорбционного раствора и
(f) деионизацию второго адсорбционного раствора.
Удаление спиртового растворителя из любого из вышеупомянутых способов, связанных с очисткой Reb X, обеспечивает смесь с высоким содержанием Reb X. Последующее удаление водного растворителя обеспечивает смесь с высоким содержанием Reb X, содержащую от примерно 30% до примерно 40% твердых веществ, как рассмотрено в разделе "Концентрация" ниже. Альтернативно, можно удалить фактически весь растворитель с получением сухого порошка с высоким содержанием Reb X.
В одном варианте осуществления способ очистки Reb X включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) удаление примесей из многоколоночной системы;
(c) элюирование фракций с высоким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора с высоким содержанием Reb X;
(d) обесцвечивание элюированного раствора с высоким содержанием Reb X с получением первого адсорбционного раствора;
(e) удаление спиртового растворителя из первого адсорбционного раствора и пропускание оставшегося раствора через колонку с крупнопористым адсорбентом с получением второго адсорбционного раствора;
(f) деионизацию второго адсорбционного раствора и
(g) удаление спиртового растворителя с получением смеси с высоким содержанием Reb X.
Дополнительное удаление водных растворителей обеспечивает смесь с высоким содержанием Reb X, содержащую от примерно 30% до примерно 40% твердых веществ, как рассмотрено в разделе "Концентрация". Альтернативно, можно удалить фактически весь растворитель с получением сухого порошка с высоким содержанием Reb X.
В одном варианте осуществления способ очистки стевиоловых гликозидов включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами и
(b) элюирование фракций с низким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора стевиоловых гликозидов.
В более конкретном варианте осуществления способ очистки стевиоловых гликозидов включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) удаление примесей из многоколоночной системы и
(c) элюирование фракций с низким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора стевиоловых гликозидов.
В другом варианте осуществления способ очистки стевиоловых гликозидов включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) элюирование фракций с низким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора стевиоловых гликозидов;
(c) обесцвечивание элюированного раствора с получением первого адсорбционного раствора и
(d) удаление спиртового растворителя из первого адсорбционного раствора и пропускание оставшегося раствора через колонку с крупнопористым адсорбентом с получением второго адсорбционного раствора.
В более конкретном варианте осуществления способ очистки стевиоловых гликозидов включает:
(а) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) удаление примесей из многоколоночной системы;
(c) элюирование фракций с низким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора стевиоловых гликозидов;
(d) обесцвечивание элюированного раствора с получением первого адсорбционного раствора и
(e) удаление спиртового растворителя из первого адсорбционного раствора и пропускание оставшегося раствора через колонку с крупнопористым адсорбентом с получением второго адсорбционного раствора.
В еще одном варианте осуществления способ очистки стевиоловых гликозидов включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) элюирование фракций с низким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора стевиоловых гликозидов и
(c) деионизацию раствора.
В более конкретном варианте осуществления способ очистки стевиоловых гликозидов включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) удаление примесей из многоколоночной системы;
(c) элюирование фракций с низким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора стевиоловых гликозидов и
(d) деионизацию раствора.
В еще одном варианте осуществления способ очистки стевиоловых гликозидов включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) элюирование фракций с низким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора стевиоловых гликозидов;
(c) обесцвечивание элюированного раствора с получением первого адсорбционного раствора;
(d) удаление спиртового растворителя из первого адсорбционного раствора и пропускание оставшегося раствора через колонку с крупнопористым адсорбентом с получением второго адсорбционного раствора и
(e) деионизацию второго адсорбционного раствора.
В более конкретном варианте осуществления способ очистки стевиоловых гликозидов включает:
(a) пропускание раствора стевиоловых гликозидов через многоколоночную систему, включающую несколько колонок, заполненных адсорбирующей смолой, с получением по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами;
(b) удаление примесей из многоколоночной системы;
(c) элюирование фракций с низким содержанием Reb X из по меньшей мере одной колонки с адсорбированными стевиоловыми гликозидами с получением элюированного раствора стевиоловых гликозидов;
(d) обесцвечивание элюированного раствора с получением первого адсорбционного раствора;
(e) удаление спиртового растворителя из первого адсорбционного раствора и пропускание оставшегося раствора через колонку с крупнопористым а