Управление размерами пузырьков в газированной жидкости
Иллюстрации
Показать всеИзобретение относится к способам изготовления контейнера для газированного напитка (варианты). Техническим результатом является улучшение вкусовых ощущений от напитка путем управления размерами пузырьков. Технический результат достигается способом изготовления контейнера для газированного напитка, который включает введение вытягивающего стержня в нагретую пластиковую преформу с горловиной. Причем горловинный участок закреплен относительно оси движения растяжного стержня, а вытягивающий стержень включает конец, имеющий образованные в нем полости. При этом полости имеют формы, соответствующие заостренным выступам. Толкание конца вытягивающего стержня к внутренней нижней области преформы, чтобы вдавить нагретый пластик преформы в указанные полости и вдувание газа в вытянутую преформу с получением контейнера, имеющего заостренные выступы, образованные в ее внутренней нижней поверхности. 2 н. и 13 з.п. ф-лы, 68 ил.
Реферат
УРОВЕНЬ ТЕХНИКИ
Свойства пузырьков, образующихся в газированной жидкости, могут влиять на использование этой жидкости по прямому назначению. Например, свойства пузырьков, образующихся в газированном напитке, могут влиять на воспринимаемый вкус напитка и/или ощущение, которое напиток создает во рту человека, пьющего напиток ("вкусовое ощущение" напитка). Поэтому во многих случаях желательно управлять размером пузырьков, которые образуются в напитке или другой жидкости.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Это краткое изложение сущности изобретения приведено с целью представления набора концепций в упрощенной форме, которые дополнительно описаны ниже в подробном описании. Это краткое изложение сущности изобретения не предназначено для идентификации ключевых или существенных признаков изобретения или исчерпывающего перечисления всех вариантов выполнения.
Некоторые варианты выполнения содержат контейнеры (например, банки, бутылки) для газированного напитка. Такие контейнеры могут быть образованы из пластика, металла, стекла и/или других материалов и вмещают один или более внутренних элементов для содействия и управления образованием пузырьков. В некоторых вариантах выполнения эти элементы могут включать внутреннюю перегородку. Такие перегородки могут включать дополнительные поверхностные элементы различных типов (например, гребни или другие линейно продолжающиеся выступы, неровности). Дополнительные варианты выполнения могут включать контейнеры для напитков, в которых элементы содействия и/или управления образованием пузырьков выполнены на внутренней нижней поверхности, на внутренней боковой поверхности, и/или в области горловины. Другие дополнительные варианты выполнения могут включать контейнер с улавливателем пузырьков или другие конструкции, которые могут быть прикреплены к внутренней части контейнера или плавать в жидкости, заключенной в контейнере. Третьи дополнительные варианты выполнения могут включать способы изготовления и/или использования любого из описанных здесь контейнеров.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На Фиг.1A1-1I3 частично показаны схематические виды в разрезе контейнеров для напитков, в соответствии с некоторыми вариантами выполнения, которые включают внутренние перегородки.
На Фиг.2 показана бутылка, имеющая горловинный участок с ребрышками, образованными вокруг всей внутренней окружности в соответствии с некоторым вариантами выполнения.
На Фиг.3 показана бутылка, имеющая горловинный участок с ребрышками в соответствии с другими вариантами выполнения.
На Фиг.4А показана бутылка, имеющая внутренние ямочки в соответствии с некоторыми вариантами выполнения.
На Фиг.4B показаны примеры дополнительных форм ямочек и рисунков в соответствии с некоторыми вариантами выполнения.
На Фиг.5 показана бутылка в соответствии с некоторыми вариантами выполнения, имеющими ребрышки вдоль длины внутренней части бутылки.
На Фиг.6-11 показаны варианты выполнения, в которых на внутренних поверхностях контейнеров образованы рисунки ребрышек.
На Фиг.12A1-12E2 показаны контейнеры для напитков, в соответствии с некоторыми вариантами выполнения, с образующими пузырьки конструкциями, выполненными на нижних участках контейнера.
На Фиг.13A1-13C2 показаны контейнеры для напитков, имеющие конструкции для улавливания пузырьков в соответствии с некоторыми вариантами выполнения.
На Фиг.14A1-14D показаны контейнеры для напитков в соответствии с дополнительными вариантами выполнения.
На Фиг.15A и 15B показаны виды спереди и в разрезе соответственно концевого участка центрального стержня для литья под давлением в соответствии с некоторыми вариантами выполнения.
На Фиг.15C показана блок-схема, показывающая этапы формования пластиковой бутылки в соответствии с некоторыми вариантами выполнения.
На Фиг.16 показаны чертежи вытягивающих стержней для выдувания в соответствии с некоторыми вариантами выполнения.
На Фиг.17A показано поперечное сечение преформы, созданной с помощью модифицированного центрального стержня.
На Фиг.17B показано внутреннее днище бутылки, произведенной вытягивающе-выдувным способом из преформы с Фиг.17А.
На Фиг.17C показана внутренняя часть пластиковой бутылки, созданной с помощью одного из вытягивающих стержней с Фиг.16.
На Фиг.17D и 17E показана нуклеация, вызванная поверхностными элементами, аналогичными показанным на Фиг.17C.
На Фиг.18 представлен вид в разрезе участка бутылки в соответствии с другим вариантом выполнения.
На Фиг.19 показано изменение размера и давление пузырька, растущего внутри жидкости.
ПОДРОБНОЕ ОПИСАНИЕ
Изменения количества и типа пузырьков в газированном напитке могут существенно повлиять на вкусовое восприятие этого напитка. По этой и другим причинам желательно манипулировать одним или более свойствами пузырьков, выработанных в напитке. Такие свойства могут включать размер выработанных пузырьков, форму пузырьков, количество генерированных пузырьков, а также скорость, с которой высвобождаются или иным путем генерируются пузырьки.
Газированный напиток может включать жидкую матрицу напитка и растворенный газ. Матрица напитка может включать воду, сироп, ароматизаторы и иной растворенный или суспендированный материал (ы). Растворенный газ может представлять собой, например, углекислый газ. Диоксид углерода также может быть получен на месте из водной угольной кислоты. При понижении давления (например, при открывании герметичного контейнера для напитков), угольную кислоту превращают в газообразный диоксид углерода. Поскольку диоксид углерода плохо растворим в воде, его выпускают в жидкую матрицу в виде пузырьков.
Н2СО3→Н2О+СО2
Манипуляция со свойствами пузырьков могут зависеть от множества факторов. Одним из таких факторов является межфазное натяжение между растворенным газом и жидкой матрицей. Другим фактором является состав жидкой матрицы. Например, размер пузырьков можно до некоторой степени регулировать добавлением поверхностно-активных веществ (ПАВ, эмульгаторов и т.д.) к матрице напитка. В частности, индустрия шампанского исследовала этот вопрос и обнаружила, что в пузырьках малого размера управляющим фактором может быть гликопротеин из винограда.
Свойства пузырьков также могут зависеть от газообразной нуклеации, т.е. образования пузырьков из газа, растворенного в жидкой матрице напитка. Процесс образования пузырьков в газированном напитке аналогичен образованию пузырьков в перенасыщенном растворе газа. Однако, как более подробно описано ниже в примере 1, образование пузырьков в перенасыщенной непрерывной жидкости маловероятно. Таким образом, для формирования пузырьков необходима, как правило, некоторая прерывность. Эти прерывания могут быть вызваны, и таким образом, влиять на нуклеацию, другими ингредиентами, растворенными или суспендированными в жидкой матрице, свойствами поверхности бутылки или другого контейнера, содержащего напиток, и/или льда или других объектов в напитке. Газообразная нуклеация в газированном напитке обычно происходит на поверхности, по меньшей мере, частично смачиваемой напитком. Эта поверхность может быть поверхностью контейнера для напитков и/или поверхностью (или поверхностями) частиц или других предметов, которые суспендированы или плавают в напитке.
Количество пузырьков, которые могут быть созданы в газированной жидкости, будет зависеть от количества газа в жидкости, например в виде растворенного газа или в виде прекурсора, например, угольной кислоты. Количество газа, присутствующего в газированной жидкости, пропорционально давлению внутри контейнера, содержащего жидкость. Когда контейнер герметизирован, давление внутри такого контейнера, как правило, больше атмосферного давления. Когда контейнер открыт, жидкость в контейнере подвергается воздействию атмосферного давления. Такое снижение давления является движущей силой для образования пузырьков и пены. Размер, форма и скорость высвобождения пузырьков будет зависеть от различных факторов, которые могут включать: (а) поверхность (и), на которой происходит нуклеация (зарождение) пузырьков, (b) вязкость жидкой матрицы газированной жидкости, (c) межфазное натяжение между газированной жидкостью и стенкой (стенками) контейнера, а также (d) температуру газированной жидкости. В некоторых случаях изменение факторов (b) и (c) может быть непрактичным, так как это может потребовать изменения химического состава напитка. Также может быть непрактичным пытаться изменить температуру (фактор (d)). Тем не менее, фактор (а) часто может быть модифицирован без изменения химического состава напитка и вне зависимости от открывания контейнера для напитков в необычных температурных условиях.
На размер пузырьков, образовавшихся в газированном напитке, может повлиять наличие центров нуклеации пузырьков на поверхности контейнера для напитков и/или других поверхностях, находящихся в контакте с напитком, а также поверхностное натяжение газированной жидкости и равновесное давление внутри пузырька для данного размера пузырьков. Что касается формы пузырька, стремление пузырька приобрести сферическую форму основано на небольших потребностях в поверхностной энергии для образования сферы (т.е. сфера имеет наименьшее отношение площадь поверхности/объем). По мере роста пузырька, он должен преодолевать гидростатическое давление, оказываемое жидкостью над ним. Во время роста пузырек должен надавливать на жидкость вокруг него. Это, как правило, приводит к изменению формы пузырька от сферической на несколько эллиптическую. Когда встречаются два пузырька, они делают это на плоской поверхности, что опять же создает наименьшую возможную площадь поверхности для двух пузырьков. Поскольку количество соприкасающихся друг с другом пузырьков увеличивается, форма большего пузырька, образованного путем соединения более мелких пузырьков, может варьироваться соответственно, чтобы создать наименьшую возможную площадь поверхности для объема соединившихся пузырьков. Таким образом, формой пузырьков можно также управлять с помощью количества пузырьков, вступивших в контакт друг с другом. В меньшей степени форма пузырьков может также зависеть от местоположения и глубины, на которой происходит нуклеация.
Вкусовые ощущения от напитка связаны с размером и количеством образовавшихся пузырьков. Пенистость газированной жидкости прямо пропорциональна количеству пузырьков. Таким образом, изменения в пенистости могут привести к иным вкусовым ощущениям. Добавление мельчайших частиц внутрь газированной жидкости может изменить вкусовые ощущения. В частности, такие частицы могут способствовать нуклеации пузырьков внутри жидкости, тем самым увеличивая количество пузырьков.
Скорость высвобождения пузырьков в газированном напитке может зависеть от изменения давления, которое воздействует на напиток. Скорость, с которой высвобожденные пузырьки достигают поверхности напитка, может быть изменена путем создания препятствий на пути поднимающихся пузырьков. Такие препятствия могут быть введены внутрь жидкости путем введения дополнительных пластин или краев. Такие пластины, края и/или другие конструкции могут быть использованы для создания непрямого пути к поверхности напитка.
Размер, форма, скорость высвобождения и количество пузырьков взаимосвязаны. Эти свойства могут быть модифицированы путем изменения конструкции контейнера, используемого для хранения газированного напитка. Во многих случаях это связано с созданием большей площади поверхности, которая контактирует с напитком. Эта дополнительная площадь поверхности может придать дополнительную стабильность росту пузырьков и обеспечивает дополнительное управление, например, скоростью высвобождения пузырьков.
На Фиг.1A1-1I3 показаны частично схематические виды в разрезе контейнеров для напитков, в соответствии с некоторыми вариантами выполнения, которые включают внутренние перегородки. Разделительные стенки в этих вариантах выполнения содействуют образованию пузырьков, например, путем создания увеличенной площади поверхности для нуклеации пузырьков. Кроме того, эти перегородки могут также вызвать плескание напитка в контейнере, и тем самым генерировать больше пузырьков. Во многих обычных контейнерах, больше всего пены образуется сразу же после открывания контейнера. После открывания контейнера механическое плескание напитка из-за разделительной стенки может вызвать дополнительное образование пузырьков в течение более длительного срока. Например, потребитель, потягивая газированный напиток, будет стремиться перемещать контейнер из вертикального положения таким образом, чтобы наклонить контейнер и расположить отверстие контейнера у рта потребителя. В результате этого периодического наклонного движения разделительная стенка будет перемешивать напиток. Это может способствовать генерированию пузырьков после открывания контейнера и помочь напитку оставаться в пенистом состоянии. К разделительной стенке могут быть добавлены мелкие выпуклости для препятствования передвижению поднимающихся пузырьков и замедления распада пены.
На Фиг.1A1 представлен вид сбоку в разрезе герметичного баночного контейнера 10а для напитков в соответствии, по меньшей мере, с одним вариантом выполнения. Фиг.1A2 является видом сверху в разрезе банки 10а, показанным с местоположения, представленного на Фиг.1A1. Контейнер 10a включает основание 33a, боковую стенку 31а и верхнюю часть 16а. Внутренние поверхности основания 33a, боковой стенки 31а и верхней части 16а образуют внутренний объем 13а, в котором герметизирован газированный напиток 30. Выход 11а, расположенный в верхней части 16а, показан закрытым на Фиг.1A1, однако выполнен для открывания потребителем и расположен на контейнере 10а так, чтобы позволить выливание напитка из контейнера 30 после открывания выхода 11а. Хотя варианты выполнения, показанные на Фиг.1A1-1I3, представляют собой баночные контейнеры для напитков, элементы, аналогичные показанным и описанные применительно к Фиг.1A1-1I3, также могут быть включены в другие типы контейнеров для напитков в иных вариантах выполнения (например, бутылки, многоразовые или одноразовые стаканчики и т.д.).
Перегородка 12а продолжается вниз от верхней части 16а контейнера 10а и отделяет проход 14а от остальной части основного объема 13а. Как показано на Фиг.1A1 и 1A2, перегородка 12а прикреплена к участкам внутренней поверхности верхней части 16а и боковой стенки 31а. Когда основание 33а лежит на плоской поверхности, перегородка 12а ориентирована вертикально.
Проход 14а меньше, и другой формы, чем остальная часть 13а основного объема. Для того чтобы напиток 30 в остальной части основного объема 13а выходил через выход 11а после открывания, напиток 30 должен течь вокруг нижнего конца перегородки 12а в проход 14а. Перегородка 12а может быть выполнена из того же материала, что использован в боковых стенках контейнера 10а или из другого материала. По меньшей мере, в некоторых вариантах выполнения, проход 14а является единственным каналом для текучей среды между остальной частью основного объема 13а и выходом 11а.
На Фиг.1B1 представлен вид сбоку в разрезе баночного контейнера 10b для напитков в соответствии с другим вариантом выполнения. Фиг.1B2 является видом сверху в разрезе баночного контейнера 10b для напитков, показанным с местоположения, представленного на Фиг.1B1. Верхняя часть, боковая стенка и основание контейнера 10b, а также верхние части, боковые стенки и основания других контейнеров на Фиг.1B1-1I3, расположение элементов этих контейнеров, открываемые выходы 11 различных конструкций, а также различные другие элементы контейнеров, показанные на Фиг.1B1-1I3, аналогичны элементам контейнера 10а, показанным на Фиг.1A1-1A2. Для удобства некоторые из этих элементов не рассматриваются отдельно применительно к Фиг.1B1-1I3, где сходство с элементами контейнера 10а очевидно из чертежей и где для ясного понимания изображенных вариантов выполнения дополнительного обсуждения не требуется. Аналогичным образом, на Фиг.1B1-1I3 газированный напиток 30 для удобства опущен. Тем не менее, подразумевается наличие напитка 30, герметизированного внутри каждого из контейнеров на упомянутых фигурах.
Перегородка 12b аналогична перегородке 12a на Фиг.1A1, однако не может простираться так далеко от верхней части банки с напитком, как в случае с перегородкой 12а. Чтобы напиток, содержащийся в остальной части основного объема 13b, выходил через выход 11b (показано в закрытом положении на Фиг.1B1), этот напиток должен протекать вокруг нижнего конца перегородки 12b в проход 14b. Перегородка 12b может быть выполнена из того же материала, что использован в боковых стенках контейнера 10b или из другого материала. Перегородка 12b включает многочисленные мелкие элементы поверхности 15b для способствования нуклеации и/или аэрации путем создания турбулентного потока через проход 14b. Поверхностные элементы 15b могут включать короткие волосообразные выступы, мелкие выпуклости, впадины или поверхностные ямочки и т.п., а также комбинации различных видов поверхностных элементов.
На Фиг.1C1 представлен вид сбоку в разрезе баночного контейнера 10с для напитков в соответствии с другим вариантом выполнения. Фиг.1C2 является видом сверху в разрезе банки 10c, показанным с местоположения, представленного на Фиг.1C1. Выход 11C, перегородка 12с, основной объем 13с и поверхностные элементы 15с аналогичны выходу 11b, перегородке 12b, основному объему 13b и поверхностным элементам 15b на Фиг.1B1. Контейнер 10c на Фиг.1C1 и 1C2 отличается от контейнера 10b на Фиг.1B1 и 1B2 тем, что имеет 15c поверхностные элементы по обе стороны прохода 14с.
На Фиг.1D1 представлен вид сбоку в разрезе баночного контейнера 10е для напитков в соответствии с другим вариантом выполнения. Фиг.1D2 является видом сверху в разрезе банки 10е, показанной с местоположения, представленного на Фиг.1D1. Выход 11d, перегородка 12d, основной объем 13d и проход 14d аналогичны выходу 11C, перегородке 12с, основному объему 13с и проходу 14с на Фиг.1C1. Контейнер 10d на Фиг.1D1 и 1D2 отличается от контейнера 10с на Фиг.1C1 и 1C2 тем, что имеет поверхностные элементы 15d, расположенные под углом к выходу 11D.
На Фиг.1E1 представлен вид сбоку в разрезе баночного контейнера 10е для напитков в соответствии с другим вариантом выполнения. Фиг.1E2 является видом сверху в разрезе банки 10е, показанной с местоположения, представленного на Фиг.1E1. Банка 10е имеет выход 11е, перегородку 12e, основной объем 13е и проход 14e, аналогичные элементам, описанным применительно к предыдущим вариантам выполнения. Однако в варианте выполнения с Фиг.1E1, банка 10е не имеет никаких дополнительных поверхностных элементов в проходе 14е. Кроме того, банка 10е включает верхнюю часть 16e, которая изогнута таким образом, чтобы изменять давление, воздействующее на газированную жидкость. Хотя она и показана как наружная кривая на Фиг.1E1 (т.е. верхняя часть 16e является выпуклой на своей открытой наружу поверхности), верхняя часть 16e может в качестве альтернативного варианта быть изогнутой внутрь (т.е. иметь вогнутую открытую наружную поверхность) или другие типы кривизны.
На Фиг.1F1 представлен вид сбоку в разрезе баночного контейнера 10f для напитков в соответствии с другим вариантом выполнения. Фиг.1F2 является видом сверху в разрезе банки 10f, показанной с местоположения, представленного на Фиг.1F1. Фиг.1F3 представляет собой вид сбоку в разрезе, показанный с местоположения, представленного на Фиг.1F1,на котором опущены наружные стенки банки 10f и показана лицевая поверхность 20f перегородки 12f внутри прохода 14f. Банка 10f аналогична банке 10b с Фиг.1B1, но при этом перегородка 12f банки 10f включает несколько горизонтальных линейных выступов (таких как ребрышки, гребни, рубчики и т.п.) 15F. Линейные выступы 15f ориентированы в направлениях, которые в целом перпендикулярны направлению первичного потока через проход 14е при сливе напитка из остальной части основного объема 13f через выход 11f. Каждый линейный выступ 15f может продолжаться от лицевой поверхности 20f на высоте, например, от 100 нанометров (нм) до 5 миллиметров (мм). Каждый линейный выступ 15f может быть однородным по длине, ширине, высоте и другим характеристикам, либо различные линейные выступы 15f могут отличаться одним или более размерами или другими характеристиками. Для удобства на Фиг.1F1-1F3 показано только 9 линейных выступов 15f. Однако может быть предусмотрено гораздо большее количество линейных выступов 15f, и эти линейные выступы могут иметь гораздо меньший интервал. Линейные выступы 15f могут быть расположены правильным рисунком, как показано, либо могут иметь неправильное вертикальное и/или горизонтальное распределение. Перегородка 12f в остальном аналогична перегородке 12b с Фиг.1B1. Выход 11f и основной объем 13f аналогичны выходу 11b и основному объему 13b с Фиг.1B1.
Фиг.1F4 представляет собой вид лицевой поверхности 20ff перегородки 12ff банки, сходной с банкой 13f, показанной с местоположения, аналогичного тому, с которого был показан вид на Фиг.1F3. Лицевая поверхность 20ff подобна лицевой поверхности 20f, за исключением того, что каждый из линейный выступов 15f заменен множеством несплошных линейных выступов 15ff, разделенных интервалами 18FF. Каждый из линейных выступов 15ff может продолжаться от лицевой поверхности 20ff в высоту, к примеру, от 100нм до 5 мм. Линейные выступы 15ff могут быть одинаковыми по длине, ширине, высоте и другим характеристикам, либо различные линейные выступы 15ff могут отличаться одним или более размерами или иными характеристиками. Интервалы 18FF также могут быть одинаковыми или могут различаться. Линейные выступы 15ff и интервалы 18FF могут быть расположены правильным рисунком, как показано, либо могут иметь неправильное вертикальное и/или горизонтальное распределение.
На Фиг.1G1 представлен вид сбоку в разрезе баночного контейнера 10g для напитков в соответствии с другим вариантом выполнения. Фиг.1G2 является видом сверху в разрезе банки 10g, показанной с местоположения, представленного на Фиг.1G1. Фиг.1G3 представляет собой вид сбоку в разрезе, показанный с местоположения, представленного на Фиг.1G1, на котором опущены наружные стенки банки 10g и показана лицевая поверхность 20g перегородки 12g внутри прохода 14г. Банка 10g сходна с банкой 10f c Фиг.1F1, за исключением того, что лицевая поверхность 20g включает вертикальные линейные выступы 19g. Линейные выступы 15g ориентированы в направлениях, которые в целом параллельны направлению первичного потока через проход 14g при сливе напитка из остальной части основного объема 13g через выход 11g. Количество, размер, форма, распределение, непрерывность и другие характеристики вертикальных линейных выступов 19g могут варьироваться способами, сходными с возможными вариантами горизонтальных линейных выступов 15f и 15ff, рассмотренными применительно к Фиг.1F1-1F4.
На Фиг.1H1 представлен вид сбоку в разрезе баночного контейнера 10h для напитков в соответствии с другим вариантом выполнения. Фиг.1H2 является видом сверху в разрезе банки 10h, показанной с местоположения, представленного на Фиг.1H1. Фиг.1H3 является видом сбоку в разрезе, показанным с местоположения, представленного на Фиг.1H1, на котором опущены наружные стенки банки 10h и показана лицевая поверхность 20h перегородки 12h внутри прохода 14h. Банка 10h сходна с банкой 10f c Фиг.1F1 и с банкой 10g c Фиг.1G1, за исключением того, что лицевая поверхность 20h включает горизонтальные линейные выступы 15h (ориентированные в направлениях в целом перпендикулярных направлению первичного потока через проход 14h) и вертикальные линейные выступы 19h (ориентированные в направлениях в целом параллельных направлению первичного потока через проход 14h). Количество, размер, форма, распределение, непрерывность и другие характеристики линейных выступов 15h и/или 19h могут варьироваться способами, сходными с возможными вариантами, рассмотренными применительно к Фиг.1F1-1G3.
На Фиг.1I1 представлен вид сбоку в разрезе баночного контейнера 10i для напитков в соответствии с другим вариантом выполнения. Фиг.1I2 является видом сверху в разрезе банки 10i, показанной с местоположения, представленного на Фиг.1I1. Фиг.1I3 является видом сбоку в разрезе, показанным с местоположения, представленного на Фиг.1I1, на котором опущены наружные стенки банки 10i и показана лицевая поверхность 20i перегородки 12i внутри прохода 14i. Банка 10i сходна с банкой 10f с Фиг.1F1, с банкой 10g с Фиг.1G1 и с банкой 10h с Фиг.1H1, за исключением того, что лицевая поверхность 20i включает первое множество диагональных линейных выступов 21i (продолжающихся сверху слева вниз направо на Фиг.1I3 в первом множестве направлений, которые не являются ни параллельными, ни перпендикулярными направлению первичного потока через проход 14i), а также второе множество диагональных линейных выступов 22i (продолжающихся сверху слева вниз направо на Фиг.113 во втором множестве направлений, которые не являются ни параллельными, ни перпендикулярными направлению первичного потока через проход 14i). Количество, размер, форма, распределение, непрерывность и другие характеристики линейных выступов 21i и/или 22i могут варьироваться способами, сходными с возможными вариантами, рассмотренными применительно к Фиг.1F1-1H3.
В других вариантах выполнения, сходных с вариантами выполнения с Фиг.1C1-1D2, обе стороны прохода могут иметь линейные выступы, такие как описаны применительно к Фиг.1F1-1I3. Другие варианты выполнения содержат дополнительные вариации и сочетания линейных выступов, показанных на Фиг.1F1-1I3. Третьи варианты выполнения могут включать изогнутые линейные выступы, сочетания изогнутых и прямых линейных выступов и/или сочетания линейных выступов и элементов, таких как неровности, ямочки и т.д.
Элементы, описанные применительно к Фиг.1A1-1I3, могут быть объединены различными способами и/или могут быть объединены с другими поверхностными элементами, перегородками, и/или другими элементами внутри контейнера. В целом, увеличение площади поверхности для нуклеации пузырьков приведет к большему количеству пузырьков, а добавление препятствий замедлит рост пузырьков. В некоторых вариантах выполнения, в которых контейнер представляет собой бутылку, проход, образованный перегородкой на Фиг.1A-1I3, может являться проходом в горловине бутылки. Длина, внутренний объем и/или другие элементы горловины могут быть изменены таким образом, чтобы влиять на создание и/или перемещение пузырьков.
Поскольку физические свойства пузырьков, такие как размер, форма, количество и скорость высвобождения пузырьков взаимосвязаны, они могут быть совместно отрегулированы путем модификации конфигурации контейнера. Некоторые или все эти свойства могут быть изменены путем конфигурирования контейнера с тем, чтобы изменить глубину, на которой происходит нуклеация пузырьков. Подъем пузырьков, выходящих из контейнера, будет зависеть от элементов в проходе, через который газированная жидкость будет выходить из контейнера. В некоторых случаях вязкость напитка может быть увеличена (например, путем добавления подслащивающего сиропа), либо в напитке могут быть суспендированы мелкие частицы (или предназначенные для осаждения), чтобы увеличить устойчивость пузырьков. Осаждение частиц может быть достигнуто при опоре на снижение растворимости некоторых соединений при пониженном давлении. Таким образом, такое соединение может быть полностью растворено в напитке под давлением в герметичном контейнере. При открывании контейнера давление снижается, и некоторые из соединений будут выпадать в осадок из раствора.
В некоторых вариантах выполнения при модификации уже существующих контейнеров с тем, чтобы создать рабочие поверхности, которые влияют на размер пузырьков, количество и/или другие свойства, нужно учитывать определенные соображения. С целью достижения нужной консистенции, для напитка может быть предпочтительным как можно больше контактировать с рабочей поверхностью или подвергаться воздействию рабочей поверхности. С целью управления затратами, для рабочей поверхности также может быть предпочтительным обеспечение совместимости с текущими производственными процессами (например, формованием раздувом из преформ из полиэтилентерефталата (ПЭТФ)). Кроме того, желательно, чтобы контейнер (модифицированный) был безопасным, например, обеспечивал надежную укупорку и не содержал токсичных веществ.
Некоторые варианты выполнения содержат контейнеры для напитков, которые улучшают динамику потока напитка через горловину бутылки или другого контейнера. Это улучшение динамики потока может быть достигнуто за счет снижения вязкостного торможения вдоль внутренней поверхности горловины. Снижение вязкостного торможения может уменьшить степень «бульканья» и количество газа, высвобождаемого из-за торможения и турбулентного потока. Конечным результатом может быть увеличение потока и увеличение пузырьков, остающихся в напитке. Если пить прямо из бутылки, результатом может быть улучшенный поток напитка, поступающего в рот. Увеличится также количество пузырьков, остающихся в напитке и, таким образом, достигаются улучшенные вкусовые ощущения. Улучшенный поток еще больше снижает газовыделение во рту, что позволяет увеличить скорость потребления напитка и делает его более приятным.
В некоторых вариантах выполнения эти результаты достигаются за счет использования «ребрышек», микрогеометрии продольных канавок и/или гребней, совпадающих с направлением потока жидкости. На Фиг.2 показан один из примеров бутылки 100, имеющей горловину 101 с ребрышками 102, образованными вокруг всей внутренней окружности горловины 101. Бутылка 100 имеет боковую стенку 182, верхнюю часть 181 (частью которой является горловина 101) и днище (не показано). Выход горловины 102 бутылки 100 может быть закрыт так, чтобы герметизировать газированный напиток во внутреннем объеме бутылки 100, при этом открывание выхода позволяет выливание содержащегося напитка из внутреннего объема через открытый выход.
В варианте выполнения с Фиг.2, ребрышки продолжаются по всей длине горловины 101, но это не обязательно для всех вариантов выполнения. Как показано на вставном участке на Фиг.2, ребрышки могут быть продольными канавками, которые имеют размеры, приблизительно равные по высоте и ширине. Однако могут быть использованы и изменения размеров ребрышек. Различные рисунки ребрышек и другие элементы, которые также могут быть использованы, описаны, например, в патенте США 5069403 и патенте США 4930729, при этом оба они включены в настоящее описание путем ссылки во всей их полноте. Сбоку в разрезе ребрышки (разделение вершин и впадин, которое может являться высотой гребней ребрышек и/или глубиной канавок ребрышек) могут находиться в диапазоне от 0,1 до 0,5 мм. Дополнительные варианты выполнения содержат гребни, имеющие диапазоны размеров, которые включают, без ограничения, те, что описаны в патенте США 5069403 и патенте США 4930729. Другие рисунки, которые могут быть включены в контейнеры в соответствии с одним или более вариантами выполнения, содержат те, что описаны в патенте США 5971326 и патенте США 6345791, при этом оба также включены сюда в качестве ссылки в полном объеме. На Фиг.3 показан участок 201 горловины бутылки в соответствии с некоторыми другими вариантами выполнения, при этом остальная часть бутылки не показана. В варианте выполнения на Фиг.3, улучшенные характеристики могут быть получены путем формования ребрышек 202 с направлением, которое составляет 45 градусов к основному направлению 289 потока напитка, вытекающим из внутренней части контейнера через открытый выход в верхней части горловины. В других вариантах выполнения ребрышки в горловине или другой части контейнера могут быть расположены под разными углами к направлению потока.
Ребрышки могут быть образованы любым из различных способов. Например, продольные гребни и/или канавки могут быть созданы путем приложения негативного рисунка гребней и/или канавок к поверхности участка преформы, выполненной литьем под давлением и образующей внутреннюю поверхность горловины. Корпус контейнера может сужаться в горловине так, чтобы образовывать небольшой угол, так как крутизна в этом углу может стимулировать высвобождение газа из напитка, выливаемого из бутылки. Ребрышки могут сужаться в участке корпуса контейнера и/или могут простираться по всей длине контейнера.
Как указано выше, вязкостное торможение может иметь нежелательные воздействия по отношению к высвобождению пузырьков из газированного напитка. При употреблении напитка, особенно при употреблении непосредственно из бутылки или другого контейнера, контейнер систематически наклоняют так, что напиток течет вперед и назад по внутренней поверхности контейнера. Вязкостное торможение на поверхности контейнера приводит к высвобождению газа из напитка. Высвобождение газа снижает содержание газа в напитке с течением времени, и напиток, таким образом, выравнивается быстрее, чем если бы контейнер для напитков оставался неподвижным.
В некоторых вариантах выполнения применено вязкостное торможение на внутренних областях контейнера для напитков в дополнение (или вместо) к участку горловины. По меньшей мере, в некоторых из этих вариантов выполнения также использована микрогеометрия текстуры поверхности для уменьшения вязкостного торможения на пограничном слое контейнер-напиток. В одном варианте выполнения контейнер для напитков имеет такую внутреннюю поверхность с впадинами, что ямочки образуют вогнутую поверхность в области контакта с напитком. Это показано на Фиг.4А. На Фиг.4A, бутылка 301 имеет рисунок гексагональных впадин 302, по существу, по всей внутренней поверхности. Бутылка 301 имеет боковую стенку, верхнюю часть (с горловиной) и днище. Бутылка 301 может быть герметизирована на выходе горловины так, чтобы содержать газированный напиток во внутреннем объеме бутылки 301, при этом открывание выхода позволяет выливание содержащегося напитка из внутреннего объема через открытый выход.
Для удобства показана только часть ямочек 302. Как показано на увеличенном виде в разрезе нижней части бутылки 301, каждая ямочка 302 может иметь вогнутую внутреннюю поверхность 303 и выпуклую наружную поверхность 304. На Фиг.4B показаны примеры дополнительных форм и рисунков ямочек, которые могут быть использованы. Количество ямочек может находиться в диапазоне приблизительно 80-160 (например, около 120) на квадратный дюйм (на 6,45 квадратных сантиметров), хотя возможны иные различные размеры и альтернативные конфигурации. Примеры альтернативных размеров включают те, что описаны в патенте США 5167552, но не ограничены ими, при этом данный патент включен сюда посредством ссылки во всей своей полноте. Глубина диапазона впадин может варьироваться от примерно 0,1 мм до примерно 0,5 мм, например, приблизительно от 0,1 мм до 0,15 мм, хотя могут быть использованы другие глубины и/или диапазоны глубин.
В дополнительных вариантах выполнения, ямочки, аналогичные указанным на Фиг.4А и 4В, могут быть ориентированы в обратном порядке. В частности, ямочки могут быть выполнены таким образом, чтобы ямочки имели выпуклую внутреннюю поверхность и вогнутую наружную поверхность. Ямочки могут быть расположены по существу, по всему контейнеру или в одной области контейнера. Например, некоторые варианты выполнения могут включать контейнер, в котором ямочки расположены только в области плеча, в то время как другие варианты выполнения могут включать контейнер, в котором ямочки расположены только в области обхвата. В других вариантах выполнения, ямочки могут быть расположены в нескольких дискретных кластерах ямочек, при этом кластер ямочек отделен от другого кластер ямочек материалом без ямочек стенки контейнера. Могут быть использованы различные рисунки кластера (например, рисунок гексагонального футбольного мяча) и/или сочетания рисунков.
Такие варианты выполнения, что показаны на Фиг.4A и 4B, могут быть созданы с использованием технологий выдувного формования путем включения рисунка выступов, соответствующего желаемому рисунку ямочек. При выполнении рисунка из наружной поверхности контейнера, контактирующей с выдувной формой, может быть полезным изменить размер и/или детализацию рисунка таким образом, чтобы учесть некоторые потери мелких элемент