Способ установки ионного источника относительно обрабатываемой детали

Изобретение относится к ионно-лучевой обработке крупногабаритных оптических деталей. Технический результат – повышение точности обработки поверхности деталей. Согласно способу в ионном источнике определяют контролирующее место и помещают в него щуп с датчиком. На обрабатываемой детали выбирают контрольные точки по ее периметру. Подводят щуп до контакта с поверхностью детали в контрольных точках и срабатывания щупа, фиксируют координаты детали относительно координат щупа с датчиком, расстояние которого относительно ионного источника известно и всегда постоянно. Моменты касания щупа к детали контролируют с помощью веб-камеры с подсветкой, установленной на каретке ионного источника.

Реферат

Изобретение относится к технологии ионно-лучевой обработки (ИЛО) и может использоваться при ИЛО крупногабаритных оптических деталей, например линз и зеркал телескопов из стекла и ситалла.

ИЛО крупногабаритных деталей осуществляется на специальных установках, содержащих в общем случае вакуумную камеру с узлом крепления детали, откачную систему, узел ионного источника, систему управления. Известна подобная установка «Луч-2,5» (журнал «Контенант», 2014 г., т. 13, №1-14, стр. 64-67) для обработки деталей диаметром (габаритом) до 2,5 м. В установке используются два ионных источника Холловского типа, закрепленных на каретке, которая может осуществлять 3 линейных и 3 угловых перемещения с точностью +/- 0,5 мм и +/- 1° соответственно. Обрабатываемая деталь такого большого размера крепится в узле крепления достаточно произвольно, что приводит к тому, что начало системы координат детали при каждой загрузке смещается относительно ионного источника, система координат которого жестко привязана к стационарной части вакуумной камеры (то есть является неизменной). Таким образом, для совмещения систем координат обрабатываемой детали с системой координат ионного источника необходимо определять величины смещения при каждой загрузке. Для этой цели мог бы служить штатный щуп на каретке ионных источников, предназначенный для калибровки (позиционирования) системы. Однако его использование для решения поставленной задачи совмещения систем координат не было разработано.

Ближайшим технологическим решением к предлагаемому является «Способ установки ионного пучка относительно обрабатываемого изделия» по авт. свид. SU 1072148 А, опубл. 07.02.1984 г., включающий контроль положения пучка и, следовательно, ионного источника с помощью шаблона, имитирующего изделие. Согласно способу в ионном пучке, исходящем из источника, выбирают (определяют) контрольные участки (правильнее - контролирующие участки (места)), а на поверхности шаблона выбирают контрольные точки в центре и по окружности (периметру). Затем перемещают ионный источник по контрольным точкам до совмещения контрольных участков с контрольными точками, а момент совмещения определяют (фиксируют) по контрольной величине ионного тока. Однако точность способа невелика, т.к. контроль положения пучка (что то же - источника) ведут по шаблону, а не по изделию, и при установке изделия на место шаблона всегда возможны отклонения. Аналогично и выбор контрольных участков в ионном пучке определенного рабочего сечения проблематично с точки зрения точности. Таким образом, данный способ не решит поставленную задачу.

Задачей изобретения является совмещение систем координат ионного источника и обрабатываемой крупногабаритной оптической детали с повышением точности установки ионного источника относительно детали.

Технический результат, обусловленный поставленной задачей, достигается тем, что в способе установки ионного источника относительно обрабатываемой детали, включающем определение в ионном источнике контролирующего места, определение на поверхности детали контрольных точек по ее периметру, перемещение ионного источника по контрольным точкам и фиксацию момента совмещения контролирующего места и контрольных точек, в отличие от известного, в контролирующее место ионного источника помещают щуп с датчиком, подводят щуп до контакта с поверхностью детали в контрольных точках и срабатывания датчика, фиксируют расстояние между щупом и ионным источником и координаты детали относительно координат щупа с датчиком, при этом моменты касания щупа к детали контролируют с помощью веб-камеры с подсветкой.

Таким образом, непосредственное ощупывание поверхности обрабатываемой детали, а не шаблона, позволяет точно определить взаимные координаты детали и ионного источника и ввести их в управляющий орган (технологическую программу обработки) установки ИЛО. Использование веб-камеры с подсветкой обеспечивает визуальное наблюдение за положением щупа, что необходимо для избегания повреждения детали и поломки щупа.

Предложенный способ реализуется следующим образом на установке «Луч-2,5» для ионно-лучевой обработки крупногабаритных оптических деталей диаметром до 2,5 м, описанной выше во втором абзаце первого листа описания. Обрабатываемую деталь загружают в узел крепления подъемного контейнера. На каретку системы перемещения ионного источника монтируют в специальное гнездо щуп с датчиком и веб-камеру с подсветкой. Контейнер с деталью поднимают и камеру закрывают. Наблюдая за положением щупа при помощи веб-камеры, оператор подводит щуп к детали до срабатывания датчика. Датчик щупа имеет два режима срабатывания - при касании поверхности и при электрическом контакте с поверхностью. Так как материалом обрабатываемой поверхности является диэлектрик (стекло), то используется только контактный режим срабатывания датчика. Определение координат детали производят путем обхода щупом контрольных точек на внешнем периметре детали. Количество точек зависит от формы детали и размера периметра (например, для круглой детали минимально необходимое количество точек - 3). После определения координат детали камеру открывают, щуп и веб-камеру демонтируют, камеру закрывают. Полученные координаты с учетом того, что расстояние между ионным источником и щупом и координаты ионного источника известны, зафиксированы и всегда постоянны, вводят в технологическую программу обработки и ведут техпроцесс ИЛО.

Способ был опробован и дал положительные результаты, т.е. он промышленно применим. Точность совмещения систем координат ионного источника и обрабатываемой детали диаметром 2,5 м составила +/- 0,5 мм для линейных перемещений, что вполне достаточно и гарантировало требуемую точность обработки поверхности детали.

Способ установки ионного источника относительно обрабатываемой детали, согласно которому в ионном источнике определяют контролирующее место, на детали выбирают контрольные точки по периметру детали, перемещают ионный источник по контрольным точкам и фиксируют моменты совмещения контролирующего места и контрольных точек, отличающийся тем, что в контролирующее место ионного источника помещают щуп с датчиком, подводят щуп до контакта с поверхностью детали в контрольных точках и срабатывания датчика, фиксируют расстояние между щупом и ионным источником и координаты детали относительно координат щупа с датчиком, при этом моменты касания щупа к детали контролируют с помощью веб-камеры с подсветкой.